
HISQy Business
Evan Weinberg, Senior Developer Technology Compute Engineer, NVIDIA
Lattice2023, July 31, 2023
(In collaboration with Venkitesh Ayyar, Richard Brower, Kate Clark)

- Me

There’s going to be a GPU raffle!
The drawing will be during the Lattice
2024/2025 announcement on Friday.

• Takeaways & Challenges

• HISQ Crash Course

• HISQ Force

• HISQ Domain-Decomposed Preconditioning

• Future Work

Agenda

Takeaways & Challenges

Takeaways
Speeding up HISQ workflows

• HISQ: highly improved staggered quarks

• Smeared links: lots of locality to exploit

• New: hugely fused HISQ force implementation in QUDA

• Merged: https://github.com/lattice/quda/pull/1367

https://github.com/lattice/quda/pull/1367

Takeaways
Speeding up HISQ workflows

• HISQ: highly improved staggered quarks

• Smeared links: lots of locality to exploit

• New: hugely fused HISQ force implementation in QUDA

• Merged: https://github.com/lattice/quda/pull/1367

• Modern machines have varying degrees of network performance

• Domain-decomposition algorithms become increasingly important

• HISQ’s distance one and three terms introduce conceptual challenges

• New: (mostly-)optimized implementation of a local HISQ
preconditioner in QUDA

• We have demonstrated numerical stability

• And, in some cases, faster propagator solves---with performance
successes and failures understood

• WIP branch, constantly in flux:
https://github.com/lattice/quda/tree/feature/stag-invert-cleanup

https://github.com/lattice/quda/pull/1367
https://github.com/lattice/quda/tree/feature/stag-invert-cleanup

QUDA

• “QCD on CUDA” – http://lattice.github.com/quda (open source, BSD license)

• Not just CUDA anymore

• Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD,
Chroma**, CPS**, MILC**, TIFR, etc.

• Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.

• Maximize performance

• Mixed-precision methods

• Autotuning for high performance on all architectures

• Multigrid solvers for optimal convergence

• NVSHMEM for improving strong scaling

• Portable: HIP (merged), SYCL (in review) and OpenMP (in development)

• A research tool for how to reach the exascale (and beyond)

• Optimally mapping the problem to hierarchical processors and node topologies

**ECP benchmark applications

http://lattice.github.com/quda

Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth

Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth

• Not all HPC facilities prioritize network bandwidth

Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth

• Not all HPC facilities prioritize network bandwidth

• Regardless, it’s not always possible (or practical) to control process placement

• You can’t always take advantage of all hierarchies of bandwidths/latencies

Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth

• Not all HPC facilities prioritize network bandwidth

• Regardless, it’s not always possible (or practical) to control process placement

• You can’t always take advantage of all hierarchies of bandwidths/latencies

• Communication reducing or avoiding algorithms are increasingly important for
mitigating these challenges

Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth

• Not all HPC facilities prioritize network bandwidth

• Regardless, it’s not always possible (or practical) to control process placement

• You can’t always take advantage of all hierarchies of bandwidths/latencies

• Communication reducing or avoiding algorithms are increasingly important for
mitigating these challenges

• Our community has been and continues to be fully aware of this:

• Communication-reducing solvers

• Domain-decomposed preconditioners

• Domain-decomposed HMC

HISQ Crash Course

Why Staggered Fermions?
Aka Kogut-Susskind Fermions

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝑈𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑈𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 2𝑚𝛿𝑥,𝑦

• Staggered fermions

• Spin-diagonalize the discrete Dirac matrix

• Lose shift-by-one translational invariance, but preserve a shift-by-two

• Phases 𝜂𝜇(𝑥) preserve the Dirac structure

Why Staggered Fermions?
Aka Kogut-Susskind Fermions

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝑈𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑈𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 2𝑚𝛿𝑥,𝑦

• Staggered fermions

• Spin-diagonalize the discrete Dirac matrix

• Lose shift-by-one translational invariance, but preserve a shift-by-two

• Phases 𝜂𝜇(𝑥) preserve the Dirac structure

• The lack of spin degrees of freedom make them relatively inexpensive

• Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth

Why Staggered Fermions?
Aka Kogut-Susskind Fermions

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝑈𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑈𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 2𝑚𝛿𝑥,𝑦

• Staggered fermions

• Spin-diagonalize the discrete Dirac matrix

• Lose shift-by-one translational invariance, but preserve a shift-by-two

• Phases 𝜂𝜇(𝑥) preserve the Dirac structure

• The lack of spin degrees of freedom make them relatively inexpensive

• Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth

• In contrast to other discretizations…

• There’s an exact chiral symmetry in contrast to Wilson/clover/twisted/etc

• There’s no extra dimension in contrast to domain wall/Mobius/etc

Why Staggered Fermions?
Aka Kogut-Susskind Fermions

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝑈𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑈𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 2𝑚𝛿𝑥,𝑦

• Staggered fermions

• Spin-diagonalize the discrete Dirac matrix

• Lose shift-by-one translational invariance, but preserve a shift-by-two

• Phases 𝜂𝜇(𝑥) preserve the Dirac structure

• The lack of spin degrees of freedom make them relatively inexpensive

• Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth

• In contrast to other discretizations…

• There’s an exact chiral symmetry in contrast to Wilson/clover/twisted/etc

• There’s no extra dimension in contrast to domain wall/Mobius/etc

• Like the continuum operator, it’s just a symmetric first derivative: anti-Hermitian and normal

Why Staggered Fermions?
Continued

• Huge secondary benefit: the even/odd preconditioned operator is Hermitian Positive-Definite

• Anti-Hermitian + normal: 𝐷𝑒𝑜 = −𝐷𝑜𝑒
†

2𝑚 𝐷𝑒𝑜

𝐷𝑜𝑒 2𝑚

𝑥𝑒

𝑥𝑜
=

𝑏𝑒

𝑏𝑜

4𝑚2 − 𝐷𝑒𝑜𝐷𝑜𝑒 𝑥𝑒 = 2𝑚𝑏𝑒 − 𝐷𝑒𝑜𝑏𝑜

Why Staggered Fermions?
Continued

• Huge secondary benefit: the even/odd preconditioned operator is Hermitian Positive-Definite

• Anti-Hermitian + normal: 𝐷𝑒𝑜 = −𝐷𝑜𝑒
†

2𝑚 𝐷𝑒𝑜

𝐷𝑜𝑒 2𝑚

𝑥𝑒

𝑥𝑜
=

𝑏𝑒

𝑏𝑜

4𝑚2 − 𝐷𝑒𝑜𝐷𝑜𝑒 𝑥𝑒 = 2𝑚𝑏𝑒 − 𝐷𝑒𝑜𝑏𝑜

• Obviously, there’s no free lunch

• There is a residual doubling: 2 ൗ𝑑
2 doublers (as opposed to 2𝑑)

• “Taste-breaking” effects: only one of the “pions” feels the exact lattice chiral symmetry

Enter HISQ
“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:

• Smooths the fields

• Suppresses taste-breaking effects

• Additionally performs Symanzik improvement

Enter HISQ
“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:

• Smooths the fields

• Suppresses taste-breaking effects

• Additionally performs Symanzik improvement

• Core kernel: ASQTAD smearing

• “fat7” + Lepage term to suppress taste-breaking

From Follana et al; arxiv:0507011

Enter HISQ
“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:

• Smooths the fields

• Suppresses taste-breaking effects

• Additionally performs Symanzik improvement

• Core kernel: ASQTAD smearing

• “fat7” + Lepage term to suppress taste-breaking

• Full workflow: ASQTAD + re-unitarization + ASQTAD

• Equations can be re-written to remove Lepage term from first step

From Follana et al; arxiv:0507011

Enter HISQ
“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:

• Smooths the fields

• Suppresses taste-breaking effects

• Additionally performs Symanzik improvement

• Core kernel: ASQTAD smearing

• “fat7” + Lepage term to suppress taste-breaking

• Full workflow: ASQTAD + re-unitarization + ASQTAD

• Equations can be re-written to remove Lepage term from first step

• Addition of “long links” for Symanzik improvement

From Follana et al; arxiv:0507011

The HISQ Stencil
17 points for Lattice Gryffindor

• The final (massive) HISQ stencil is a 17-point stencil

• One local mass term

• Eight distance-1 “fat link” terms: “general” Nc x Nc matrices

• Eight distance-3 “long link” terms: U(Nc) matrices

Recursive Link Fattening

• Constructing the fat links is inherently recursive

• 3-link terms are built from 1-link terms

• 5-link terms can be built from 3-link terms

• As can the Lepage (c5’) staple

• 7-link terms can be built from 5-link terms

From Follana et al; arxiv:0507011

• In one kernel: accumulate c1 + c3, store c3 term

Data Reuse
Caches exist for a reason

Save this sum to a
temporary accumulator

Save each length three staple

• In one kernel: accumulate c1 + c3, store c3 term

• In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c5s into force, save five-
link terms

Data Reuse
Caches exist for a reason

Save this sum to a
temporary accumulator

Save each length three staple

Load these two links

Increment five-link
staples into accumulator

Save each five-link staple separately

• In one kernel: accumulate c1 + c3, store c3 term

• In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c5s into force, save five-
link terms

• …etc

Data Reuse
Caches exist for a reason

Save this sum to a
temporary accumulator

Save each length three staple

Load these two links

Increment five-link
staples into accumulator

Save each five-link staple separately

HISQ Force

HISQ Force
“Highly Improved Staggered Quarks”

• The HISQ force is a beast: three-stage chain rule

• Similar to the fat link construction, there are a lot of opportunities for…

• Reuse of intermediates

• Kernel fusion

• Cache Reuse

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force: Accumulate and store intermediates

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force: reuse intermediates from before

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force... + next middle force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

HISQ Force
Sorry about the pseudocode

• Original implementation:

Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force... + next 5-link middle force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force... + next 3-link middle force

 End loop (mu)

End loop (sig)

𝑑

𝑑𝑈

Use Your Symmetries

• While the staples are general matrices, all base gauge links are U(3)

• Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Use Your Symmetries

• While the staples are general matrices, all base gauge links are U(3)

• Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Use Your Symmetries

• While the staples are general matrices, all base gauge links are U(3)

• Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Improvements are algorithmic and architectural

Architecture and algorithm boosts multiply: ~5.6x

Architecture:
3.75x

Algorithm:
1.5x

HISQ Domain-Decomposed
Preconditioning

Additive Schwarz Preconditioning with Non-Overlapping Blocks
Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning…

• Preconditioning (twisted-)clover with the (twisted-)clover inverse

• Example B: 4-d preconditioning of Mobius fermions

Additive Schwarz Preconditioning with Non-Overlapping Blocks
Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning…

• Preconditioning (twisted-)clover with the (twisted-)clover inverse

• Example B: 4-d preconditioning of Mobius fermions

• …to larger domains: Schwarz preconditioning

Additive Schwarz Preconditioning with Non-Overlapping Blocks
Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning…

• Preconditioning (twisted-)clover with the (twisted-)clover inverse

• Example B: 4-d preconditioning of Mobius fermions

• …to larger domains: Schwarz preconditioning

• Additive Schwarz is analogous to Jacobi Iterations, but for domains

Additive Schwarz Preconditioning with Non-Overlapping Blocks
Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning…

• Preconditioning (twisted-)clover with the (twisted-)clover inverse

• Example B: 4-d preconditioning of Mobius fermions

• …to larger domains: Schwarz preconditioning

• Additive Schwarz is analogous to Jacobi Iterations, but for domains

• For this talk: domains are non-overlapping

Additive Schwarz Preconditioning with Non-Overlapping Blocks
Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning…

• Preconditioning (twisted-)clover with the (twisted-)clover inverse

• Example B: 4-d preconditioning of Mobius fermions

• …to larger domains: Schwarz preconditioning

• Additive Schwarz is analogous to Jacobi Iterations, but for domains

• For this talk: domains are non-overlapping

• Here: one domain per MPI rank (== one GPU)

• This is a person-hour coding and debugging constraint

• There’s no inherent algorithmic or machine constraint

Existing Work
Mobius Fermions

• The theory and use of Schwarz preconditioners is long-lived and
exhaustive---the idea isn’t anything new-fangled

• The challenge is constructing the algorithm and the implementation

Existing Work
Mobius Fermions

• The theory and use of Schwarz preconditioners is long-lived and
exhaustive---the idea isn’t anything new-fangled

• The challenge is constructing the algorithm and the implementation

• A recent example in LQCD is Multi-Splitting Preconditioned Conjugate
Gradient (MSPCG)

• [arxiv:2104.05615]

• For Mobius fermions, the relevant HPC operator is the normal 4-d
preconditioned operator

1 − 𝐷𝑒𝑜𝐷𝑜𝑒
† 1 − 𝐷𝑒𝑜𝐷𝑜𝑒

• The product of four Ds generates so-called snake terms

Zero Boundaries
“Boundary clovers”

• Let’s consider the massless staggered operator… in one dimension, for extreme simplicity

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

• The stencil gathers from two sites: one on the left, and one on the right

Exterior domain Interior domain

Zero Boundaries
“Boundary clovers”

• Let’s consider the massless staggered operator… in one dimension, for extreme simplicity

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

• The stencil gathers from two sites: one on the left, and one on the right

• For non-overlapping blocks, there’s no contribution from outside the domain

• Above: contribution from the left is zero

• For this simple stencil, this is equivalent to zeroing out the hopping term itself…

• …that thinking is trouble

Exterior domain Interior domain

Squared operator

• Let’s consider the massless operator squared… in one dimension, to keep bookkeeping easy

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

Squared operator

• Let’s consider the massless operator squared… in one dimension, to keep bookkeeping easy

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

Squared operator

• Let’s consider the massless operator squared… in one dimension, to keep bookkeeping easy

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

Squared operator

• Let’s consider the massless operator squared… in one dimension, to keep bookkeeping easy

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

Squared operator on the Boundary
There’s always a catch

• Let’s consider the massless operator squared… in one dimension, to keep bookkeeping easy

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

Sidebar: MSPCG Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

2. 𝐷𝑒𝑜 on 𝐿 + 4 4 volume

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

2. 𝐷𝑒𝑜 on 𝐿 + 4 4 volume

3. 𝐷𝑒𝑜
†

 on 𝐿 + 2 4 volume

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

2. 𝐷𝑒𝑜 on 𝐿 + 4 4 volume

3. 𝐷𝑒𝑜
†

 on 𝐿 + 2 4 volume

4. 𝐷𝑜𝑒
†

 on on 𝐿4 volume

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

2. 𝐷𝑒𝑜 on 𝐿 + 4 4 volume

3. 𝐷𝑒𝑜
†

 on 𝐿 + 2 4 volume

4. 𝐷𝑜𝑒
†

 on on 𝐿4 volume

• This extra work can be very expensive; non-trivially so for small local
domains (strong-scaling regime)

Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

𝐷𝑜𝑒
† 𝐷𝑒𝑜

† 𝐷𝑒𝑜𝐷𝑜𝑒
• Four steps, one for each operator application

1. 𝐷𝑜𝑒 on 𝐿 + 2 4 volume

2. 𝐷𝑒𝑜 on 𝐿 + 4 4 volume

3. 𝐷𝑒𝑜
†

 on 𝐿 + 2 4 volume

4. 𝐷𝑜𝑒
†

 on on 𝐿4 volume

• This extra work can be very expensive; non-trivially so for small local
domains (strong-scaling regime)

• HISQ fermions have relative benefits and challenges

• Only 𝐷𝑒𝑜𝐷𝑜𝑒

• Need to bookkeep distance-1 and distance-3 terms

• Distance-3 terms would necessitate an 𝐿 + 6 4 volume

Application to 1-d Staggered

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

• Step one: calculate including the extended domain

Extended domains

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

• Step two: only calculate within the interior

Application to 1-d Staggered
Extended domains

𝐷𝑥,𝑦
𝑠𝑡𝑎𝑔

≈ 𝑀𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

• This also gives you the boundary term

Application to 1-d Staggered

Alternative Form: “Boundary Clover”

≈ 𝑀𝜇 𝑥 𝑀𝜇 𝑥 + Ƹ𝜇 𝛿𝑥,𝑦−2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡

− 𝑀𝜇 𝑥 𝑀𝜇
† 𝑥 + 𝑀𝜇 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − Ƹ𝜇 𝛿𝑦,𝑧

𝐹𝑟𝑜𝑚 𝑠𝑒𝑙𝑓

+ 𝑀𝜇
† 𝑥 − Ƹ𝜇 𝑀𝜇

† 𝑥 − 2 Ƹ𝜇 𝛿𝑥,𝑦+2

𝐹𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡

• Alternative approach: what if we “just” calculated the self-contribution (“boundary clover”) directly?

Implementing a Boundary Clover Workflow

• An implementation in two parts:

• Step 1: Apply the operator with Dirichlet boundary conditions

• For operators in the interior, this is nothing interesting

• For operators on the boundary, it’s a quick snip

Step 1

Boundary Clover
Step 2

• An implementation in two parts:

• Step 2: Apply the operator with “clover” computations on the boundary

• For operators on the interior, this is nothing special

• For operators on the boundary, in the direction of the boundary, compute the full hop “out and in”

• Key optimizations:

• We can reuse the same link for the “out” as the “in”

• We could create a custom field with this pre-computed to avoid the multiplication

Application to HISQ

Review: HISQ Stencil
Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

Review: HISQ Stencil
Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

• This does lead to extra bookkeeping at the boundary

• Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain

Review: HISQ Stencil
Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

• This does lead to extra bookkeeping at the boundary

• Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain

Review: HISQ Stencil
Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

• This does lead to extra bookkeeping at the boundary

• Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain

• Sites at [1] or [2]: There is no long link contribution from the “left”, but there’s still a fat link contribution!

Review: HISQ Stencil
Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

• This does lead to extra bookkeeping at the boundary

• Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain

• Sites at [1] or [2]: There is no long link contribution from the “left”, but there’s still a fat link contribution!

Schur Going to Have a Tough Time
Three hops this time

• The “real” goal is the even/odd preconditioned operator:

𝐷𝑥,𝑦
𝐻𝐼𝑆𝑄

≈

𝜇=0

3

𝜂𝜇(𝑥) 𝐹𝜇 𝑥 𝛿𝑥,𝑦−1 − 𝐹𝜇
† 𝑥 − Ƹ𝜇 𝛿𝑥,𝑦+1 + 𝐿𝜇 𝑥 𝛿𝑥,𝑦−3 − 𝐿𝜇

† 𝑥 − 3 Ƹ𝜇 𝛿𝑥,𝑦+3 + 2𝑚𝛿𝑥,𝑦

2𝑚 𝐷𝑒𝑜

𝐷𝑜𝑒 2𝑚

𝑥𝑒

𝑥𝑜
=

𝑏𝑒

𝑏𝑜

4𝑚2 − 𝐷𝑒𝑜𝐷𝑜𝑒 𝑥𝑒 = 2𝑚𝑏𝑒 − 𝐷𝑒𝑜𝑏𝑜

• The type of bookkeeping noted in the previous slide causes new headaches

• Let’s first consider the site at [0]

• There are three “boundary” contributions:

• Start at [0]: fat link left, fat link right

• Start at [0]: long link left, long link right

• Start at [2]: long link left, fat link right

Site Zero
Three hops this time

• Let’s first consider the site at [1]

• There is only one boundary condition:

• Start at [1]: long link left, long link right

Site One
Three hops this time

• Last, we’ll consider the term at [2]

• There are two boundary contributions:

• Start at [2]: long link left, long link right

• Start at [0]!: fat link left, long link right

Site Two
Three hops this time

Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:

• The fat links are general 3x3 matrices

• The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:

• The fat links are general 3x3 matrices

• The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

• Mixed precision solve:

• Outer operator: Double precision; reconstruct-13 for long links

• Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links

Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:

• The fat links are general 3x3 matrices

• The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

• Mixed precision solve:

• Outer operator: Double precision; reconstruct-13 for long links

• Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links

• For the preconditioned solver:

• We use preconditioned CG (PCG) as the outer solve

• We use fixed-iteration CG as the inner solve

Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:

• The fat links are general 3x3 matrices

• The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

• Mixed precision solve:

• Outer operator: Double precision; reconstruct-13 for long links

• Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links

• For the preconditioned solver:

• We use preconditioned CG (PCG) as the outer solve

• We use fixed-iteration CG as the inner solve

• Note: PCG on paper requires a stationary preconditioner…

• But with a Polak–Ribière correction, CG is “no worse than” Gradient Descent…

• …and seems to work well enough

Reference Configurations, System
Solving at the speed of sound

• Configuration:

• NERSC Large configuration

• Volume: 723x144

• Bare light mass 𝑎𝑚 = 0.001

Reference Configurations, System
Solving at the speed of sound

• Configuration:

• NERSC Large configuration

• Volume: 723x144

• Bare light mass 𝑎𝑚 = 0.001

• Machine: Selene

• DGX-A100-80GB nodes

• Use 4xGPUs per node

• 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

Reference Configurations, System
Solving at the speed of sound

• Configuration:

• NERSC Large configuration

• Volume: 723x144

• Bare light mass 𝑎𝑚 = 0.001

• Machine: Selene

• DGX-A100-80GB nodes

• Use 4xGPUs per node

• 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

• We consider multiple strong scaling problem sizes

Nodes GPUs Local Domain

8 32 364

16 64 363x18

32 128 362x182

64 256 36x183

128 512 184

Reference Configurations, System
Solving at the speed of sound

• Configuration:

• NERSC Large configuration

• Volume: 723x144

• Bare light mass 𝑎𝑚 = 0.001

• Machine: Selene

• DGX-A100-80GB nodes

• Use 4xGPUs per node

• 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

• We consider multiple strong scaling problem sizes

• For networks:

• 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths

• 4:1 GPU:NIC bindings with staging through the CPU

Nodes GPUs Local Domain

8 32 364

16 64 363x18

32 128 362x182

64 256 36x183

128 512 184

Reference Configurations, System
Solving at the speed of sound

• Configuration:

• NERSC Large configuration

• Volume: 723x144

• Bare light mass 𝑎𝑚 = 0.001

• Machine: Selene

• DGX-A100-80GB nodes

• Use 4xGPUs per node

• 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

• We consider multiple strong scaling problem sizes

• For networks:

• 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths

• 4:1 GPU:NIC bindings with staging through the CPU

• All tests utilize NVSHMEM, implementations of the HISQ kernel

• Device-driven communications

• Reduces latency: no separate packing kernel, no overhead of MPI calls, gets the host out of the way

Nodes GPUs Local Domain

8 32 364

16 64 363x18

32 128 362x182

64 256 36x183

128 512 184

Convergence History
An unstable algorithm is pointless

• CG and PCG each converge in a stable fashion

• The “spikes” are due to residual updates: “every so often” we recompute the exact residual and re-inject it into the
(P)CG solve

Operator Performance: Zero Boundary Conditions

Performance is essentially independent of the partitioning

This makes sense: all we’re doing is “snipping” away work

Operator Performance: Boundary Clovers

Performance decreases with partitioning

This makes sense: we’re adding (divergent) work

Extra note: reconstruct becomes a detriment: extra instructions hold up threads

Iteration Counts for each Preconditioner

More preconditioner iterations -> fewer outer iterations (to a point)

Diminishing benefit with smaller partition sizes -> domain is a lower-quality approximation of full domain

Time to Solution (which is all that matters)

Note: 1xNIC includes CPU staging for two GPUs to access a NIC!

There’s still outstanding work to be done when the network is strong (25 GB/s bi-directional per NIC)…

…but we also see that the preconditioner is beneficial when the network is slow

Future Work

Future HISQy Business
Same old song and dance

•HISQ Force: no further optimizations

•Schwarz Preconditioner: Pre-computed matrix products to reduce
latencies

•HISQ MG + Schwarz Preconditioner:

•Use the local operator as a smoother on all levels

•Outer HISQ and Kahler-Dirac preconditioned operator have GPU code
implementations

•Even/odd preconditioned coarse operators do not

•…1923x384 ensemble

	Slide 1: HISQy Business
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Takeaways
	Slide 6: Takeaways
	Slide 7: QUDA
	Slide 8: Challenges
	Slide 9: Challenges
	Slide 10: Challenges
	Slide 11: Challenges
	Slide 12: Challenges
	Slide 13
	Slide 14: Why Staggered Fermions?
	Slide 15: Why Staggered Fermions?
	Slide 16: Why Staggered Fermions?
	Slide 17: Why Staggered Fermions?
	Slide 18: Why Staggered Fermions?
	Slide 19: Why Staggered Fermions?
	Slide 20: Enter HISQ
	Slide 21: Enter HISQ
	Slide 22: Enter HISQ
	Slide 23: Enter HISQ
	Slide 24: The HISQ Stencil
	Slide 25: Recursive Link Fattening
	Slide 26: Data Reuse
	Slide 27: Data Reuse
	Slide 28: Data Reuse
	Slide 29
	Slide 30: HISQ Force
	Slide 31: HISQ Force
	Slide 32: HISQ Force
	Slide 33: HISQ Force
	Slide 34: HISQ Force
	Slide 35: HISQ Force
	Slide 36: HISQ Force
	Slide 37: HISQ Force
	Slide 38: HISQ Force
	Slide 39: HISQ Force
	Slide 40: HISQ Force
	Slide 41: Use Your Symmetries
	Slide 42: Use Your Symmetries
	Slide 43: Use Your Symmetries
	Slide 44: Improvements are algorithmic and architectural
	Slide 45
	Slide 46: Additive Schwarz Preconditioning with Non-Overlapping Blocks
	Slide 47: Additive Schwarz Preconditioning with Non-Overlapping Blocks
	Slide 48: Additive Schwarz Preconditioning with Non-Overlapping Blocks
	Slide 49: Additive Schwarz Preconditioning with Non-Overlapping Blocks
	Slide 50: Additive Schwarz Preconditioning with Non-Overlapping Blocks
	Slide 51: Existing Work
	Slide 52: Existing Work
	Slide 53: Zero Boundaries
	Slide 54: Zero Boundaries
	Slide 55: Squared operator
	Slide 56: Squared operator
	Slide 57: Squared operator
	Slide 58: Squared operator
	Slide 59: Squared operator on the Boundary
	Slide 60: Sidebar: MSPCG Work
	Slide 61: Existing Work
	Slide 62: Existing Work
	Slide 63: Existing Work
	Slide 64: Existing Work
	Slide 65: Existing Work
	Slide 66: Existing Work
	Slide 67: Application to 1-d Staggered
	Slide 68: Application to 1-d Staggered
	Slide 69: Application to 1-d Staggered
	Slide 70: Alternative Form: “Boundary Clover”
	Slide 71: Implementing a Boundary Clover Workflow
	Slide 72: Boundary Clover
	Slide 73
	Slide 74: Review: HISQ Stencil
	Slide 75: Review: HISQ Stencil
	Slide 76: Review: HISQ Stencil
	Slide 77: Review: HISQ Stencil
	Slide 78: Review: HISQ Stencil
	Slide 79: Schur Going to Have a Tough Time
	Slide 80: Site Zero
	Slide 81: Site One
	Slide 82: Site Two
	Slide 84: Solver Workflow
	Slide 85: Solver Workflow
	Slide 86: Solver Workflow
	Slide 87: Solver Workflow
	Slide 88: Solver Workflow
	Slide 89: Reference Configurations, System
	Slide 90: Reference Configurations, System
	Slide 91: Reference Configurations, System
	Slide 92: Reference Configurations, System
	Slide 93: Reference Configurations, System
	Slide 94: Convergence History
	Slide 95: Operator Performance: Zero Boundary Conditions
	Slide 96: Operator Performance: Boundary Clovers
	Slide 97: Iteration Counts for each Preconditioner
	Slide 98: Time to Solution (which is all that matters)
	Slide 102
	Slide 103: Future HISQy Business
	Slide 104

