©

HISQy Business

Evan Weinberg, Senior Developer Technology Compute Engineer, NVIDIA
Lattice2023, July 31, 2023
(In collaboration with Venkitesh Ayyar, Richard Brower, Kate Clark)

There's going to be a GPU raffle! The drawing will be during the Lattice 2024/2025 announcement on Friday.

Agenda

- Takeaways \& Challenges
- HISQ Crash Course
- HISQ Force
- HISQ Domain-Decomposed Preconditioning
- Future Work

Takeaways
Speeding up HISQ workflows

- HISQ: highly improved staggered quarks
- Smeared links: lots of locality to exploit
- New: hugely fused HISQ force implementation in QUDA
- Merged: https://github.com/lattice/quda/pull/1367

Takeaways

Speeding up HISQ workflows

- HISQ: highly improved staggered quarks
- Smeared links: lots of locality to exploit
- New: hugely fused HISQ force implementation in QUDA
- Merged: https://github.com/lattice/quda/pull/1367
- Modern machines have varying degrees of network performance
- Domain-decomposition algorithms become increasingly important
- HISQ's distance one and three terms introduce conceptual challenges
- New: (mostly-)optimized implementation of a local HISQ preconditioner in QUDA
- We have demonstrated numerical stability
- And, in some cases, faster propagator solves---with performance successes and failures understood
- WIP branch, constantly in flux:
https://github.com/lattice/quda/tree/feature/stag-invert-cleanup

QUDA

- "QCD on CUDA" - http://lattice.github.com/quda (open source, BSD license)
- Not just CUDA anymore
- Effort started at Boston University in 2008, now in wide use as the GPU backend for BQCD, Chroma**, CPS**, MILC**, TIFR, etc.
- Provides solvers for major fermionic discretizations, pure gauge algorithms, etc.
- Maximize performance
- Mixed-precision methods
- Autotuning for high performance on all architectures
- Multigrid solvers for optimal convergence
- NVSHMEM for improving strong scaling
- Portable: HIP (merged), SYCL (in review) and OpenMP (in development)
- A research tool for how to reach the exascale (and beyond)
- Optimally mapping the problem to hierarchical processors and node topologies

Challenges

Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth

Challenges

Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth
- Not all HPC facilities prioritize network bandwidth

Challenges

Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth
- Not all HPC facilities prioritize network bandwidth
- Regardless, it's not always possible (or practical) to control process placement
- You can't always take advantage of all hierarchies of bandwidths/latencies

Challenges

Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth
- Not all HPC facilities prioritize network bandwidth
- Regardless, it's not always possible (or practical) to control process placement
- You can't always take advantage of all hierarchies of bandwidths/latencies
- Communication reducing or avoiding algorithms are increasingly important for mitigating these challenges

Challenges

Or: the state of the network

- LQCD simulations are particularly sensitive to network bandwidth
- Not all HPC facilities prioritize network bandwidth
- Regardless, it's not always possible (or practical) to control process placement
- You can't always take advantage of all hierarchies of bandwidths/latencies
- Communication reducing or avoiding algorithms are increasingly important for mitigating these challenges
- Our community has been and continues to be fully aware of this:
- Communication-reducing solvers
- Domain-decomposed preconditioners
- Domain-decomposed HMC

Why Staggered Fermions?

Aka Kogut-Susskind Fermions

$$
D_{x, y}^{s t a g} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x, y-1}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]+2 m \delta_{x, y}
$$

- Staggered fermions
- Spin-diagonalize the discrete Dirac matrix
- Lose shift-by-one translational invariance, but preserve a shift-by-two
- Phases $\eta_{\mu}(x)$ preserve the Dirac structure

Why Staggered Fermions?

Aka Kogut-Susskind Fermions

$$
D_{x, y}^{s t a g} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x, y-1}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]+2 m \delta_{x, y}
$$

- Staggered fermions
- Spin-diagonalize the discrete Dirac matrix
- Lose shift-by-one translational invariance, but preserve a shift-by-two
- Phases $\eta_{\mu}(x)$ preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
- Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth

Why Staggered Fermions?

Aka Kogut-Susskind Fermions

$$
D_{x, y}^{s t a g} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x, y-1}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]+2 m \delta_{x, y}
$$

- Staggered fermions
- Spin-diagonalize the discrete Dirac matrix
- Lose shift-by-one translational invariance, but preserve a shift-by-two
- Phases $\eta_{\mu}(x)$ preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
- Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth
- In contrast to other discretizations...
- There's an exact chiral symmetry in contrast to Wilson/clover/twisted/etc
- There's no extra dimension in contrast to domain wall/Mobius/etc

Why Staggered Fermions?

Aka Kogut-Susskind Fermions

$$
D_{x, y}^{s t a g} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[U_{\mu}(x) \delta_{x, y-1}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]+2 m \delta_{x, y}
$$

- Staggered fermions
- Spin-diagonalize the discrete Dirac matrix
- Lose shift-by-one translational invariance, but preserve a shift-by-two
- Phases $\eta_{\mu}(x)$ preserve the Dirac structure
- The lack of spin degrees of freedom make them relatively inexpensive
- Beneficial for all types of bandwidth: memory bandwidth, cache bandwidth, communications bandwidth
- In contrast to other discretizations...
- There's an exact chiral symmetry in contrast to Wilson/clover/twisted/etc
- There's no extra dimension in contrast to domain wall/Mobius/etc
- Like the continuum operator, it's just a symmetric first derivative: anti-Hermitian and normal

Why Staggered Fermions?

Continued

- Huge secondary benefit: the even/odd preconditioned operator is Hermitian Positive-Definite
- Anti-Hermitian + normal: $D_{e o}=-D_{o e}^{\dagger}$

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 m & D_{e o} \\
D_{o e} & 2 m
\end{array}\right]\left[\begin{array}{l}
x_{e} \\
x_{o}
\end{array}\right]=\left[\begin{array}{l}
b_{e} \\
b_{o}
\end{array}\right]} \\
\left(4 m^{2}-D_{e o} D_{o e}\right) x_{e}=2 m b_{e}-D_{e o} b_{o}
\end{gathered}
$$

Why Staggered Fermions?

Continued

- Huge secondary benefit: the even/odd preconditioned operator is Hermitian Positive-Definite
- Anti-Hermitian + normal: $D_{e o}=-D_{o e}^{\dagger}$

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 m & D_{e o} \\
D_{o e} & 2 m
\end{array}\right]\left[\begin{array}{l}
x_{e} \\
x_{o}
\end{array}\right]=\left[\begin{array}{l}
b_{e} \\
b_{o}
\end{array}\right]} \\
\left(4 m^{2}-D_{e o} D_{o e}\right) x_{e}=2 m b_{e}-D_{e o} b_{o}
\end{gathered}
$$

- Obviously, there's no free lunch
- There is a residual doubling: $2^{d / 2}$ doublers (as opposed to 2^{d})
- "Taste-breaking" effects: only one of the "pions" feels the exact lattice chiral symmetry

Enter HISQ

"Highly Improved Staggered Quarks"

- HISQ takes staggered fermions and addresses the issues:
- Smooths the fields
- Suppresses taste-breaking effects
- Additionally performs Symanzik improvement

Enter HISQ

"Highly Improved Staggered Quarks"

- HISQ takes staggered fermions and addresses the issues:
- Smooths the fields
- Suppresses taste-breaking effects
- Additionally performs Symanzik improvement
- Core kernel: ASQTAD smearing
- "fat7" + Lepage term to suppress taste-breaking

From Follana et al; arxiv:05070 11

Enter HISQ

"Highly Improved Staggered Quarks"

- HISQ takes staggered fermions and addresses the issues:
- Smooths the fields
- Suppresses taste-breaking effects
- Additionally performs Symanzik improvement
- Core kernel: ASQTAD smearing
- "fat7" + Lepage term to suppress taste-breaking
- Full workflow: ASQTAD + re-unitarization + ASQTAD
- Equations can be re-written to remove Lepage term from first step

From Follana et al; arxiv:0507011

Enter HISQ

"Highly Improved Staggered Quarks"

- HISQ takes staggered fermions and addresses the issues:
- Smooths the fields
- Suppresses taste-breaking effects
- Additionally performs Symanzik improvement
- Core kernel: ASQTAD smearing
- "fat7" + Lepage term to suppress taste-breaking
- Full workflow: ASQTAD + re-unitarization + ASQTAD
- Equations can be re-written to remove Lepage term from first step
- Addition of "long links" for Symanzik improvement

From Follana et al; arxiv:0507011

The HISQ Stencil

17 points for Lattice Gryffindor

- The final (massive) HISQ stencil is a 17-point stencil
- One local mass term
- Eight distance-1 "fat link" terms: "general" Nc x Nc matrices
- Eight distance-3 "long link" terms: U(Nc) matrices

Recursive Link Fattening

- Constructing the fat links is inherently recursive
- 3-link terms are built from 1-link terms
- 5-link terms can be built from 3-link terms - As can the Lepage (c5') staple
- 7-link terms can be built from 5-link terms

From Follana et al; arxiv:0507011

Data Reuse

Caches exist for a reason

Save this sum to a temporary accumulator

Save each length three staple

Save this sum to a temporary accumulator

Save each length three staple

- In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c5s into force, save fivelink terms

Load these two links

Increment five-link staples into accumulator

Data Reuse

Save this sum to a temporary accumulator

Save each length three staple

- In the next kernel: load gauge links, load two staples, construct five-link terms, accumulate c5s into force, save fivelink terms

Load these two links

- ...etc

Increment five-link staples into accumulator

[^0]

HISQ Force

"Highly Improved Staggered Quarks"

- The HISQ force is a beast: three-stage chain rule
- Similar to the fat link construction, there are a lot of opportunities for...
- Reuse of intermediates
- Kernel fusion
- Cache Reuse

HISQ Force

Sorry about the pseudocode

- Original implementation:

Loop over sig $=\{x, y, z, t\} ; f o r w a r d / b a c k w a r d$

HISQ Force

- Original implementation:

Loop over sig $=\{x, y, z, t\} ; f o r w a r d / b a c k w a r d$
Loop over mu != |sig|; forward/backward

End loop (mu)
End loop (sig)

HISQ Force

Sorry about the pseudocode

- Original implementation:

Loop over sig $=\{x, y, z, t\} ; f o r w a r d / b a c k w a r d$
Loop over mu != |sig|; forward/backward
Compute sig,mu 3-link middle force: Accumulate and store intermediates

End loop (mu)
End loop (sig)

HISQ Force

Sorry about the pseudocode

- Original implementation:

Loop over sig $=\{x, y, z, t\} ;$ forward/backward
Loop over mu != |sig|; forward/backward
Compute sig,mu 3-link middle force
Loop over nu != |sig|,|mu|; forward/backward
Compute sig,mu,nu 5-link middle force: reuse intermediates from before

End loop (nu)

End loop (mu)
End loop (sig)

HISQ Force

- Original implementation:

Loop over sig $=\{x, y, z, t\} ;$ forward/backward
Loop over mu != |sig|; forward/backward
Compute sig,mu 3-link middle force
Loop over nu != |sig|,|mu|; forward/backward
Compute sig,mu,nu 5-link middle force
Loop over rho != |sig|,|mu|,|nu|, forward/backward
Compute sig,mu, nu, rho 7-link middle force, side force
End loop (rho)

End loop (nu)

End loop (mu)
End loop (sig)


```
- Original implementation:
Loop over sig = {x, y, z, t}; forward/backward
    Loop over mu != |sig|; forward/backward
        Compute sig,mu 3-link middle force
    Loop over nu != |sig|,|mu|; forward/backward
            Compute sig,mu,nu 5-link middle force
            Loop over rho != |sig|,|mu|,|nu|, forward/backward
                Compute sig,mu,nu, rho 7-link middle force, side force
            End loop (rho)
            Compute sig,mu,nu 5-link side force
        End loop (nu)
```

 End loop (mu)
 End loop (sig)


```
- Original implementation:
Loop over sig = {x, y, z, t}; forward/backward
    Loop over mu != |sig|; forward/backward
        Compute sig,mu 3-link middle force
        Loop over nu != |sig|,|mu|; forward/backward
            Compute sig,mu,nu 5-link middle force
            Loop over rho != |sig|,|mu|,|nu|, forward/backward
                Compute sig,mu,nu,rho 7-link middle force, side force
            End loop (rho)
            Compute sig,mu,nu 5-link side force
        End loop (nu)
        Compute sig,mu 3-link side force
        Compute sig,mu Lepage middle force
        Compute sig,mu Lepage side force
    End loop (mu)
End loop (sig)
```


- Original implementation:

Loop over sig = $\{x, y, z, t\} ;$ forward/backward
Loop over mu != |sig|; forward/backward
Compute sig,mu 3-link middle force
Loop over nu != |sig|,|mu|; forward/backward
Compute sig,mu, nu 5-link middle force
Loop over rho != |sig|,|mu|,|nu|, forward/backward
Compute sig,mu,nu, rho 7-link middle force, side force
End loop (rho)
Compute sig,mu,nu 5-link side force
End loop (nu)
Compute sig,mu 3-link side force
Compute sig,mu Lepage middle force
Compute sig,mu Lepage side force
End loop (mu)
End loop (sig)

HISQ Force

- Original implementation:

Loop over sig $=\{x, y, z, t\} ;$ forward/backward
Loop over mu != |sig|; forward/backward
Compute sig,mu 3-link middle force
Loop over nu != |sig|,|mu|; forward/backward
Compute sig, mu, nu 5-link middle force
Loop over rho != |sig|,|mu|,|nu|, forward/backward
Compute sig,mu,nu, rho 7-link middle force, side force
End loop (rho)
Compute sig,mu,nu 5-link side force... + next middle force
End loop (nu)
Compute sig,mu 3-link side force
Compute sig,mu Lepage middle force
Compute sig,mu Lepage side force
End loop (mu)
End loop (sig)

HISQ Force

- Original implementation:

Loop over sig $=\{x, y, z, t\} ;$ forward/backward
Loop over mu != |sig|; forward/backward
Gempute sig, mu 3-link middle force
Loop over nu != |sig|,|mu|; forward/backward
Compute sig, mu, nu 5-link middle force
Loop over rho != |sig|,|mu|,|nu|, forward/backward
Compute sig,mu,nu, rho 7-link middle force, side force
End loop (rho)
Compute sig,mu,nu 5-link side force... + next 5-link middle force
End loop (nu)
Compute sig,mu 3-link side force
Compute sig,mu Lepage middle force
Compute sig,mu Lepage side force... + next 3-link middle force $\overline{d U}$
End loop (sig)

Use Your Symmetries

- While the staples are general matrices, all base gauge links are $U(3)$
- Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Use Your Symmetries

- While the staples are general matrices, all base gauge links are U(3)
- Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Use Your Symmetries

- While the staples are general matrices, all base gauge links are $U(3)$
- Take advantage of this symmetry to reduce memory traffic: store as 13 reals, recompute as needed

Improvements are algorithmic and architectural

Algorithm: 1.5x

Architecture:
3.75x

Architecture and algorithm boosts multiply: ~5.6x

 -2

Additive Schwarz Preconditioning with Non-Overlapping Blocks

Speeding up HISQ inversions

- Simple idea: expand the idea of site-local preconditioning...
- Preconditioning (twisted-)clover with the (twisted-)clover inverse
- Example B: 4-d preconditioning of Mobius fermions

Additive Schwarz Preconditioning with Non-Overlapping Blocks

- Simple idea: expand the idea of site-local preconditioning...
- Preconditioning (twisted-)clover with the (twisted-)clover inverse
- Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning

Additive Schwarz Preconditioning with Non-Overlapping Blocks

- Simple idea: expand the idea of site-local preconditioning...
- Preconditioning (twisted-)clover with the (twisted-)clover inverse
- Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains

Additive Schwarz Preconditioning with Non-Overlapping Blocks

- Simple idea: expand the idea of site-local preconditioning...
- Preconditioning (twisted-)clover with the (twisted-)clover inverse
- Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains
- For this talk: domains are non-overlapping

Additive Schwarz Preconditioning with Non-Overlapping Blocks

- Simple idea: expand the idea of site-local preconditioning...
- Preconditioning (twisted-)clover with the (twisted-)clover inverse
- Example B: 4-d preconditioning of Mobius fermions
- ...to larger domains: Schwarz preconditioning
- Additive Schwarz is analogous to Jacobi Iterations, but for domains
- For this talk: domains are non-overlapping
- Here: one domain per MPI rank (== one GPU)
- This is a person-hour coding and debugging constraint
- There's no inherent algorithmic or machine constraint

Existing Work

Mobius Fermions

- The theory and use of Schwarz preconditioners is long-lived and exhaustive---the idea isn't anything new-fangled
- The challenge is constructing the algorithm and the implementation

Existing Work

Mobius Fermions

- The theory and use of Schwarz preconditioners is long-lived and exhaustive---the idea isn't anything new-fangled
- The challenge is constructing the algorithm and the implementation
- A recent example in LQCD is Multi-Splitting Preconditioned Conjugate Gradient (MSPCG)
- [arxiv:2104.05615]
- For Mobius fermions, the relevant HPC operator is the normal 4-d preconditioned operator

$$
\left(1-D_{e o} D_{0 e}\right)^{+}\left(1-D_{e o} D_{\text {oe }}\right)
$$

- The product of four Ds generates so-called snake terms

Zero Boundaries

"Boundary clovers"

- Let's consider the massless staggered operator... in one dimension, for extreme simplicity

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

- The stencil gathers from two sites: one on the left, and one on the right

Zero Boundaries

"Boundary clovers"

- Let's consider the massless staggered operator... in one dimension, for extreme simplicity

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

- The stencil gathers from two sites: one on the left, and one on the right

- For non-overlapping blocks, there's no contribution from outside the domain
- Above: contribution from the left is zero
- For this simple stencil, this is equivalent to zeroing out the hopping term itself...
- ...that thinking is trouble

Squared operator

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

Squared operator

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}
$$

Squared operator

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}-\underbrace{\left[M_{\mu}(x) M_{\mu}^{\dagger}(x)+M_{\mu}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-\hat{\mu})\right] \delta_{y, z}}_{\text {From self }}
$$

Squared operator

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}-\underbrace{\left[M_{\mu}(x) M_{\mu}^{\dagger}(x)+M_{\mu}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-\hat{\mu})\right] \delta_{y, z}}_{\text {From self }}+\underbrace{M_{\mu}^{\dagger}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-2 \hat{\mu}) \delta_{x, y+2}}_{\text {From the left }}
$$

Squared operator on the Boundary

There's always a catch

- Let's consider the massless operator squared... in one dimension, to keep bookkeeping easy
$D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]$

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}-\underbrace{\left[M_{\mu}(x) M_{\mu}^{\dagger}(x)+M_{\mu}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-\hat{\mu})\right] \delta_{y, z}}_{\text {From self }}+\underbrace{M_{\mu}^{\dagger}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-2 \hat{\mu}) \delta_{x, y+2}}_{\text {From the left }}
$$

Sidebar: MSPCG Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

$$
D_{o e}^{\dagger} D_{e o}^{\dagger} D_{e o} D_{o e}
$$

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

$$
D_{o e}^{+} D_{e o}^{\dagger} D_{e o} D_{o e}
$$

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

$$
D_{o e}^{\dagger} D_{e o}^{\dagger} D_{e o} D_{o e}
$$

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume
2. $D_{e o}$ on $(L+4)^{4}$ volume

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

$$
D_{o e}^{\dagger} D_{e o}^{\dagger} D_{e o} D_{o e}
$$

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume
2. $D_{e o}$ on $(L+4)^{4}$ volume
3. $D_{e o}^{\dagger}$ on $(L+2)^{4}$ volume

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

$$
D_{o e}^{\dagger} D_{e o}^{\dagger} D_{e o} D_{o e}
$$

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume
2. $D_{e o}$ on $(L+4)^{4}$ volume
3. $D_{e o}^{\dagger}$ on $(L+2)^{4}$ volume
4. $D_{o e}^{\dagger}$ on on L^{4} volume

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume
2. $D_{e o}$ on $(L+4)^{4}$ volume
3. $D_{e o}^{\dagger}$ on $(L+2)^{4}$ volume
4. $D_{o e}^{\dagger}$ on on L^{4} volume

- This extra work can be very expensive; non-trivially so for small local domains (strong-scaling regime)

Existing Work

Mobius Fermions

- The MSPCG work took advantage of extended domains

- Four steps, one for each operator application

1. $D_{o e}$ on $(L+2)^{4}$ volume
2. $D_{e o}$ on $(L+4)^{4}$ volume
3. $D_{e o}^{\dagger}$ on $(L+2)^{4}$ volume
4. $D_{o e}^{\dagger}$ on on L^{4} volume

- This extra work can be very expensive; non-trivially so for small local domains (strong-scaling regime)
- HISQ fermions have relative benefits and challenges
- Only $D_{e o} D_{o e}$
- Need to bookkeep distance-1 and distance-3 terms
- Distance-3 terms would necessitate an $(L+6)^{4}$ volume

Application to 1-d Staggered

Extended domains

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

- Step one: calculate including the extended domain

Application to 1-d Staggered

Extended domains

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

- Step two: only calculate within the interior

Application to 1-d Staggered

$$
D_{x, y}^{s t a g} \approx\left[M_{\mu}(x) \delta_{x, y-1}-M_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right]
$$

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}-\underbrace{\left[M_{\mu}(x) M_{\mu}^{\dagger}(x)+M_{\mu}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-\hat{\mu})\right] \delta_{y, z}}_{\text {From self }}+\underbrace{M_{\mu}^{\dagger}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-2 \hat{\mu}) \delta_{x, y+2}}_{\text {From the left }}
$$

- This also gives you the boundary term

Alternative Form: "Boundary Clover"

$$
\approx \underbrace{M_{\mu}(x) M_{\mu}(x+\hat{\mu}) \delta_{x, y-2}}_{\text {From the right }}-\underbrace{\left[M_{\mu}(x) M_{\mu}^{\dagger}(x)+M_{\mu}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-\hat{\mu})\right] \delta_{y, z}}_{\text {From self }}+\underbrace{M_{\mu}^{\dagger}(x-\hat{\mu}) M_{\mu}^{\dagger}(x-2 \hat{\mu}) \delta_{x, y+2}}_{\text {From the left }}
$$

- Alternative approach: what if we "just" calculated the self-contribution ("boundary clover") directly?

Implementing a Boundary Clover Workflow

Step 1

- An implementation in two parts:
- Step 1: Apply the operator with Dirichlet boundary conditions
- For operators in the interior, this is nothing interesting
- For operators on the boundary, it's a quick snip

Boundary Clover

Step 2

- An implementation in two parts:
- Step 2: Apply the operator with "clover" computations on the boundary
- For operators on the interior, this is nothing special
- For operators on the boundary, in the direction of the boundary, compute the full hop "out and in"
- Key optimizations:
- We can reuse the same link for the "out" as the "in"
- We could create a custom field with this pre-computed to avoid the multiplication

Application to HISQ

Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

$$
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y}
$$

- Here, F is the distance 1 "fat link" and L is the distance 3 "long link"

Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

$$
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y}
$$

- Here, F is the distance 1 "fat link" and L is the distance 3 "long link"
- This does lead to extra bookkeeping at the boundary
- Site at [0]: There are neither fat nor long link contributions from the "left": outside the domain

Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

$$
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y}
$$

- Here, F is the distance 1 "fat link" and L is the distance 3 "long link"
- This does lead to extra bookkeeping at the boundary
- Site at [0]: There are neither fat nor long link contributions from the "left": outside the domain

Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

$$
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y}
$$

- Here, F is the distance 1 "fat link" and L is the distance 3 "long link"
- This does lead to extra bookkeeping at the boundary
- Site at [0]: There are neither fat nor long link contributions from the "left": outside the domain
- Sites at [1] or [2]: There is no long link contribution from the "left", but there's still a fat link contribution!

Review: HISQ Stencil

Three hops this time

- On face value, the HISQ stencil has no complications relative to the naïve staggered example

$$
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y}
$$

- Here, F is the distance 1 "fat link" and L is the distance 3 "long link"
- This does lead to extra bookkeeping at the boundary
- Site at [0]: There are neither fat nor long link contributions from the "left": outside the domain
- Sites at [1] or [2]: There is no long link contribution from the "left", but there's still a fat link contribution!

Schur Going to Have a Tough Time

Three hops this time

- The "real" goal is the even/odd preconditioned operator:

$$
\begin{gathered}
D_{x, y}^{H I S Q} \approx \sum_{\mu=0}^{3} \eta_{\mu}(x)\left[\left(F_{\mu}(x) \delta_{x, y-1}-F_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x, y+1}\right)+\left(L_{\mu}(x) \delta_{x, y-3}-L_{\mu}^{\dagger}(x-3 \hat{\mu}) \delta_{x, y+3}\right)\right]+2 m \delta_{x, y} \\
{\left[\begin{array}{cc}
2 m & D_{e o} \\
D_{o e} & 2 m
\end{array}\right]\left[\begin{array}{l}
x_{e} \\
x_{o}
\end{array}\right]=\left[\begin{array}{l}
b_{e} \\
b_{o}
\end{array}\right]} \\
\left(4 m^{2}-D_{e o} D_{o e}\right) x_{e}=2 m b_{e}-D_{e o} b_{o}
\end{gathered}
$$

- The type of bookkeeping noted in the previous slide causes new headaches

Site Zero

Three hops this time

- Let's first consider the site at [0]
- There are three "boundary" contributions:
- Start at [0]: fat link left, fat link right
- Start at [0]: long link left, long link right
- Start at [2]: long link left, fat link right

Site One

- Let's first consider the site at [1]
- There is only one boundary condition:
- Start at [1]: long link left, long link right

Site Two

- Last, we'll consider the term at [2]
- There are two boundary contributions:
- Start at [2]: long link left, long link right
- Start at [0]!: fat link left, long link right

Solver Workflow

Solving at the speed of sound

- For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction

Solver Workflow

Solving at the speed of sound

- For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
- Reconstruction reminder:
- The fat links are general 3×3 matrices
- The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals

Solver Workflow

Solving at the speed of sound

- For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
- Reconstruction reminder:
- The fat links are general 3×3 matrices
- The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals
- Mixed precision solve:
- Outer operator: Double precision; reconstruct-13 for long links
- Sloppy operator: "Half" precision (QUDA's 16-bit fixed point format); reconstruct-9 for long links

Solver Workflow

Solving at the speed of sound

- For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
- Reconstruction reminder:
- The fat links are general 3×3 matrices
- The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals
- Mixed precision solve:
- Outer operator: Double precision; reconstruct-13 for long links
- Sloppy operator: "Half" precision (QUDA's 16-bit fixed point format); reconstruct-9 for long links
- For the preconditioned solver:
- We use preconditioned CG (PCG) as the outer solve
- We use fixed-iteration CG as the inner solve

Solver Workflow

Solving at the speed of sound

- For the non-preconditioned solve, we use mixed-precision conjugate gradient (CG) with gauge link reconstruction
- Reconstruction reminder:
- The fat links are general 3×3 matrices
- The long links are (proportional to) U(3) matrices, which can be represented as 9 or 13 reals
- Mixed precision solve:
- Outer operator: Double precision; reconstruct-13 for long links
- Sloppy operator: "Half" precision (QUDA's 16-bit fixed point format); reconstruct-9 for long links
- For the preconditioned solver:
- We use preconditioned CG (PCG) as the outer solve
- We use fixed-iteration CG as the inner solve
- Note: PCG on paper requires a stationary preconditioner...
- But with a Polak-Ribière correction, CG is "no worse than" Gradient Descent...
- ...and seems to work well enough

Reference Configurations, System

Solving at the speed of sound

- Configuration:
- NERSC Large configuration
- Volume: $72^{3} \mathrm{x} 144$
- Bare light mass am = 0.001

Reference Configurations, System

Solving at the speed of sound

- Configuration:
- NERSC Large configuration
- Volume: $72^{3} \times 144$
- Bare light mass am = 0.001
- Machine: Selene
- DGX-A 100-80GB nodes
- Use 4xGPUs per node
- 1:1 NIC ratio; HDR 200 ($25 \mathrm{~GB} / \mathrm{s}$ bi-directional)

Reference Configurations, System

Solving at the speed of sound

- Configuration:
- NERSC Large configuration
- Volume: $72^{3} \times 144$
- Bare light mass am = 0.001
- Machine: Selene
- DGX-A 100-80GB nodes
- Use 4xGPUs per node
- 1:1 NIC ratio; HDR 200 (25 GB/s bi-directional)

Nodes	GPUs	Local Domain
8	32	36^{4}
16	64	$36^{3} \times 18$
32	128	$36^{2} \times 18^{2}$
64	256	36×18^{3}
128	512	18^{4}

- We consider multiple strong scaling problem sizes

Reference Configurations, System

Solving at the speed of sound

- Configuration:
- NERSC Large configuration
- Volume: $72^{3} \times 144$
- Bare light mass am = 0.001
- Machine: Selene
- DGX-A 100-80GB nodes
- Use 4xGPUs per node
- 1:1 NIC ratio; HDR 200 ($25 \mathrm{~GB} / \mathrm{s}$ bi-directional)

Nodes	GPUs	Local Domain
8	32	36^{4}
16	64	$36^{3} \times 18$
32	128	$36^{2} \times 18^{2}$
64	256	36×18^{3}
128	512	18^{4}

- We consider multiple strong scaling problem sizes
- For networks:
- 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths
- 4:1 GPU:NIC bindings with staging through the CPU

Reference Configurations, System

Solving at the speed of sound

- Configuration:
- NERSC Large configuration
- Volume: $72^{3} \times 144$
- Bare light mass am = 0.001
- Machine: Selene
- DGX-A 100-80GB nodes
- Use 4xGPUs per node
- 1:1 NIC ratio; HDR 200 ($25 \mathrm{~GB} / \mathrm{s}$ bi-directional)

Nodes	GPUs	Local Domain
8	32	36^{4}
16	64	$36^{3} \times 18$
32	128	$36^{2} \times 18^{2}$
64	256	36×18^{3}
128	512	18^{4}

- We consider multiple strong scaling problem sizes
- For networks:
- 2:1 and 1:1 direct GPU:NIC bindings to emulate different network bandwidths
- 4:1 GPU:NIC bindings with staging through the CPU
- All tests utilize NVSHMEM, implementations of the HISQ kernel
- Device-driven communications
- Reduces latency: no separate packing kernel, no overhead of MPI calls, gets the host out of the way

Convergence History

An unstable algorithm is pointless

- CG and PCG each converge in a stable fashion
- The "spikes" are due to residual updates: "every so often" we recompute the exact residual and re-inject it into the (P)CG solve

Operator Performance: Zero Boundary Conditions

Performance is essentially independent of the partitioning
This makes sense: all we're doing is "snipping" away work

Operator Performance: Boundary Clovers

Performance decreases with partitioning This makes sense: we're adding (divergent) work
Extra note: reconstruct becomes a detriment: extra instructions hold up threads

Iteration Counts for each Preconditioner

More preconditioner iterations -> fewer outer iterations (to a point)
Diminishing benefit with smaller partition sizes -> domain is a lower-quality approximation of full domain

Time to Solution (which is all that matters)

Note: $1 \times$ NIC includes CPU staging for two GPUs to access a NIC!
There's still outstanding work to be done when the network is strong ($25 \mathrm{~GB} / \mathrm{s}$ bi-directional per NIC)...
...but we also see that the preconditioner is beneficial when the network is slow

Future Work

Future HISQy Business

Same old song and dance
-HISQ Force: no further optimizations
-Schwarz Preconditioner: Pre-computed matrix products to reduce latencies
-HISQ MG + Schwarz Preconditioner:

- Use the local operator as a smoother on all levels
- Outer HISQ and Kahler-Dirac preconditioned operator have GPU code implementations
- Even/odd preconditioned coarse operators do not
-... $192^{3} \times 384$ ensemble

@ IVIDIA

[^0]: Save each five-link staple separately

