HISQy Business

Evan Weinberg, Senior Developer Technology Compute Engineer, NVIDIA
Lattice2023, July 31, 2023
(In collaboration with Venkitesh Ayyar, Richard Brower, Kate Clark)
There’s going to be a GPU raffle! The drawing will be during the Lattice 2024/2025 announcement on Friday.

- Me
Agenda

- Takeaways & Challenges
- HISQ Crash Course
- HISQ Force
- HISQ Domain-Decomposed Preconditioning
- Future Work
Takeaways & Challenges
Takeaways

Speeding up HISQ workflows

- HISQ: highly improved staggered quarks
 - Smeared links: lots of locality to exploit
- **New**: hugely fused HISQ force implementation in **QUDA**
 - Merged: https://github.com/lattice/quda/pull/1367
Takeaways
Speeding up HISQ workflows

• HISQ: highly improved staggered quarks
 • Smeared links: lots of locality to exploit

• New: hugely fused HISQ force implementation in QUDA
 • Merged: https://github.com/lattice/quda/pull/1367

• Modern machines have varying degrees of network performance
 • Domain-decomposition algorithms become increasingly important
 • HISQ’s distance one and three terms introduce conceptual challenges

• New: (mostly-)optimized implementation of a local HISQ preconditioner in QUDA
 • We have demonstrated numerical stability
 • And, in some cases, faster propagator solves---with performance successes and failures understood

• WIP branch, constantly in flux: https://github.com/lattice/quda/tree/feature/stag-invert-cleanup
QUDA

- "QCD on CUDA" – http://lattice.github.com/quda (open source, BSD license)
 - Not just CUDA anymore
- Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.
- Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.
- Maximize performance
 - Mixed-precision methods
 - Autotuning for high performance on all architectures
 - Multigrid solvers for optimal convergence
 - NVSHMEM for improving strong scaling
- Portable: HIP (merged), SYCL (in review) and OpenMP (in development)
 - A research tool for how to reach the exascale (and beyond)
 - Optimally mapping the problem to hierarchical processors and node topologies

ECP benchmark applications
Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth
Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth
• Not all HPC facilities prioritize network bandwidth
Challenges
Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth
- Not all HPC facilities prioritize network bandwidth
- Regardless, it’s not always possible (or practical) to control process placement
 - You can’t always take advantage of all hierarchies of bandwidths/latencies
Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth
• Not all HPC facilities prioritize network bandwidth
• Regardless, it’s not always possible (or practical) to control process placement
 • You can’t always take advantage of all hierarchies of bandwidths/latencies
• Communication reducing or avoiding algorithms are increasingly important for mitigating these challenges
Challenges
Or: the state of the network

• LQCD simulations are particularly sensitive to network bandwidth
• Not all HPC facilities prioritize network bandwidth
• Regardless, it’s not always possible (or practical) to control process placement
 • You can’t always take advantage of all hierarchies of bandwidths/latencies
• Communication reducing or avoiding algorithms are increasingly important for mitigating these challenges
• Our community has been and continues to be fully aware of this:
 • Communication-reducing solvers
 • Domain-decomposed preconditioners
 • Domain-decomposed HMC
Why Staggered Fermions?

Aka Kogut-Susskind Fermions

\[D^{stag}_{x,y} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left(U_{\mu}(x) \delta_{x,y-1} - U_{\mu}^{\dagger}(x - \hat{\mu}) \delta_{x,y+1} \right) + 2m \delta_{x,y} \]

- Staggered fermions
 - Spin-diagonalize the discrete Dirac matrix
 - Lose shift-by-one translational invariance, but preserve a shift-by-two
 - Phases \(\eta_{\mu}(x) \) preserve the Dirac structure
Why Staggered Fermions?

Aka Kogut-Susskind Fermions

\[
D^{stag}_{x,y} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)[U_{\mu}(x)\delta_{x,y-1} - U_{\mu}^\dagger(x - \hat{\mu})\delta_{x,y+1}] + 2m\delta_{x,y}
\]

- Staggered fermions
 - Spin-diagonalize the discrete Dirac matrix
 - Lose shift-by-one translational invariance, but preserve a shift-by-two
 - Phases \(\eta_{\mu}(x)\) preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
 - Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth
Why Staggered Fermions?
Aka Kogut-Susskind Fermions

\[D_{x,y}^{stag} \approx \sum_{\mu=0}^{3} \eta_\mu(x) \left[U_\mu(x) \delta_{x,y-1} - U_\mu^\dagger (x - \hat{\mu}) \delta_{x,y+1} \right] + 2m \delta_{x,y} \]

- Staggered fermions
 - Spin-diagonalize the discrete Dirac matrix
 - Lose shift-by-one translational invariance, but preserve a shift-by-two
 - Phases \(\eta_\mu(x) \) preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
 - Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth
- In contrast to other discretizations...
 - There's an exact chiral symmetry in contrast to Wilson/clover/twisted/etc
 - There's no extra dimension in contrast to domain wall/Mobius/etc
Why Staggered Fermions?
Aka Kogut-Susskind Fermions

\[D^{stag}_{x,y} \approx \sum_{\mu=0}^{3} \eta_\mu(x) \left[U_\mu(x) \delta_{x,y-1} - U_\mu^\dagger(x - \hat{\mu}) \delta_{x,y+1} \right] + 2m \delta_{x,y} \]

- Staggered fermions
 - Spin-diagonalize the discrete Dirac matrix
 - Lose shift-by-one translational invariance, but preserve a shift-by-two
 - Phases \(\eta_\mu(x) \) preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
 - Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth
- In contrast to other discretizations...
 - There’s an exact chiral symmetry in contrast to Wilson/clover/twisted/etc
 - There’s no extra dimension in contrast to domain wall/Mobius/etc
- Like the continuum operator, it’s just a symmetric first derivative: \textit{anti-Hermitian} and \textit{normal}
Why Staggered Fermions? Continued

- Huge secondary benefit: the even/odd preconditioned operator is **Hermitian Positive-Definite**
- Anti-Hermitian + normal: $D_{eo} = -D_{oe}^\dagger$

\[
\begin{bmatrix}
2m & D_{eo} \\
D_{oe} & 2m
\end{bmatrix}
\begin{bmatrix}
x_e \\
x_o
\end{bmatrix}
=
\begin{bmatrix}
b_e \\
b_o
\end{bmatrix}
\]

\[
(4m^2 - D_{eo}D_{oe})x_e = 2mb_e - D_{eo}b_o
\]
Why Staggered Fermions?

Continued

• Huge secondary benefit: the even/odd preconditioned operator is **Hermitian Positive-Definite**

• Anti-Hermitian + normal: $D_{eo} = -D_{oe}^\dagger$

$$\begin{bmatrix} 2m & D_{eo} \\ D_{oe} & 2m \end{bmatrix} \begin{bmatrix} x_e \\ x_o \end{bmatrix} = \begin{bmatrix} b_e \\ b_o \end{bmatrix}$$

$$(4m^2 - D_{eo}D_{oe})x_e = 2mb_e - D_{eo}b_o$$

• Obviously, there’s no free lunch
 • There is a residual doubling: $2^{d/2}$ doublers (as opposed to 2^d)
 • “Taste-breaking” effects: only one of the “pions” feels the exact lattice chiral symmetry
Enter HISQ

“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:
 • Smooths the fields
 • Suppresses taste-breaking effects
 • Additionally performs Symanzik improvement
Enter HISQ
“Highly Improved Staggered Quarks”

• HISQ takes staggered fermions and addresses the issues:
 • Smooths the fields
 • Suppresses taste-breaking effects
 • Additionally performs Symanzik improvement

• Core kernel: ASQTAD smearing
 • “fat7” + Lepage term to suppress taste-breaking

From Follana et al; arxiv:0507011
Enter HISQ
“Highly Improved Staggered Quarks”

- HISQ takes staggered fermions and addresses the issues:
 - Smooths the fields
 - Suppresses taste-breaking effects
 - Additionally performs Symanzik improvement
- Core kernel: ASQTAD smearing
 - “fat7” + Lepage term to suppress taste-breaking
- Full workflow: ASQTAD + re-unitarization + ASQTAD
 - Equations can be re-written to remove Lepage term from first step

From Follana et al; arxiv:0507011
Enter HISQ
“Highly Improved Staggered Quarks”

- HISQ takes staggered fermions and addresses the issues:
 - Smooths the fields
 - Suppresses taste-breaking effects
 - Additionally performs Symanzik improvement

- Core kernel: ASQTAD smearing
 - “fat7” + Lepage term to suppress taste-breaking

- Full workflow: ASQTAD + re-unitarization + ASQTAD
 - Equations can be re-written to remove Lepage term from first step

- Addition of “long links” for Symanzik improvement

From Follana et al; arxiv:0507011
The HISQ Stencil
17 points for Lattice Gryffindor

- The final (massive) HISQ stencil is a 17-point stencil
- One local mass term
- Eight distance-1 “fat link” terms: “general” $N_c \times N_c$ matrices
- Eight distance-3 “long link” terms: $U(N_c)$ matrices
Recursive Link Fattening

- Constructing the fat links is inherently recursive
- 3-link terms are built from 1-link terms
- 5-link terms can be built from 3-link terms
 - As can the Lepage (c5') staple
- 7-link terms can be built from 5-link terms

From Follana et al; arxiv:0507011
In one kernel: accumulate c1 + c3, store c3 term

Data Reuse
Caches exist for a reason

Save this sum to a temporary accumulator

Save each length three staple

\[e_1 + e_3 + e_5 + e_7 + e_9 \]
Data Reuse
Caches exist for a reason

• In one kernel: accumulate c1 + c3, store c3 term

• In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c5s into force, save five-link terms

Load these two links

Save each length three staple

Save this sum to a temporary accumulator

Increment five-link staples into accumulator

Save each five-link staple separately
Data Reuse
Caches exist for a reason

- In one kernel: accumulate $c_1 + c_3$, store c_3 term

- In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c_5s into force, save five-link terms

- ...etc

Save this sum to a temporary accumulator

Save each length three staple

Load these two links

Increment five-link staples into accumulator

Save each five-link staple separately
HISQ Force
The HISQ force is a beast: three-stage chain rule

Similar to the fat link construction, there are a lot of opportunities for:

- Reuse of intermediates
- Kernel fusion
- Cache Reuse
HISQ Force

Original implementation:
Loop over \(\text{sig} = \{x, y, z, t\} \); forward/backward

Loop over \(\mu \neq |\text{sig}| \); forward/backward

Compute \(\text{sig}, \mu \)

Compute \(\text{sig}, \mu, \nu \)

Compute \(\text{sig}, \mu, \nu, \rho \)

End loop (\(\rho \))

Compute \(\text{sig}, \mu, \nu \)

End loop (\(\nu \))

Compute \(\text{sig}, \mu \)

Compute \(\text{sig}, \mu \)

End loop (\(\mu \))

End loop (\(\text{sig} \))

\[\frac{d}{dU} \]
HISQ Force

Sorry about the pseudocode

- Original implementation:
- Loop over $\text{sig} = \{x, y, z, t\}$; forward/backward
 - Loop over $\mu \neq |\text{sig}|$; forward/backward
 - Compute sig, μ
 - Link middle force
 - Loop over $\nu \neq |\text{sig}|, |\mu|$; forward/backward
 - Compute sig, μ, ν
 - Link middle force
 - Loop over $\rho \neq |\text{sig}|, |\mu|, |\nu|$, forward/backward
 - Compute $\text{sig}, \mu, \nu, \rho$
 - Link middle force, side force
 - End loop (ρ)
 - Compute sig, μ, ν
 - Link side force
 - Compute sig, μ
 - Lepage middle force
 - Compute sig, μ
 - Lepage side force
 - End loop (μ)
 - End loop (sig)

\[
\frac{d}{dU}
\]
HISQ Force
Sorry about the pseudocode

- Original implementation:
 Loop over \(\text{sig} = \{x, y, z, t\} \); forward/backward
 - Loop over \(\mu \neq |\text{sig}| \); forward/backward
 - Compute \(\text{sig}, \mu \) 3-link middle force: Accumulate and store intermediates
 - Loop over \(\nu \neq |\text{sig}|, |\mu| \); forward/backward
 - Compute \(\text{sig}, \mu, \nu \) 5-link middle force
 - Loop over \(\rho \neq |\text{sig}|, |\mu|, |\nu| \), forward/backward
 - Compute \(\text{sig}, \mu, \nu, \rho \) 7-link middle force, side force
 - End loop (\(\rho \))
 - Compute \(\text{sig}, \mu, \nu \) 5-link side force
 - Compute \(\text{sig}, \mu \) Lepage middle force
 - Compute \(\text{sig}, \mu \) Lepage side force
 - End loop (\(\mu \))
 - End loop (\(\text{sig} \))
HISQ Force

• Original implementation:

 Loop over sig = \{x, y, z, t\}; forward/backward

 Loop over mu \neq |\text{sig}|; forward/backward

 Compute sig, mu 3-link middle force

 Loop over nu \neq |\text{sig}|, |\text{mu}|; forward/backward

 Compute sig, mu, nu 5-link middle force: reuse intermediates from before

 End loop (nu)

 End loop (mu)

 End loop (sig)
HISQ Force
Sorry about the pseudocode

- Original implementation:
 Loop over $\text{sig} = \{x, y, z, t\}$; forward/backward
 Loop over $\mu \neq |\text{sig}|$; forward/backward
 Compute sig, μ 3-link middle force
 Loop over $\nu \neq |\text{sig}|, |\mu|$; forward/backward
 Compute sig, μ, ν 5-link middle force
 Loop over $\rho \neq |\text{sig}|, |\mu|, |\nu|$; forward/backward
 Compute $\text{sig}, \mu, \nu, \rho$ 7-link middle force, side force
 End loop (rho)
 End loop (nu)
 End loop (mu)
End loop (sig)

$$\frac{d}{dU}$$
• Original implementation:

Loop over $\text{sig} = \{x, y, z, t\}$; forward/backward

 Loop over $\mu \neq |\text{sig}|$; forward/backward

 Compute $\text{sig,} \mu$ 3-link middle force

 Loop over $\nu \neq |\text{sig}|, |\mu|$; forward/backward

 Compute $\text{sig,} \mu, \nu$ 5-link middle force

 Loop over $\rho \neq |\text{sig}|, |\mu|, |\nu|$, forward/backward

 Compute $\text{sig,} \mu, \nu, \rho$ 7-link middle force, side force

 End loop (rho)

 Compute $\text{sig,} \mu, \nu$ 5-link side force

 End loop (nu)

 End loop (mu)

End loop (sig)
HISQ Force

Sorry about the pseudocode

- Original implementation:

 Loop over sig = {x, y, z, t}; forward/backward

 Loop over mu != |sig|; forward/backward

 Compute sig,mu 3-link middle force

 Loop over nu != |sig|,|mu|; forward/backward

 Compute sig,mu,nu 5-link middle force

 Loop over rho != |sig|,|mu|,|nu|, forward/backward

 Compute sig,mu,nu,rho 7-link middle force, side force

 End loop (rho)

 Compute sig,mu,nu 5-link side force

 End loop (nu)

 Compute sig,mu 3-link side force

 Compute sig,mu Lepage middle force

 Compute sig,mu Lepage side force

 End loop (mu)

 End loop (sig)

\[\frac{d}{dU} \]
HISQ Force

Sorry about the pseudocode

- Original implementation:
 Loop over \(\text{sig} = \{x, y, z, t\} \); forward/backward
 - Loop over \(\text{mu} \neq |\text{sig}| \); forward/backward
 - Compute \(\text{sig}, \text{mu} \) 3-link middle force
 - Loop over \(\text{nu} \neq |\text{sig}|, |\text{mu}| \); forward/backward
 - Compute \(\text{sig}, \text{mu}, \text{nu} \) 5-link middle force
 - Loop over \(\text{rho} \neq |\text{sig}|, |\text{mu}|, |\text{nu}| \), forward/backward
 - Compute \(\text{sig}, \text{mu}, \text{nu}, \text{rho} \) 7-link middle force, side force
 - End loop (rho)
 - Compute \(\text{sig}, \text{mu}, \text{nu} \) 5-link side force
 - End loop (nu)
 - Compute \(\text{sig}, \text{mu} \) 3-link side force
 - Compute \(\text{sig}, \text{mu} \) Lepage middle force
 - Compute \(\text{sig}, \text{mu} \) Lepage side force
 - End loop (mu)
 - End loop (sig)
HISQ Force

Sorry about the pseudocode

- Original implementation:
 Loop over sig = \{x, y, z, t\}; forward/backward
 Loop over mu \neq |sig|; forward/backward
 Compute \(\text{sig,mu} \)
 Loop over nu \neq |sig|,|mu|; forward/backward
 Compute \(\text{sig,mu,nu} \)
 Loop over rho \neq |sig|,|mu|,|nu|, forward/backward
 Compute \(\text{sig,mu,nu,rho} \)
 End loop (rho)
 Compute \(\text{sig,mu,nu} \) + next middle force
 End loop (nu)
 Compute \(\text{sig,mu} \)
 Compute \(\text{sig,mu} \)
 Compute \(\text{sig,mu} \)
 Compute \(\text{sig,mu} \)
 End loop (mu)
 End loop (sig)
HISQ Force

Sorry about the pseudocode

- Original implementation:
 Loop over \(\text{sig} = \{x, y, z, t\} \); forward/backward
 Loop over \(\mu \neq |\text{sig}| \); forward/backward
 Compute \(\text{sig}, \mu \) 3-link middle force
 Loop over \(\nu \neq |\text{sig}|, |\mu| \); forward/backward
 Compute \(\text{sig}, \mu, \nu \) 5-link middle force
 Loop over \(\rho \neq |\text{sig}|, |\mu|, |\nu| \), forward/backward
 Compute \(\text{sig}, \mu, \nu, \rho \) 7-link middle force, side force
 End loop (\(\rho \))
 Compute \(\text{sig}, \mu, \nu \) 5-link side force... + next 5-link middle force
 End loop (\(\nu \))
 Compute \(\text{sig}, \mu \) 3-link side force
 Compute \(\text{sig}, \mu \) Lepage middle force
 Compute \(\text{sig}, \mu \) Lepage side force... + next 3-link middle force
 End loop (\(\mu \))
End loop (\(\text{sig} \))

\[
\frac{d}{dU}
\]
Use Your Symmetries

• While the staples are general matrices, all base gauge links are U(3)
• Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed
Use Your Symmetries

- While the staples are general matrices, all base gauge links are $U(3)$
- Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed
Use Your Symmetries

- While the staples are general matrices, all base gauge links are U(3)
- Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed
Improvements are algorithmic and architectural

Algorithm: 1.5x

Architecture: 3.75x

Architecture and algorithm boosts multiply: ~5.6x
HISQ Domain-Decomposed Preconditioning
Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

• Simple idea: expand the idea of site-local preconditioning...
 • Preconditioning (twisted-)clover with the (twisted-)clover inverse
 • Example B: 4-d preconditioning of Mobius fermions
Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

- Simple idea: expand the idea of site-local preconditioning...
 - Preconditioning (twisted-)clover with the (twisted-)clover inverse
 - Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

- Simple idea: expand the idea of site-local preconditioning...
 - Preconditioning (twisted-)clover with the (twisted-)clover inverse
 - Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains
Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

- Simple idea: expand the idea of site-local preconditioning...
 - Preconditioning (twisted-)clover with the (twisted-)clover inverse
 - Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains
- For this talk: domains are non-overlapping
Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

- Simple idea: expand the idea of site-local preconditioning...
 - Preconditioning (twisted-)clover with the (twisted-)clover inverse
 - Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains
- For this talk: domains are non-overlapping
- Here: one domain per MPI rank (== one GPU)
 - This is a person-hour coding and debugging constraint
 - There’s no inherent algorithmic or machine constraint
Existing Work
Mobius Fermions

• The theory and use of Schwarz preconditioners is long-lived and exhaustive---the idea isn’t anything new-fangled
• The challenge is constructing the algorithm and the implementation
Existing Work
Mobius Fermions

- The theory and use of Schwarz preconditioners is long-lived and exhaustive---the idea isn’t anything new-fangled
- The challenge is constructing the algorithm and the implementation
- A recent example in LQCD is Multi-Splitting Preconditioned Conjugate Gradient (MSPCG)
 - [arxiv:2104.05615]
- For Mobius fermions, the relevant HPC operator is the normal 4-d preconditioned operator
 \[
 (1 - D_{eo}D_{oe})^\dagger (1 - D_{eo}D_{oe})
 \]
- The product of four Ds generates so-called snake terms
Zero Boundaries

“Boundary clovers”

- Let’s consider the massless staggered operator... in one dimension, for extreme simplicity

\[D_{x,y}^{stag} \approx [M_{\mu}(x)\delta_{x,y-1} - M_{\mu}^+(x - \mu)\delta_{x,y+1}] \]

- The stencil gathers from two sites: one on the left, and one on the right

Exterior domain

Interior domain
Zero Boundaries
“Boundary clovers”

- Let’s consider the massless staggered operator... in one dimension, for extreme simplicity
 \[D_{x,y}^{stag} \approx [M_{\mu}(x)\delta_{x,y-1} - M_{\mu}^{\dagger}(x - \mu)\delta_{x,y+1}] \]

- The stencil gathers from two sites: one on the left, and one on the right

- For non-overlapping blocks, there’s no contribution from outside the domain
- Above: contribution from the left is zero
- For this simple stencil, this is equivalent to zeroing out the hopping term itself...
 - ...that thinking is trouble
Squared operator

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy

\[D_{x,y}^{stag} \approx [M_\mu(x)\delta_{x,y-1} - M_\mu^\dagger(x - \mu)\delta_{x,y+1}] \]
Squared operator

- Let’s consider the massless operator squared... in one dimension, to keep bookkeeping easy

\[
D_{x,y}^{stag} \approx [M_\mu(x)\delta_{x,y-1} - M_\mu^\dagger(x - \mu)\delta_{x,y+1}]
\]

\[
\approx M_\mu(x)M_\mu(x + \mu)\delta_{x,y-2}
\]

From the right
Squared operator

- Let’s consider the massless operator squared... in one dimension, to keep bookkeeping easy

\[D_{x,y}^{stag} \approx [M_\mu(x)\delta_{x,y-1} - M_\mu^\dagger(x - \hat{\mu})\delta_{x,y+1}] \]

\[\approx \frac{M_\mu(x)M_\mu(x + \hat{\mu})\delta_{x,y-2}}{\text{From the right}} - \left[M_\mu(x)M_\mu^\dagger(x) + M_\mu(x - \hat{\mu})M_\mu^\dagger(x - \hat{\mu}) \right]\delta_{y,z} \]

- From the right

- From self
Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy.

$$D_{x,y}^{stag} \approx [M_\mu(x)\delta_{x,y-1} - M_\mu^\dagger(x - \mu)\delta_{x,y+1}]$$

$$\approx \frac{M_\mu(x)M_\mu(x + \mu)\delta_{x,y-2}}{From \ the \ right} - \frac{[M_\mu(x)M_\mu^\dagger(x) + M_\mu(x - \mu)M_\mu^\dagger(x - \mu)]\delta_{y,z}}{From \ self} + \frac{M_\mu^\dagger(x - \mu) M_\mu^\dagger(x - 2\mu)\delta_{x,y+2}}{From \ the \ left}$$
Squared operator on the Boundary

There’s always a catch

- Let’s consider the massless operator squared... in one dimension, to keep bookkeeping easy

\[D_{x,y}^{stag} \approx [M_\mu(x)\delta_{x,y-1} - M_\mu^\dagger(x - \mu)\delta_{x,y+1}] \]

\[\approx \frac{M_\mu(x)M_\mu(x + \mu)\delta_{x,y-2}}{From \text{ the right}} - \frac{[M_\mu(x)M_\mu^\dagger(x) + M_\mu(x - \mu)M_\mu^\dagger(x - \mu)]\delta_{y,z}}{From \text{ self}} + \frac{M_\mu^\dagger(x - \mu) M_\mu^\dagger(x - 2\mu)\delta_{x,y+2}}{From \text{ the left}} \]
Sidebar: MSPCG Work

Mobius Fermions

• The MSPCG work took advantage of extended domains

$$D_{oe}^\dagger D_{eo} D_{eo} D_{oe}$$
• The MSPCG work took advantage of extended domains

\[D_{oe}^\dagger D_{eo}^\dagger D_{eo} D_{oe} \]

• Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4\) volume
Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

\[D_{oe}^\dagger D_{eo}^\dagger D_{eo} D_{oe} \]

- Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4\) volume
 2. \(D_{eo} \) on \((L + 4)^4\) volume
Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

\[D_{oe}^\dagger D_{eo}^\dagger D_{eo} D_{oe} \]

• Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4 \) volume
 2. \(D_{eo} \) on \((L + 4)^4 \) volume
 3. \(D_{eo}^\dagger \) on \((L + 2)^4 \) volume
Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

\[D_{oe}^\dagger D_{eo}^\dagger D_{eo} D_{oe} \]

• Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4\) volume
 2. \(D_{eo} \) on \((L + 4)^4\) volume
 3. \(D_{eo}^\dagger \) on \((L + 2)^4\) volume
 4. \(D_{oe}^\dagger \) on \(L^4\) volume
Existing Work
Mobius Fermions

• The MSPCG work took advantage of extended domains

\[D_{oe}^\dagger D_{eo} D_{eo} D_{oe} \]

• Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4\) volume
 2. \(D_{eo} \) on \((L + 4)^4\) volume
 3. \(D_{eo}^\dagger \) on \((L + 2)^4\) volume
 4. \(D_{oe}^\dagger \) on \(L^4\) volume

• This extra work can be very expensive; non-trivially so for small local domains (strong-scaling regime)
Existing Work
Mobius Fermions

- The MSPCG work took advantage of extended domains
 \[D_{oe}^\dagger D_{eo} D_{eo} D_{oe} \]

- Four steps, one for each operator application
 1. \(D_{oe} \) on \((L + 2)^4\) volume
 2. \(D_{eo} \) on \((L + 4)^4\) volume
 3. \(D_{eo}^\dagger \) on \((L + 2)^4\) volume
 4. \(D_{oe}^\dagger \) on \(L^4\) volume

- This extra work can be very expensive; non-trivially so for small local domains (strong-scaling regime)

- HISQ fermions have relative benefits and challenges
 - Only \(D_{eo} D_{oe} \)
 - Need to bookkeep distance-1 and distance-3 terms
 - Distance-3 terms would necessitate an \((L + 6)^4\) volume
Application to 1-d Staggered

Extended domains

\[D_{x,y}^{stag} \approx [M_\mu(x) \delta_{x,y-1} - M_\mu^+(x - \mu) \delta_{x,y+1}] \]

- Step one: calculate including the extended domain
Application to 1-d Staggered

Extended domains

$$D_{x,y}^{stag} \approx [M_\mu (x) \delta_{x,y-1} - M_\mu^\dagger (x - \hat{\mu}) \delta_{x,y+1}]$$

- Step two: only calculate within the interior
Application to 1-d Staggered

\[D_{x,y}^{stag} \approx [M_\mu(x) \delta_{x,y-1} - M_\mu^\dagger(x - \hat{\mu}) \delta_{x,y+1}] \]

\[\approx M_\mu(x)M_\mu(x + \hat{\mu})\delta_{x,y-2} \text{ From the right} - [M_\mu(x)M_\mu^\dagger(x) + M_\mu(x - \hat{\mu})M_\mu^\dagger(x - \hat{\mu})] \delta_{y,z} + M_\mu^\dagger(x - \hat{\mu})M_\mu^\dagger(x - 2\hat{\mu})\delta_{x,y+2} \text{ From the left} \]

- This also gives you the boundary term
Alternative Form: “Boundary Clover”

\[
\approx \frac{M_\mu(x)M_\mu(x + \hat{\mu})\delta_{x,y-2}}{\text{From the right}} - \left[M_\mu(x)M_\mu^\dagger(x) + M_\mu(x - \hat{\mu})M_\mu^\dagger(x - \hat{\mu}) \right] \delta_{y,z} + \frac{M_\mu^\dagger(x - \hat{\mu}) M_\mu^\dagger(x - 2\hat{\mu})\delta_{x,y+2}}{\text{From the left}}
\]

- Alternative approach: what if we “just” calculated the self-contribution (“boundary clover”) directly?
Implementing a Boundary Clover Workflow

Step 1

• An implementation in two parts:
 • Step 1: Apply the operator with Dirichlet boundary conditions
 • For operators in the interior, this is nothing interesting
 • For operators on the boundary, it’s a quick snip
Boundary Clover

Step 2

- An implementation in two parts:
- Step 2: Apply the operator *with “clover” computations on the boundary*
 - For operators on the interior, this is nothing special
 - For operators on the boundary, in the direction of the boundary, compute the full hop “out and in”
- Key optimizations:
 - We can reuse the same link for the “out” as the “in”
 - We could create a custom field with this pre-computed to avoid the multiplication
Application to HISQ
Review: HISQ Stencil
Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

\[
D_{x,y}^{\text{HISQ}} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^\dagger(x - \mu)\delta_{x,y+1} + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^\dagger(x - 3\mu)\delta_{x,y+3}) + 2m\delta_{x,y}
\]

- Here, F is the distance 1 “fat link” and L is the distance 3 “long link”
Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

\[D_{x,y}^{HISQ} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^+(x-\mu)\delta_{x,y+1}) + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^+(x-3\mu)\delta_{x,y+1}) \right] + 2m\delta_{x,y} \]

- Here, \(F \) is the distance 1 “fat link” and \(L \) is the distance 3 “long link”
- This does lead to extra bookkeeping at the boundary
 - Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain
Review: HISQ Stencil

Three hops this time

• On face value, the HISQ stencil has no complications relative to the naïve staggered example

\[D_{x,y}^{\text{HISQ}} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^+(x-\mu)\delta_{x,y+1}) + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^+(x-3\mu)\delta_{x,y+3}) \right] + 2m\delta_{x,y} \]

• Here, F is the distance 1 “fat link” and L is the distance 3 “long link”

• This does lead to extra bookkeeping at the boundary
 • Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain
Review: HISQ Stencil
Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

\[
D_{x,y}^{\text{HISQ}} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^{\dagger}(x - \mu)\delta_{x,y+1}) + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^{\dagger}(x - 3\mu)\delta_{x,y+3}) \right] + 2m\delta_{x,y}
\]

- Here, F is the distance 1 “fat link” and L is the distance 3 “long link”
- This does lead to extra bookkeeping at the boundary
 - Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain
 - Sites at [1] or [2]: There is no long link contribution from the “left”, but there’s still a fat link contribution!
Review: HISQ Stencil
Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

\[D_{x,y}^{HISQ} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^{\dagger}(x-\mu)\delta_{x,y+1}) + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^{\dagger}(x-3\mu)\delta_{x,y+3}) \right] + 2m\delta_{x,y} \]

- Here, F is the distance 1 “fat link” and L is the distance 3 “long link”
- This does lead to extra bookkeeping at the boundary
 - Site at [0]: There are neither fat nor long link contributions from the “left”: outside the domain
 - Sites at [1] or [2]: There is no long link contribution from the “left”, but there’s still a fat link contribution!
Schur Going to Have a Tough Time

Three hops this time

• The “real” goal is the even/odd preconditioned operator:

\[D_{x,y}^{\text{HISQ}} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x) \left[(F_{\mu}(x)\delta_{x,y-1} - F_{\mu}^\dagger(x - \hat{\mu})\delta_{x,y+1}) + (L_{\mu}(x)\delta_{x,y-3} - L_{\mu}^\dagger(x - 3\hat{\mu})\delta_{x,y+3}) \right] + 2m\delta_{x,y} \]

\[
\begin{bmatrix}
2m & D_{eo} \\
D_{oe} & 2m
\end{bmatrix}
\begin{bmatrix}
x_e \\
x_o
\end{bmatrix}
=
\begin{bmatrix}
b_e \\
b_o
\end{bmatrix}
\]

\[(4m^2 - D_{eo}D_{oe})x_e = 2mb_e - D_{eo}b_o\]

• The type of bookkeeping noted in the previous slide causes new headaches
Let's first consider the site at [0].

There are three “boundary” contributions:

- Start at [0]: fat link left, fat link right
- Start at [0]: long link left, long link right
- Start at [2]: long link left, fat link right
Let’s first consider the site at [1]

There is only one boundary condition:
- Start at [1]: long link left, long link right
Last, we'll consider the term at [2].

There are two boundary contributions:
- Start at [2]: long link left, long link right
- Start at [0]: fat link left, long link right
Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction.
Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
• Reconstruction reminder:
 • The fat links are general 3x3 matrices
 • The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals
• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
• Reconstruction reminder:
 • The fat links are general 3x3 matrices
 • The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals
• Mixed precision solve:
 • Outer operator: Double precision; reconstruct-13 for long links
 • Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links
Solver Workflow
Solving at the speed of sound

• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:
 • The fat links are general 3x3 matrices
 • The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

• Mixed precision solve:
 • Outer operator: Double precision; reconstruct-13 for long links
 • Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links

• For the preconditioned solver:
 • We use preconditioned CG (PCG) as the outer solve
 • We use fixed-iteration CG as the inner solve
• For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

• Reconstruction reminder:
 • The fat links are general 3x3 matrices
 • The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

• Mixed precision solve:
 • Outer operator: Double precision; reconstruct-13 for long links
 • Sloppy operator: “Half” precision (QUDA’s 16-bit fixed point format); reconstruct-9 for long links

• For the preconditioned solver:
 • We use preconditioned CG (PCG) as the outer solve
 • We use fixed-iteration CG as the inner solve

• Note: PCG on paper requires a stationary preconditioner...
 • But with a Polak–Ribière correction, CG is “no worse than” Gradient Descent...
 • ...and seems to work well enough
Reference Configurations, System
Solving at the speed of sound

• Configuration:
 • NERSC Large configuration
 • Volume: $72^3 \times 144$
 • Bare light mass $a_m = 0.001$
Reference Configurations, System
Solving at the speed of sound

• Configuration:
 • NERSC Large configuration
 • Volume: $72^3 \times 144$
 • Bare light mass $\alpha m = 0.001$

• Machine: Selene
 • DGX-A100-80GB nodes
 • Use 4xGPUs per node
 • 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)
Reference Configurations, System

Solving at the speed of sound

- **Configuration:**
 - NERSC Large configuration
 - Volume: $72^3 \times 144$
 - Bare light mass $am = 0.001$
- **Machine: Selene**
 - DGX-A100-80GB nodes
 - Use 4xGPUs per node
 - 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)
- We consider multiple strong scaling problem sizes

<table>
<thead>
<tr>
<th>Nodes</th>
<th>GPUs</th>
<th>Local Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>32</td>
<td>36^4</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>$36^3 \times 18$</td>
</tr>
<tr>
<td>32</td>
<td>128</td>
<td>$36^2 \times 18^2$</td>
</tr>
<tr>
<td>64</td>
<td>256</td>
<td>36×18^3</td>
</tr>
<tr>
<td>128</td>
<td>512</td>
<td>18^4</td>
</tr>
</tbody>
</table>
Reference Configurations, System
Solving at the speed of sound

- Configuration:
 - NERSC Large configuration
 - Volume: $72^3 \times 144$
 - Bare light mass $\mathcal{m} = 0.001$

- Machine: Selene
 - DGX-A100-80GB nodes
 - Use 4xGPUs per node
 - 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

- We consider multiple strong scaling problem sizes

- For networks:
 - 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths
 - 4:1 GPU:NIC bindings with staging through the CPU

<table>
<thead>
<tr>
<th>Nodes</th>
<th>GPUs</th>
<th>Local Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>32</td>
<td>36^4</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>$36^3 \times 18$</td>
</tr>
<tr>
<td>32</td>
<td>128</td>
<td>$36^2 \times 18^2$</td>
</tr>
<tr>
<td>64</td>
<td>256</td>
<td>36×18^3</td>
</tr>
<tr>
<td>128</td>
<td>512</td>
<td>18^4</td>
</tr>
</tbody>
</table>
Reference Configurations, System
Solving at the speed of sound

• Configuration:
 • NERSC Large configuration
 • Volume: $72^3 \times 144$
 • Bare light mass $m = 0.001$
• Machine: Selene
 • DGX-A100-80GB nodes
 • Use 4xGPUs per node
 • 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)
• We consider multiple strong scaling problem sizes
• For networks:
 • 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths
 • 4:1 GPU:NIC bindings with staging through the CPU
• All tests utilize NVSHMEM, implementations of the HISQ kernel
 • Device-driven communications
 • Reduces latency: no separate packing kernel, no overhead of MPI calls, gets the host out of the way

<table>
<thead>
<tr>
<th>Nodes</th>
<th>GPUs</th>
<th>Local Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>32</td>
<td>36^4</td>
</tr>
<tr>
<td>16</td>
<td>64</td>
<td>$36^3 \times 18$</td>
</tr>
<tr>
<td>32</td>
<td>128</td>
<td>$36^2 \times 18^2$</td>
</tr>
<tr>
<td>64</td>
<td>256</td>
<td>36×18^3</td>
</tr>
<tr>
<td>128</td>
<td>512</td>
<td>18^4</td>
</tr>
</tbody>
</table>
Convergence History

An unstable algorithm is pointless

- CG and PCG each converge in a stable fashion
- The “spikes” are due to residual updates: “every so often” we recompute the exact residual and re-inject it into the (P)CG solve
Operator Performance: Zero Boundary Conditions

Performance is essentially independent of the partitioning. This makes sense: all we’re doing is “snipping” away work.
Operator Performance: Boundary Clovers

Performance decreases with partitioning
This makes sense: we're adding (divergent) work
Extra note: reconstruct becomes a *detriment*: extra instructions hold up threads
More preconditioner iterations -> fewer outer iterations (to a point)
Diminishing benefit with smaller partition sizes -> domain is a lower-quality approximation of full domain
Time to Solution (which is all that matters)

Note: 1xNIC includes CPU staging for two GPUs to access a NIC!
There’s still outstanding work to be done when the network is strong (25 GB/s bi-directional per NIC)...
...but we also see that the preconditioner is beneficial when the network is slow
Future Work
Future HISQy Business
Same old song and dance

- HISQ Force: no further optimizations
- Schwarz Preconditioner: Pre-computed matrix products to reduce latencies
- HISQ MG + Schwarz Preconditioner:
 - Use the local operator as a smoother on all levels
 - Outer HISQ and Kahler-Dirac preconditioned operator have GPU code implementations
 - Even/odd preconditioned coarse operators do not
- ...192^3x384 ensemble