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SU(NV) gauge theory with a 6 term

@ gauge theory with a # term

7 — /DAM€_Sg+i6Q

topological charge

Q=

337 / A T€ 10 TY [Flu Foo ]

(Q € Z on a 4d torus)

e periodicity for 6 — 0 +2mn  (n € Z)
@ The theory has CP symmetry (6 — —6) not only at § = 0 but also § = =.
@ Phase structure at # = 7 is predicted by 't Hooft anomaly matching.
[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]
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possible phase diagrams (6,7") for 4D SU(2) YM

@ 2 possible phase diagrams anomaly matching condition: Tcp > Tyec ()
Top = Taec() Top > Tqec()
T deconfined T deconfined

<.

—

1
CP . confined CcP confined
broken : broken

1
1
n

holographic analysis at large NV analysis based on SUSY (SU(2) SYM)

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)] [S. Chen, K. Fukushima, H. Nishimura, Y. Tanizaki (2020)]

Which diagram is realized for SU(2) YM without SUSY?
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CP restoration at § = 7

@ behavior of (Q)) near =7 £ CpP
<Q>0:7r—e = <Q>0:—(7r—5)

- = <Q>0:7r+e

T on periodicity

@ order parameter for SSB of CP

V' N o=
lim lim —n—e Vs: spatial volume
e—0 Vi—o0 s
. Q)g—r e [ =0:CP
lim lim [y rm—
=0 Vimoo Vi #0:CP
CP broken CP restored
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relation between (()) and the topological charge distribution

@ partition function

Zy = /dUe‘SgHGQ = 2 /dqewq (q)
p(q) : distribution of the topological charge at 6 =0

! /dU5(q—Q) 5

plq) = 7

@ O dependence of (Q)

Behavior of (()) near § = m is determined by p(q).
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Imaginary 6 as a probe

@ CP restoration at § = 7 is related to the asymptotic behavior of p(q).

exp (—qlogq) : instanton gas (CP restored)
pla) ~ exp (—2)‘(1%) : large N (low T') (CP broken)

[E. Witten (1979)]
e (Q) at imaginary 6

iq ) . CP restored
Q) - / dqqeé plq) b=io o
f dge qP(Q) i logarithmic scalé\:\'\' . /
~ v \ : N
The asymptotic behavior is enhanced by 7. P broken \\.

We can observe the tail of p(q) through (Q)) at imaginary 6.
( c.f. CPY case [V. Azcoiti, G. D. Carlo, A. Galante, V. Laliena (2002)] )
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behavior of (Q))

e 0 dependence of (Q)

| model | (Q/(w0V)ath | (Q/(xV)atd=i0 | CPato=n
instanton gas 3sin 6 sinh @ restored
large N (low T) 6 7 broken
Im<Qa> | 3V <Q= 1 xV
40
3 [
2 sl

The difference of p(q) strongly
affects the behavior of <Q>
at imaginary 6.

e s
o [ 10 15 20

We determine Tp through simulations of the theory at imaginary 6.
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lattice setup

@ gauge action: Wilson action

@ topological charge: clover leaf definition + stout smearing
[P. Di Vecchia, K. Fabricius, G. C. Rossi, G. Veneziano (1981)]
[C. Morningstar, M. Peardon (2004)]

S = S5:(U) + SplU] U :smeared link
stout smearing step size : p = 0.09
stout smearing steps : IV, = 40

@ algorithm: HMC
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[Matsumoto, Hatakeyama, Hirasawa, Honda,

previous work

Nishimura, Yosprakob (PoS LATTICE2022 378)]

o We determined T, focusing on T' dependence of (Q) /(xoV) for fixed 6.
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e fitting by

Tcp is identified as the peak position of f/(z).

f(z) =a+bx + ca® + da?
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TCP ~ 1.06 ,-Tdec(o)
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[Matsumoto, Hatakeyama, Hirasawa, Honda,

preViOUS work Nishimura, Yosprakob (PoS LATTICE2022 378)]

TCP > Tdec (’/T)

Tdec(e) ~1— Rg 92
Tdec(o) our result T deconfined
Top ~ 1.06 Tgec(0) .| oot )
. Tdec(0) =7 W_
R2 ~ 0.0178 in SU(3) YM Tdec(ﬂ') e T 1
[M. D Elia, F. Negro (2013)] ' ] ] .
[N. Otake, N. Yamgada (2022)] brglljen j>i confined
L | 1
— Tgee(0) > Taee() in SU(3) YM. : 6
n

Assuming that this is also the case with SU(2) YM,
our result Tep ~ 1.06 Tyec(0) implies Top > Thee(T).
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New analysis based on analytic continuation
using 6 dependence at each T’

our previous work
—

this work

0.6 075 0.9 Olx



New analysis based on analytic continuation

@ analytic continuation 6—0=1i0

| model [(@/Vato [ (Q/Vatf=i [ CPatf=m
instanton gas ixo sin 0 X0 sinh 6 restored
large N (low T) ix00 X060 broken

@ We focus on the # dependence of (Q)
@ V, — oo extrapolation for (Q) /V at each §
@ fit the results for various 0 to
@ hyperbolic sine series:

f(@) _ 2731:1 an sinh(né) - ixo;an sin(n@) : CP
e polynomial: ~ —0Vimoo Ve | ixod fan—16%"71: CF
g(0) = b10 + b36? n

© analytic continuation § — 6 = 0

at real 6
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New analysis based on analytic continuation

@ V, — oo extrapolation at each 0

T = 1.2T4.(0) T = 0.9T4e(0)
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New analysis based on analytic continuation

Q fitting the Vi — oo extrapolated results to .
o hyperbolic sine series: f(0) = S22 _| @y, sinh(nf)
o polynomial: g(6) = b16 + b36?

We can impose a constraint on the fitting parameters using %L = Xo-

infini : < ay + 2az + 3az = ;
@ the infinite volume extrapolation for x, ' ’ 5T

= 1-21dec<0) T = 0'9]de0<0)
0.00020 0.00118
T ooooiee 000822 T oonitiar or0mex
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“ < 000116 |
S 0.00019 §
< 0.00115
l 000114
0.00018 5x10™ 0.0001 0.00015 0.0002 0.00025 000113 5x10™ 0.0001 0.00015 0.0002 0.00025
1/Vg 1/Vg

Determination of the CP restoration temperature at & = 7 in 4D SU(2) Yang-Mills theory through simulations at imaginary 0



analysis using analytic continuation

Q fitting the V; — oo extrapolated results

T = 1.2T4ec(0) T = 0.9T 46 (0)

0.003 — — — 0.005
—— (1 28, -3a;) sinn(@) + a, Sinn(20)+ a; Sinh(30)

—— (- 28, -3a;) sinn(@) + a, sinh(2l)+ & Sinh(30)
0.0025
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<Q>/V,
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0.0005
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analysis using analytic continuation

Q fitting the V; — oo extrapolated results
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analysis using analytic continuation

Q fitting the V; — oo extrapolated results
T = 09T (0)
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analysis using analytic continuation

© analytic continuation § — 6 = if

T = 1.2T4c(0) T = 0.9T4ec(0)

R [ e ——y 0005 — P
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We are trying to use this analysis to determine Tp.
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summary

o We studied the phase structure for 4D SU(2) YM at 6 = 7.

@ CP restoration/breaking at # = 7 is related to the tail of the topological charge
distribution at 6§ = 0.

— We used imaginary # to probe for the tail of the distribution.
( c.f. [V. Azcoiti, G. D. Carlo, A. Galante, V. Laliena (2002)] )

e our previous work
We focused on the T' dependence of (Q) /(xoV)
— Tep ~ 1.06Tgee (6 = 0)
Our results suggested Top > Tyec (0 = ) for SU(2)
unlike large-N result (Tcp = Tgec(0 = 7)).

[Matsumoto, Hatakeyama, Hirasawa, Honda, Nishimura, Yosprakob (PoS LATTICE2022 378)]
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summary

e this work: analytic continuation focusing on 6 dependence of (@)

temperature | appropriate fitting function (Q)ath=m
T =12T4(0) | £() =3>_, a,sinh(nf) | (Q) =0 (CP restored)

T = 0.9T3..(0) 9(0) = b10 + b30° (Q) # 0 (CP broken)

This result is consistent with the results of our previous study.

o We are now studying the intermediate 7' region.
- hyperbolic sine fitting works at 7' > Tcp 5

- polynomial fitting works at T' < Tcp :
@ A similar study for the SU(3) YM is ongoing.
(Tep = Taee(m) < Taec(0) is expected like large-N.)
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Thank you for listening!



predicted phase structure for 4D SU(N) at 6 = 7

't Hooft anomaly matching condition

At least either CP or Z5 is broken.
[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

possible scenario T

SSB of CP

SSB of Z,
gapless (CFT)
topological QFT

v

deconfined

—

? confined

7]

T

large N : Both CP restoration and deconfining phase transition occur at the same

temperature.
small N (i.e. N=2): not determined.

[F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]



predicted phase structure for 4D SU(2) YM at 0 =

@ confinement/deconfinement in SU(2) YM at 0 =«
o deconfinement at high temperature (1-loop analysis)
[D.J. Gross, R.D. Pisarski, L.G. Yaffe (1981)], [N. Weiss (1981)]
o confinement and CP breaking at T' = 0 (non-perturbative)
[R. Kitano, R. Matsudo, N. Yamada, M. Yamazaki (2021)]

@ constraint from the anomaly matching condition
“mixed 't Hooft anomaly between CP symmetry and center symmetry”
o CP restoration does not occur in the confined phase.

Tep 2 Tyec(o=n)
[D. Gaiotto, A.Kapustin, Z. Komargodski, N.Seiberg (2017)]

o large N : Tcp = Tdec(gzﬂ). [F. Bigazzi, A. L. Cotrone, R. Sisca (2015)]
e small N (ie. N=2):7



Simplified models for CP restoration at 6 = 7

@ We consider two different type of models. Q) :==—iZlogZ
model free energy F(6) = —log Zy CPatf=mn
instanton gas XoV (1 — cosf) restored (hH(l) F'(r+e) = 1in%) F'(m — e))
€E—> €E—>
large N (low T') 1x0V min(f — 27n)? broken (liH(l) F'(m+e)# liH(l) F'(m — e))
n E—> €—>
[E. Witten (1979)]
F(6) 7 xv o)
T \\\\\\\‘ CP restored
i plg) e
I in logarithmic scale ™ - |
10° \ .
\ W 7 \\" .
O\ /\ | / _CPbroken N




numerical results (7" dependence of (@) /(xo0V))

@ T dependence of (Q)) /(xoV) at /7 = 0.75i
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e fitting by
f(z) = a+ bz + ca® + da?

Top is identified as a peak position of
the derivative f'(x).

e f'(z) has a peak at T ~ 1.06T 4. (0).



numerical results (volume dependence)

@ results for various 6 and volume dependence

114} —'8=060m
< g=075T
1121 6=090m
~
S 11t
3
= 1.08} :
= X X
%1.06 j
g i £
= 1.04}
1.02
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)

3.0x10™

peak height

40 +

20

10+

.
8=0607
8=075m ¢

6=0.90T

1.0x10% 1.6x10*

e The transition temperature seems to converge around 1.067 e (0).
e The order of the transition is the second or higher.

(c.f. 1st order case : The peak increases linearly in Vs.)



detail of the fitting

T = 1.2T46c(0)
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