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Tensor network methods are

» efficient for large systems with translational
symmetries

— CPU time ~ log V
» free of a sign problem in principle

— no sampling

Seems ideal for
» large correlation lengths

» finite density

» fermions
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Higher dimensions increase complexity
» Great in D = 2 (Euclidean)
» Some slow-down in D > 2

» Some current approaches

- Graph independent local truncation (GILT)[Hauru et al., 2018]

- Higher order tensor renormalization group (HOTRG and cousins)

[Xie et al., 2012]

- Projected entangled pair states (PEPS)[Verstraete and Cirac, 2004]
Tree tensor networks [Shi et al., 2006, Gerster et al., 2014]
- Triad tensor renormalization group [Kadoh and Nakayama, 2019]
- Anisotropic tensor renormalization group (ATRG)[Adachi et al., 2020]



ATRG

Briefly
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Triad TRG

Briefly

&

3D tensor at a site T
Update using HOTRG method

Same tensor split into four using SVD
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» Physically interesting

= SU(2) principal chiral model
— Equivalent O(4) NLSM
— Effective theory large T QCD? [Susskind, 1979, Pisarski and Wilczek, 1984,
Toussaint, 1997, Bernard et al., 2000]
— Effective theory large T, g SU(2) gauge?



SU(2) principal chiral model

S=

r\)\m

/d3xTr [Za U(x)1a, U(x)

v=1

U(x) are SU(2) matrices
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Local tensor from strong coupling

Expand the nearest-neighbor weight:

e—%%Tr[U(x)U(x—f—f/)] _ Z Fr(ﬁ)xr(U(X) U(X + l’)))
r=0

» Integration over U(x)
» Clebsch-Gordon coefficients
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Tensor formulations
ATRG

T(r1m1n1)(rgm2ng)(r3m3n3)(r4m4n4)(r5m5n5)(r6m6n6)
~ Z U(r1m1n1)(r2m2n2)(r3m3n3)'yo-’y v(t4m4n4)(r5m5n5)(r6m5n6)'y
Y

» SVD of initial tensor

» initial truncation
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a,b,c

Tijktmn = Y AikaBamb Cone Delj 7)_ _?_ —é— —<
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Observables

x
Il

The free energy density:
F= lI (2)
=/ log

The average action density:

0
(s) = _876,:
Action susceptibility
92
Xs = V((s?) = (s)%) = o’

[Gu and Wen, 2009]
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Figure: 8. from ATRG using X, V = 10243,
Bc = 0.9360(1) [Lépez-Contreras et al., 2022]



Results

Convergence of X, high-temperature, 5 = 0.8
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Results

Convergence of X, low-temperature, 5 = 1.1
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Results
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Figure: Triad low-high temp fit, D = 40,
V = 10243

fmax = 1/2: 8. = 0.933(1)

fmax = 1: B = 0.9232(1)

rmax = 3/2: B = 0.92295(4)

(§)/V =A+B|B - Bl
+ C|B — B

> o = —0.247(6)
[Toldin et al., 2003]

> (3. =0.9360(1)
[Lépez-Contreras et al., 2022]



Results
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Figure: ATRG low-high temp fit, D = 40,

V = 10243

» Fix Bc from X

> Fit for
fmax = 1/2: o= —0.21259(1)
Mmax = 1. a= —0.2151(1)
max = 3/21 o = —0.22676(4)
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Closing remarks

Conclusions:
» Both ATRG and triads seem useful.
» ATRG & triads both identify a phase transition.
» First determination of 3. using X with continuous global symmetry.
» ATRG is slightly more accurate at fixed D.
Future work:
» Calculate (Tr[U])
» Study SU(3) PCM
» Investigate link to 4d SU(2) gauge
Thank you!
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