Tensor renormalization group study of 3D principal chiral model

Shinichiro Akiyama ${ }^{1,2}$ Raghav Jha ${ }^{3}$ Judah Unmuth-Yockey ${ }^{4}$
${ }^{1}$ Endowed Chair for Quantum Software, The University of Tokyo
${ }^{2}$ Center for Computational Sciences, University of Tsukuba
${ }^{3}$ Jefferson Laboratory
${ }^{4}$ Department of Theoretical Physics, Fermi National Accelerator Laboratory

July 2021

Tensor Networks

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
\rightarrow CPU time $\sim \log V$

Tensor Networks

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
\rightarrow CPU time $\sim \log V$
- free of a sign problem in principle
\rightarrow no sampling

Tensor Networks

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
\rightarrow CPU time $\sim \log V$
- free of a sign problem in principle
\rightarrow no sampling

Seems ideal for

- large correlation lengths

Tensor Networks

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
\rightarrow CPU time $\sim \log V$
- free of a sign problem in principle
\rightarrow no sampling

Seems ideal for

- large correlation lengths
- finite density

Tensor Networks

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
\rightarrow CPU time $\sim \log V$
- free of a sign problem in principle
\rightarrow no sampling

Seems ideal for

- large correlation lengths
- finite density
- fermions

Tensor Networks

Trouble

Higher dimensions increase complexity

- Great in $D=2$ (Euclidean)

Tensor Networks

Trouble

Higher dimensions increase complexity

- Great in $D=2$ (Euclidean)
- Some slow-down in $D>2$

Tensor Networks

Higher dimensions increase complexity

- Great in $D=2$ (Euclidean)
- Some slow-down in $D>2$
- Some current approaches
- Graph independent local truncation (GILT)[Hauru et al., 2018]
- Higher order tensor renormalization group (HOTRG and cousins) [Xie et al., 2012]
- Projected entangled pair states (PEPS)[Verstraete and Cirac, 2004]
- Tree tensor networks [Shi et al., 2006, Gerster et al., 2014]
- Triad tensor renormalization group [Kadoh and Nakayama, 2019]
- Anisotropic tensor renormalization group (ATRG)[Adachi et al., 2020]

ATRG

Briefly

Decompose local tensors to start the ATRG

SVD 凡

Z

${ }^{y}$

Iterate
\Downarrow

SVD
\Rightarrow

I Insert squeezers

Triad TRG

Briefly

3D tensor at a site

Update using HOTRG method

Same tensor split into four using SVD

Tensor Networks

Compare emerging methods

- Efficacy in higher dimensions

Tensor Networks

Compare emerging methods

- Efficacy in higher dimensions
- Generality

Tensor Networks

Compare emerging methods

- Efficacy in higher dimensions
- Generality
- Checkable

Tensor Networks

Compare emerging methods
－Efficacy in higher dimensions
－Generality
－Checkable
－Physically interesting
$\Longrightarrow S U(2)$ principal chiral model
\rightarrow Equivalent O（4）NLSM
\rightarrow Effective theory large T QCD？［Susskind，1979，Pisarski and Wilczek，1984， Toussaint，1997，Bernard et al．，2000］
\rightarrow Effective theory large $T, g S U(2)$ gauge？

$S U(2)$ principal chiral model

$$
\begin{equation*}
S=\frac{\beta}{2} \int d^{3} x \operatorname{Tr}\left[\sum_{\nu=1}^{3} \partial_{\nu} U(x)^{\dagger} \partial_{\nu} U(x)\right] \tag{1}
\end{equation*}
$$

$U(x)$ are $S U(2)$ matrices

$$
\begin{equation*}
S=-\frac{\beta}{2} \sum_{n, \nu} \Re\left\{\operatorname{Tr}\left[U(n) U(n+\hat{\nu})^{\dagger}\right]\right\} \tag{2}
\end{equation*}
$$

n are the sites of the lattice

$$
\begin{equation*}
Z=\int\left(\prod_{n} d U(n)\right) e^{-S} \tag{3}
\end{equation*}
$$

Local tensor from strong coupling

Expand the nearest-neighbor weight:

$$
e^{-\frac{\beta}{2} \Re \operatorname{Tr}[U(x) U(x+\hat{\nu})]}=\sum_{r=0}^{\infty} F_{r}(\beta) \chi^{r}(U(x) U(x+\hat{\nu}))
$$

Local tensor from strong coupling

Expand the nearest-neighbor weight:

$$
e^{-\frac{\beta}{2} \Re \operatorname{Tr}[U(x) U(x+\hat{\nu})]}=\sum_{r=0}^{\infty} F_{r}(\beta) \chi^{r}(U(x) U(x+\hat{\nu}))
$$

- Integration over $U(x)$

Local tensor from strong coupling

Expand the nearest-neighbor weight:

$$
e^{-\frac{\beta}{2} \Re \operatorname{Tr}[U(x) U(x+\hat{\nu})]}=\sum_{r=0}^{\infty} F_{r}(\beta) \chi^{r}(U(x) U(x+\hat{\nu}))
$$

- Integration over $U(x)$
- Clebsch-Gordon coefficients

Local tensor from strong coupling

Expand the nearest-neighbor weight:

$$
e^{-\frac{\beta}{2} \Re \operatorname{Tr}[U(x) U(x+\hat{\nu})]}=\sum_{r=0}^{\infty} F_{r}(\beta) \chi^{r}(U(x) U(x+\hat{\nu}))
$$

- Integration over $U(x)$
- Clebsch-Gordon coefficients

$$
\begin{aligned}
& T_{\left(r_{1} m_{1} n_{1}\right)\left(r_{2} m_{2} n_{2}\right)\left(r_{3} m_{3} n_{3}\right)\left(r_{4} m_{4} n_{4}\right)\left(r_{5} m_{5} n_{5}\right)\left(r_{6} m_{6} n_{6}\right)}=\sqrt{\prod_{p=1}^{6} F_{r_{p}}(\beta)} \\
& \times \sum_{R_{12}=\left|r_{1}-r_{2}\right|}^{r_{1}+r_{2}} \sum_{R_{123}=\left|R_{12}-r_{3}\right|}^{R_{12}+r_{3}} \sum_{R_{56}=\left|r_{5}-r_{6}\right|}^{r_{5}+r_{6}} \sum_{M_{12}, N_{12}} \sum_{M_{123}, N_{123}} \sum_{M_{56}, N_{56}} \\
& \times C_{r_{1} m_{1} r_{2} m_{2}}^{R_{12} M_{12}} C_{r_{1} n_{1} r_{2} n_{2}}^{R_{12} N_{12}} C_{R_{12} M_{12} r_{3} m_{3}}^{R_{123} M_{123}} C_{R_{12} N_{12} r_{3} n_{3}}^{R_{123} N_{12}} C_{r_{4} m_{4} R_{56} M_{56}}^{R_{123} M_{123}} C_{r_{4} n_{4} R_{56} N_{56}}^{R_{12} N_{123}} C_{r_{5} m_{5} r_{6} m_{6}}^{R 56} C_{r_{5} n_{5} r_{6} n_{6}}^{R_{56} N_{56}} \\
& \times \frac{1}{2 R_{123}+1}
\end{aligned}
$$

Tensor formulations

$$
\begin{aligned}
& T_{\left(r_{1} m_{1} n_{1}\right)\left(r_{2} m_{2} n_{2}\right)\left(r_{3} m_{3} n_{3}\right)\left(r_{4} m_{4} n_{4}\right)\left(r_{5} m_{5} n_{5}\right)\left(r_{6} m_{6} n_{6}\right)}^{\approx \sum_{\gamma} U_{\left(r_{1} m_{1} n_{1}\right)\left(r_{2} m_{2} n_{2}\right)\left(r_{3} m_{3} n_{3}\right) \gamma} \sigma_{\gamma} V_{\left(r_{4} m_{4} n_{4}\right)\left(r_{5} m_{5} n_{5}\right)\left(r_{6} m_{6} n_{6}\right) \gamma}^{*}}
\end{aligned}
$$

Tensor formulations

Triads

$$
T_{i j k l m n}=\sum_{a, b, c} A_{i k a} B_{a m b} C_{b n c} D_{c l j}
$$

$$
\rightarrow-\infty-\infty-a-\infty
$$

Tensor formulations

Triads

$$
\begin{aligned}
& T_{i j k l m n}=\sum_{a, b, c} A_{i k a} B_{a m b} C_{b n c} D_{c l j} \\
& A_{\left(r_{y}, m_{2}, n_{3}\right),\left(r_{x}, m_{1}, n_{3}\right),(R, M, N)}=\sqrt{F_{r_{x}}(\beta) F_{r_{y}}(\beta)} C_{r_{x} m_{1} r_{y} m_{3}}^{R M} C_{r_{x} n_{1} r_{y} n_{3}}^{R N} \\
& B_{(R, M, N),\left(r_{z}, m_{5}, n_{5}\right),\left(R^{\prime}, M^{\prime}, N^{\prime}\right)}=\frac{1}{\sqrt{d_{R^{\prime}}}} \sqrt{F_{r_{z}}(\beta)} C_{R, M, r_{z} m_{5}}^{R^{\prime} M^{\prime}} C_{R, N, r_{z} n_{5}}^{R^{\prime}} \\
& C_{\left(R^{\prime}, M^{\prime}, N^{\prime}\right),\left(r_{-z}, m_{6}, n_{6}\right),\left(R^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}\right)}=\frac{1}{\sqrt{d_{R^{\prime}}} \sqrt{F_{r_{-z}}(\beta)} C_{R^{\prime \prime}, M^{\prime \prime}, r_{-z} m_{6}}^{R^{\prime} M^{\prime}} C_{R^{\prime \prime}, N^{\prime \prime}, r_{-z} n_{6}}^{R^{\prime} N^{\prime}}} \\
& D_{\left(R^{\prime \prime}, M^{\prime \prime}, N^{\prime \prime}\right),\left(r_{-x}, m_{2}, n_{2}\right),\left(r_{-y}, m_{4}, n_{4}\right)}=\sqrt{F_{r_{-x}}(\beta) F_{r_{-y}(\beta)}(\beta) C_{r_{-x}^{\prime \prime} m_{2} r_{-y}^{\prime \prime} m_{4}}^{R_{r-x} C_{r_{-} n_{2} r_{-y} n_{4}}^{R^{\prime \prime} N^{\prime \prime}}}}
\end{aligned}
$$

Observables

$$
X \equiv
$$

The free energy density:

$$
F \equiv \frac{1}{V} \log (Z)
$$

The average action density:

$$
\langle s\rangle \equiv-\frac{\partial}{\partial \beta} F
$$

Action susceptibility

$$
\chi_{s}=V\left(\left\langle s^{2}\right\rangle-\langle s\rangle^{2}\right) \equiv \frac{\partial^{2}}{\partial \beta^{2}} F
$$

[Gu and Wen, 2009]

Results

Average action varying $r_{\text {max }}$

Figure: ATRG, $D=40, V=1024^{3}$

Figure: Triad, $D=40, V=1024^{3}$

Results

X varying $r_{\text {max }}$ and β_{c}

Figure: Triad, $D=40, V=1024^{3}$
$r_{\text {max }}=1 / 2: \beta_{c}=0.935(5)$
$r_{\text {max }}=1: \beta_{c}=0.915(5)$
$r_{\max }=3 / 2: \beta_{c}=0.915(5)$

Figure: β_{c} from ATRG using $X, V=1024^{3}$, $\beta_{c}=0.9360$ (1) [López-Contreras et al., 2022]

Results

Convergence of X ，high－temperature，$\beta=0.8$

Figure：$r_{\max }=1 / 2$

Figure：$r_{\max }=1$

Figure：$r_{\text {max }}=3 / 2$

Results

Convergence of X, low-temperature, $\beta=1.1$

Figure: $r_{\max }=1 / 2$

Figure: $r_{\max }=1$

Figure: $r_{\text {max }}=3 / 2$

Results

Figure: Triad low-high temp fit, $D=40$,

$$
\begin{aligned}
& V=1024^{3} \\
& r_{\text {max }}=1 / 2: \beta_{c}=0.933(1) \\
& r_{\text {max }}=1: \beta_{c}=0.9232(1) \\
& r_{\text {max }}=3 / 2: \beta_{c}=0.92295(4)
\end{aligned}
$$

$$
\begin{aligned}
\langle S\rangle / V=A & +B\left|\beta-\beta_{c}\right| \\
& +C\left|\beta-\beta_{c}\right|^{1-\alpha}
\end{aligned}
$$

- $\alpha=-0.247(6)$
[Toldin et al., 2003]
- $\beta_{c}=0.9360(1)$
[López-Contreras et al., 2022]

Results

- Fix β_{c} from X
- Fit for α

$$
\begin{aligned}
& r_{\max }=1 / 2: \alpha=-0.21259(1) \\
& r_{\max }=1: \alpha=-0.2151(1) \\
& r_{\max }=3 / 2: \alpha=-0.22676(4)
\end{aligned}
$$

Figure: ATRG low-high temp fit, $D=40$, $V=1024^{3}$

Closing remarks

Conclusions:

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Future work:

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Future work:

- Calculate $\langle\operatorname{Tr}[U]\rangle$

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Future work:

- Calculate $\langle\operatorname{Tr}[U]\rangle$
- Study SU(3) PCM

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Future work:

- Calculate $\langle\operatorname{Tr}[U]\rangle$
- Study SU(3) PCM
- Investigate link to 4d $S U(2)$ gauge

Closing remarks

Conclusions:

- Both ATRG and triads seem useful.
- ATRG \& triads both identify a phase transition.
- First determination of β_{c} using X with continuous global symmetry.
- ATRG is slightly more accurate at fixed D.

Future work:

- Calculate $\langle\operatorname{Tr}[U]\rangle$
- Study SU(3) PCM
- Investigate link to 4d $S U(2)$ gauge

Thank you!

References I

国 Adachi，D．，Okubo，T．，and Todo，S．（2020）．
Anisotropic tensor renormalization group．
Phys．Rev．B，102：054432．
Bernard，C．，DeTar，C．，Gottlieb，S．，Heller，U．M．，Hetrick，J．，Rummukainen，K．， Sugar，R．L．，and Toussaint，D．（2000）．
Critical behavior in $N_{t}=4$ staggered fermion thermodynamics．
Phys．Rev．D，61：054503．
（国 Gerster，M．，Silvi，P．，Rizzi，M．，Fazio，R．，Calarco，T．，and Montangero，S． （2014）．
Unconstrained tree tensor network：An adaptive gauge picture for enhanced performance．
Phys．Rev．B，90：125154．

References II

國 Gu，Z．－C．and Wen，X．－G．（2009）．
Tensor－entanglement－filtering renormalization approach and symmetry－protected topological order．
Phys．Rev．B，80：155131．
囯 Hauru，M．，Delcamp，C．，and Mizera，S．（2018）．
Renormalization of tensor networks using graph－independent local truncations．
Phys．Rev．B，97：045111．
围 Kadoh，D．and Nakayama，K．（2019）．
Renormalization group on a triad network．
围 López－Contreras，E．，García－Hernández，J．A．，Polanco－Euán，E．N．，and Bietenholz，W．（2022）．
The 3d o（4）model as an effective approach to the QCD phase diagram． Suplemento de la Revista Mexicana de Física，3（2）．

References III

國 Pisarski，R．D．and Wilczek，F．（1984）．
Remarks on the chiral phase transition in chromodynamics．
Phys．Rev．D，29：338－341．
囲 Shi，Y．－Y．，Duan，L．－M．，and Vidal，G．（2006）．
Classical simulation of quantum many－body systems with a tree tensor network． Phys．Rev．A，74：022320．

目 Susskind，L．（1979）．
Lattice models of quark confinement at high temperature．
Phys．Rev．D，20：2610－2618．
囯 Toldin，F．P．，Pelissetto，A．，and Vicari，E．（2003）．
The scaling equation of state of the $3-\mathrm{d} o(4)$ universality class．
Journal of High Energy Physics，2003（07）：029．

References IV

围 Toussaint，D．（1997）．
Scaling functions for o（4）in three dimensions．
Phys．Rev．D，55：362－366．
囯 Verstraete，F．and Cirac，J．I．（2004）．
Renormalization algorithms for quantum－many body systems in two and higher dimensions．
围 Xie，Z．Y．，Chen，J．，Qin，M．P．，Zhu，J．W．，Yang，L．P．，and Xiang，T．（2012）． Coarse－graining renormalization by higher－order singular value decomposition． Phys．Rev．B，86：045139．

