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Tensor Networks
Some advantages

Tensor network methods are
▶ efficient for large systems with translational

symmetries

→ CPU time ∼ logV

▶ free of a sign problem in principle

→ no sampling

Seems ideal for

▶ large correlation lengths

▶ finite density

▶ fermions
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Tensor Networks
Trouble

Higher dimensions increase complexity

▶ Great in D = 2 (Euclidean)

▶ Some slow-down in D > 2
▶ Some current approaches

- Graph independent local truncation (GILT)[Hauru et al., 2018]
- Higher order tensor renormalization group (HOTRG and cousins)
[Xie et al., 2012]

- Projected entangled pair states (PEPS)[Verstraete and Cirac, 2004]
- Tree tensor networks [Shi et al., 2006, Gerster et al., 2014]
- Triad tensor renormalization group [Kadoh and Nakayama, 2019]
- Anisotropic tensor renormalization group (ATRG)[Adachi et al., 2020]
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ATRG
Briefly

SVD

SVD

Insert 
squeezers

Contraction

Iterate

Decompose local tensors
to start the ATRG 

Coarse-graining
in the ATRG

𝑥

𝑦

𝑧



Triad TRG
Briefly

3D tensor at a site

Same tensor split into four using SVD

Update using HOTRG method



Tensor Networks
Compare emerging methods

▶ Efficacy in higher dimensions

▶ Generality

▶ Checkable
▶ Physically interesting

=⇒ SU(2) principal chiral model
→ Equivalent O(4) NLSM
→ Effective theory large T QCD? [Susskind, 1979, Pisarski and Wilczek, 1984,

Toussaint, 1997, Bernard et al., 2000]
→ Effective theory large T , g SU(2) gauge?
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SU(2) principal chiral model

S =
β

2

∫
d3xTr

[
3∑

ν=1

∂νU(x)†∂νU(x)

]
(1)

U(x) are SU(2) matrices

S = −β

2

∑
n,ν

ℜ
{
Tr
[
U(n)U(n + ν̂)†

]}
(2)

n are the sites of the lattice

Z =

∫ (∏
n

dU(n)

)
e−S (3)



Local tensor from strong coupling

Expand the nearest-neighbor weight:

e−
β
2
ℜTr[U(x)U(x+ν̂)] =

∞∑
r=0

Fr (β)χ
r (U(x)U(x + ν̂))

▶ Integration over U(x)
▶ Clebsch-Gordon coefficients

T(r1m1n1)(r2m2n2)(r3m3n3)(r4m4n4)(r5m5n5)(r6m6n6) =

√√√√ 6∏
p=1

Frp(β)

×
r1+r2∑

R12=|r1−r2|

R12+r3∑
R123=|R12−r3|

r5+r6∑
R56=|r5−r6|

∑
M12,N12

∑
M123,N123

∑
M56,N56

× CR12M12
r1m1r2m2

CR12N12
r1n1r2n2C

R123M123
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CR123N123
R12N12r3n3

CR123M123
r4m4R56M56

CR123N123
r4n4R56N56

CR56M56
r5m5r6m6

CR56N56
r5n5r6n6

× 1

2R123 + 1
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Tensor formulations
ATRG

T(r1m1n1)(r2m2n2)(r3m3n3)(r4m4n4)(r5m5n5)(r6m6n6)

≈
∑
γ

U(r1m1n1)(r2m2n2)(r3m3n3)γσγV
∗
(r4m4n4)(r5m5n5)(r6m6n6)γ

▶ SVD of initial tensor

▶ initial truncation



Tensor formulations
Triads

Tijklmn =
∑
a,b,c

AikaBambCbncDclj

A(ry ,m2,n3),(rx ,m1,n3),(R,M,N) =
√
Frx (β)Fry (β)C

RM
rxm1rym3

CRN
rxn1ryn3

B(R,M,N),(rz ,m5,n5),(R′,M′,N′) =
1√
dR′

√
Frz (β)C

R′M′
R,M,rzm5

CR′N′
R,N,rzn5

C(R′,M′,N′),(r−z ,m6,n6),(R′′,M′′,N′′) =
1√
dR′

√
Fr−z (β)C

R′M′
R′′,M′′,r−zm6

CR′N′
R′′,N′′,r−zn6

D(R′′,M′′,N′′),(r−x ,m2,n2),(r−y ,m4,n4) =
√
Fr−x (β)Fr−y (β)C

R′′M′′
r−xm2r−ym4

CR′′N′′
r−xn2r−yn4
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Observables

The free energy density:

F ≡ 1

V
log(Z )

The average action density:

⟨s⟩ ≡ − ∂

∂β
F

Action susceptibility

χs = V (⟨s2⟩ − ⟨s⟩2) ≡ ∂2

∂β2
F

X ≡

[Gu and Wen, 2009]



Results
Average action varying rmax
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Figure: ATRG, D = 40, V = 10243
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Figure: Triad, D = 40, V = 10243



Results
X varying rmax and βc
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Figure: Triad, D = 40, V = 10243

rmax = 1/2: βc = 0.935(5)
rmax = 1: βc = 0.915(5)
rmax = 3/2: βc = 0.915(5)
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Figure: βc from ATRG using X , V = 10243,
βc = 0.9360(1) [López-Contreras et al., 2022]



Results
Convergence of X , high-temperature, β = 0.8
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Figure: rmax = 1/2
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Results
Convergence of X , low-temperature, β = 1.1
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Figure: rmax = 1/2
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Results
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Figure: Triad low-high temp fit, D = 40,
V = 10243

rmax = 1/2: βc = 0.933(1)
rmax = 1: βc = 0.9232(1)
rmax = 3/2: βc = 0.92295(4)

⟨S⟩/V = A+ B|β − βc |
+ C |β − βc |1−α

▶ α = −0.247(6)
[Toldin et al., 2003]

▶ βc = 0.9360(1)
[López-Contreras et al., 2022]



Results

0.5 1.0 1.5 2.0
2.0
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1.0

0.5
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rmax = 1/2
rmax = 1

Figure: ATRG low-high temp fit, D = 40,
V = 10243

▶ Fix βc from X

▶ Fit for α

rmax = 1/2: α = −0.21259(1)
rmax = 1: α = −0.2151(1)
rmax = 3/2: α = −0.22676(4)



Closing remarks

Conclusions:

▶ Both ATRG and triads seem useful.

▶ ATRG & triads both identify a phase transition.

▶ First determination of βc using X with continuous global symmetry.

▶ ATRG is slightly more accurate at fixed D.

Future work:

▶ Calculate ⟨Tr [U]⟩
▶ Study SU(3) PCM

▶ Investigate link to 4d SU(2) gauge

Thank you!
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