Determination of the CP restoration temperature at $\theta=\pi$ in 4D SU(2) Yang-Mills theory through simulations at imaginary θ

Mitsuaki Hirasawa¹

collaboration with Kohta Hatakeyama 2 , Masazumi Honda 3,4 , Akira Matsumoto 3 , Jun Nishimura 5,6 , Atis Yosprakob 7 .

¹ INFN Milano-Bicocca, ² Hirosaki Univ., ³ YITP, ⁴ RIKEN iTHEMS, ⁵ KEK, ⁶ SOKENDAI, ⁷ Niigata Univ.

$\mathsf{SU}(N)$ gauge theory with a θ term

ullet gauge theory with a heta term

$$Z = \int \mathcal{D}A_{\mu}e^{-S_{\rm g} + i\theta Q}$$

topological charge

$$Q = \frac{1}{32\pi^2} \int d^4x \epsilon_{\mu\nu\rho\sigma} \text{Tr} \left[F_{\mu\nu} F_{\rho\sigma} \right]$$

$$(Q \in \mathbb{Z} \text{ on a 4d torus})$$

- periodicity for $\theta \to \theta + 2\pi n \quad (n \in \mathbb{Z})$
- The theory has CP symmetry $(\theta \to -\theta)$ not only at $\theta = 0$ but also $\theta = \pi$.
- ullet Phase structure at $\theta=\pi$ is predicted by 't Hooft anomaly matching.

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

possible phase diagrams (θ, T) for 4D SU(2) YM

• 2 possible phase diagrams

anomaly matching condition: $T_{\rm CP} \geq T_{\rm dec}(\pi)$

holographic analysis at large N

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

analysis based on SUSY (SU(2) SYM)

[S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Which diagram is realized for SU(2) YM without SUSY?

CP restoration at $\theta = \pi$

order parameter for SSB of CP

$$\lim_{\epsilon \to 0} \lim_{V_{\rm S} \to \infty} \frac{\langle Q \rangle_{\theta = \pi - \epsilon}}{V_{\rm S}} \left\{ \begin{array}{l} = 0 : \mathrm{CP} \\ \neq 0 : \mathrm{CP} \end{array} \right.$$

relation between $\langle Q \rangle$ and the topological charge distribution

partition function

$$Z_{\theta} = \int dU e^{-S_g + i\theta Q} = Z_0 \int dq e^{i\theta q} \rho(q)$$

 $\rho(q)$: distribution of the topological charge at $\theta=0$

$$\rho(q) = \frac{1}{Z_0} \int dU \delta(q - Q) e^{-S_g}$$

ullet heta dependence of $\langle Q
angle$

$$\langle Q \rangle = -i \frac{\partial}{\partial \theta} \log Z_{\theta} = \frac{\int dq q e^{i\theta q} \rho(q)}{\int dq e^{i\theta q} \rho(q)}$$

Behavior of $\langle Q \rangle$ near $\theta = \pi$ is determined by $\rho(q)$.

Imaginary θ as a probe

• CP restoration at $\theta = \pi$ is related to the asymptotic behavior of $\rho(q)$.

$$\rho(q) \sim \begin{cases} \exp\left(-q\log q\right) &: \text{ instanton gas} \qquad \text{(CP restored)} \\ \exp\left(-\frac{q^2}{2\chi_0 V}\right) &: \text{ large } N \text{ (low } T) \quad \text{(CP broken)} \end{cases}$$
[E. Witten (1979)]

ullet $\langle Q \rangle$ at imaginary heta

$$\langle Q \rangle = \frac{\int dq q e^{\tilde{\theta}q} \rho(q)}{\int dq e^{\tilde{\theta}q} \rho(q)}$$
 $\tilde{\theta} \equiv i\theta$

The asymptotic behavior is enhanced by $e^{ ilde{ heta}q}.$

We can observe the tail of $\rho(q)$ through $\langle Q \rangle$ at imaginary θ .

($\it c.f.$ ${\rm CP}^9$ case [V. Azcoiti, G. D. Carlo, A. Galante, V. Laliena (2002)])

behavior of $\langle Q \rangle$

 \bullet θ dependence of $\langle Q \rangle$

model	$\left\langle Q ight angle /(\chi_{0}V)$ at $ heta$	$\left\langle Q ight angle /(\chi_{0}V)$ at $ ilde{ heta}\equiv i heta$	$CP \; at \; \theta = \pi$
instanton gas	$i\sin heta$	$\sinh \widetilde{ heta}$	restored
large N (low T)	$i\theta$	$ ilde{ heta}$	broken

We determine $T_{\rm CP}$ through simulations of the theory at imaginary θ .

7 / 17

lattice setup

- gauge action: Wilson action
- topological charge: clover leaf definition + stout smearing

[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]
[C. Morningstar, M. Peardon (2004)]

$$S=S_{\mathrm{g}}(U)+S_{\theta}[\tilde{U}]$$
 \tilde{U} : smeared link stout smearing step size: $\rho=0.09$ stout smearing steps: $N_{\rho}=40$

algorithm: HMC

previous work

• We determined $T_{\rm cp}$ focusing on T dependence of $\langle Q \rangle / (\chi_0 V)$ for fixed $\tilde{\theta}$.

• fitting by

$$f(x) = a + bx + cx^2 + dx^3$$

 $V_{
m s}\equiv L_{
m s}^3$: spatial volume

 $T_{\rm CP} \sim 1.06 \ T_{\rm dec}(0)$

 $T_{\rm CP}$ is identified as the peak position of f'(x).

$$\frac{T_{\rm dec}(\theta)}{T_{\rm dec}(0)} \simeq 1 - R_2 \, \theta^2$$

 $R_2 \sim 0.0178$ in SU(3) YM

[M. D Elia, F. Negro (2013)] [N. Otake, N. Yamada (2022)]

 $\rightarrow T_{
m dec}(0) > T_{
m dec}(\pi)$ in SU(3) YM.

Assuming that this is also the case with SU(2) YM, our result $T_{\rm CP} \sim 1.06~T_{\rm dec}(0)$ implies $T_{\rm CP} > T_{\rm dec}(\pi)$.

New analysis based on analytic continuation using $\tilde{\theta}$ dependence at each T

New analysis based on analytic continuation

• analytic continuation $\tilde{\theta} \to \theta = i \tilde{\theta}$

model	$\left\langle Q \right angle / V$ at $ heta$	$\left\langle Q ight angle /V$ at $ ilde{ heta}\equiv i heta$	$CP \; at \; \theta = \pi$
instanton gas	$i\chi_0\sin\theta$	$\chi_0 \sinh ilde{ heta}$	restored
large N (low T)	$i\chi_0 heta$	$\chi_0 ilde{ heta}$	broken

- ullet We focus on the $ilde{ heta}$ dependence of $\langle Q \rangle$
 - $lackbox{0} V_{
 m s}
 ightarrow \infty$ extrapolation for $\left\langle Q \right\rangle/V$ at each $ilde{ heta}$
 - ② fit the results for various $\tilde{\theta}$ to
 - hyperbolic sine series:

$$f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$$

polynomial:

$$g(\tilde{\theta}) = b_1 \tilde{\theta} + b_3 \tilde{\theta}^3$$

 analytic continuation $\tilde{\theta} \rightarrow \theta = i \tilde{\theta}$

c.f.
$$\lim_{\epsilon \to 0} \lim_{V_{\rm s} \to \infty} \frac{\langle Q \rangle}{V_{\rm s}} = \begin{cases} i\chi_0 \sum_n \alpha_n \sin(n\theta) : \text{CP} \\ i\chi_0 \sum_n \beta_{2n-1} \theta^{2n-1} : \text{QP} \end{cases}$$

at real θ

New analysis based on analytic continuation

 $oldsymbol{0} V_{
m s}
ightarrow \infty$ extrapolation at each $ilde{ heta}$

New analysis based on analytic continuation

- 2 fitting the $V_s \to \infty$ extrapolated results to
 - hyperbolic sine series: $f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$ polynomial: $g(\tilde{\theta}) = b_1\tilde{\theta} + b_3\tilde{\theta}^3$

We can impose a constraint on the fitting parameters using

• the infinite volume extrapolation for
$$\chi_0$$

$$a_1 + 2a_2 + 3a_3 = \chi_0$$

 $b_1 = \chi_0$
 $color b_1 = \chi_0$

② fitting the $V_{\rm s} \to \infty$ extrapolated results

hyperbolic sine series

$$f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$$

fitting the $V_{\rm s} \to \infty$ extrapolated results

hyperbolic sine series

$$f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$$

polynomial
$$g(\tilde{\theta}) = b_1 \tilde{\theta} + b_3 \tilde{\theta}^3$$

fitting the $V_{\rm s} \to \infty$ extrapolated results

hyperbolic sine series

$$f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$$

polynomial
$$g(\tilde{\theta}) = b_1 \tilde{\theta} + b_3 \tilde{\theta}^3$$

We are trying to use this analysis to determine T_{CP}

summary

- We studied the phase structure for 4D SU(2) YM at $\theta = \pi$.
- CP restoration/breaking at $\theta = \pi$ is related to the tail of the topological charge distribution at $\theta = 0$.
 - \rightarrow We used imaginary θ to probe for the tail of the distribution.

our previous work

We focused on the T dependence of $\left\langle Q\right\rangle /(\chi_{0}V)$

$$\rightarrow T_{\rm CP} \sim 1.06 T_{\rm dec}(\theta=0)$$

Our results suggested $T_{\rm CP} > T_{\rm dec}(\theta=\pi)$ for SU(2)

unlike large-
$$N$$
 result $(T_{\rm CP} = T_{\rm dec}(\theta = \pi))$.

[Matsumoto, Hatakeyama, Hirasawa, Honda, Nishimura, Yosprakob (PoS LATTICE2022 378)]

summary

• this work: analytic continuation focusing on $\tilde{\theta}$ dependence of $\langle Q \rangle$

temperature	appropriate fitting function	$\langle Q \rangle$ at $\theta=\pi$
$T = 1.2T_{\rm dec}(0)$	$f(\tilde{\theta}) = \sum_{n=1}^{3} a_n \sinh(n\tilde{\theta})$	$\langle Q \rangle = 0$ (CP restored)
$T = 0.9T_{\rm dec}(0)$	$g(\tilde{\theta}) = b_1 \tilde{\theta} + b_3 \tilde{\theta}^3$	$\langle Q \rangle eq 0$ (CP broken)

This result is consistent with the results of our previous study.

• We are now studying the intermediate
$$T$$
 region.
 $\left(\begin{array}{c} \cdot \text{ hyperbolic sine fitting works at } T \geq T_{\mathrm{CP}} \\ \cdot \text{ polynomial fitting works at } T \leq T_{\mathrm{CP}} \end{array}\right)$?

• A similar study for the SU(3) YM is ongoing. $(T_{\rm CP} = T_{\rm dec}(\pi) < T_{\rm dec}(0)$ is expected like large-N.)

Thank you for listening!

predicted phase structure for 4D SU(N) at $\theta = \pi$

't Hooft anomaly matching condition

At least either CP or Z_2 is broken.

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

possible scenario

- SSB of CP
- ullet SSB of Z_2
- gapless (CFT)
- topological QFT

- large N: Both CP restoration and deconfining phase transition occur at the same temperature. [F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]
- small N (i.e. N=2): not determined.

predicted phase structure for 4D SU(2) YM at $\theta = \pi$

- ullet confinement/deconfinement in SU(2) YM at $heta=\pi$
 - deconfinement at high temperature (1-loop analysis)

```
[D.J. Gross, R.D. Pisarski, L.G. Yaffe (1981)], [N. Weiss (1981)]
```

ullet confinement and CP breaking at T=0 (non-perturbative)

[R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

constraint from the anomaly matching condition

"mixed 't Hooft anomaly between CP symmetry and center symmetry"

CP restoration does not occur in the confined phase.

$$T_{\rm CP} \ge T_{{
m dec}(\theta=\pi)}$$

[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

- large $N: T_{\mathrm{CP}} = T_{\mathrm{dec}(\theta=\pi)}$.
- small N (i.e. N = 2): ?

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]

Simplified models for CP restoration at $\theta=\pi$

• We consider two different type of models.

$$\langle Q \rangle := -i \frac{\partial}{\partial \theta} \log Z$$

model	free energy $F(\theta) \equiv -\log Z_{\theta}$	$CP at \theta = \pi$
instanton gas	$\chi_0 V(1-\cos\theta)$	restored $\left(\lim_{\epsilon \to 0} F'(\pi + \epsilon) = \lim_{\epsilon \to 0} F'(\pi - \epsilon)\right)$
large N (low T)	$\frac{1}{2}\chi_0 V \min_n (\theta - 2\pi n)^2$	broken $\left(\lim_{\epsilon \to 0} F'(\pi + \epsilon) \neq \lim_{\epsilon \to 0} F'(\pi - \epsilon)\right)$

[E. Witten (1979)]

numerical results (T dependence of $\langle Q \rangle / (\chi_0 V)$)

• T dependence of $\left\langle Q\right\rangle /(\chi_0 V)$ at $\theta/\pi=0.75i$

fitting by

$$f(x) = a + bx + cx^2 + dx^3$$

 $T_{\rm CP}$ is identified as a peak position of the derivative f'(x).

• f'(x) has a peak at $T \sim 1.06 T_{\rm dec}(0)$.

numerical results (volume dependence)

ullet results for various $\widetilde{ heta}$ and volume dependence

- The transition temperature seems to converge around $1.06T_{\rm dec}(0)$.
- The order of the transition is the second or higher.

(c.f. 1st order case : The peak increases linearly in $V_{
m s.}$)

detail of the fitting

