Tensor renormalization group study of 3D principal chiral model

Shinichiro Akiyama^{1,2} Raghav Jha³ Judah Unmuth-Yockey⁴

¹Endowed Chair for Quantum Software, The University of Tokyo

²Center for Computational Sciences, University of Tsukuba

³Jefferson Laboratory

⁴Department of Theoretical Physics, Fermi National Accelerator Laboratory

July 2021

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
 - $ightarrow \, {\sf CPU} \ {\sf time} \sim \log V$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
 - $ightarrow \, {\sf CPU} \ {\sf time} \sim \log V$
- free of a sign problem in principle
 - $\rightarrow~$ no sampling

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
 - $ightarrow \, {\sf CPU} \ {\sf time} \sim \log V$
- free of a sign problem in principle
 - $\rightarrow~$ no sampling

Seems ideal for

large correlation lengths

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
 - $ightarrow \, {\sf CPU} \ {\sf time} \sim \log V$
- free of a sign problem in principle
 - $\rightarrow~$ no sampling

Seems ideal for

- large correlation lengths
- finite density

Some advantages

Tensor network methods are

- efficient for large systems with translational symmetries
 - $ightarrow \, {\sf CPU} \ {\sf time} \sim \log V$
- free of a sign problem in principle
 - $\rightarrow~$ no sampling

Seems ideal for

- large correlation lengths
- finite density

fermions

Tensor Networks Trouble

Higher dimensions increase complexity

• Great in D = 2 (Euclidean)

Tensor Networks Trouble

Higher dimensions increase complexity

- Great in D = 2 (Euclidean)
- Some slow-down in D > 2

Tensor Networks Trouble

Higher dimensions increase complexity

- Great in D = 2 (Euclidean)
- Some slow-down in D > 2
- Some current approaches
 - Graph independent local truncation (GILT)[Hauru et al., 2018]
 - **Higher order tensor renormalization group** (HOTRG and cousins) [Xie et al., 2012]
 - Projected entangled pair states (PEPS)[Verstraete and Cirac, 2004]
 - Tree tensor networks [Shi et al., 2006, Gerster et al., 2014]
 - Triad tensor renormalization group [Kadoh and Nakayama, 2019]
 - Anisotropic tensor renormalization group (ATRG)[Adachi et al., 2020]

ATRG Briefly

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Triad TRG Briefly

Same tensor split into four using SVD

Efficacy in higher dimensions

► Generality

Efficacy in higher dimensions

- ► Generality
- Checkable

- Efficacy in higher dimensions
- Generality
- Checkable
- Physically interesting
 - \implies SU(2) principal chiral model
 - \rightarrow Equivalent O(4) NLSM
 - \rightarrow Effective theory large T QCD? [Susskind, 1979, Pisarski and Wilczek, 1984, Toussaint, 1997, Bernard et al., 2000]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

 \rightarrow Effective theory large T, g SU(2) gauge?

SU(2) principal chiral model

$$S = \frac{\beta}{2} \int d^3 x \operatorname{Tr} \left[\sum_{\nu=1}^3 \partial_\nu U(x)^{\dagger} \partial_\nu U(x) \right]$$
(1)

U(x) are SU(2) matrices

$$S = -\frac{\beta}{2} \sum_{n,\nu} \Re \left\{ \operatorname{Tr} \left[U(n) U(n+\hat{\nu})^{\dagger} \right] \right\}$$
(2)

n are the sites of the lattice

$$Z = \int \left(\prod_{n} dU(n)\right) e^{-S}$$
(3)

Expand the nearest-neighbor weight:

$$e^{-\frac{\beta}{2}\Re \operatorname{Tr}[U(x)U(x+\hat{\nu})]} = \sum_{r=0}^{\infty} F_r(\beta)\chi^r(U(x)U(x+\hat{\nu}))$$

Expand the nearest-neighbor weight:

$$e^{-\frac{\beta}{2}\Re \operatorname{Tr}[U(x)U(x+\hat{\nu})]} = \sum_{r=0}^{\infty} F_r(\beta)\chi^r(U(x)U(x+\hat{\nu}))$$

lntegration over U(x)

Expand the nearest-neighbor weight:

$$e^{-\frac{\beta}{2}\Re \operatorname{Tr}[U(x)U(x+\hat{\nu})]} = \sum_{r=0}^{\infty} F_r(\beta)\chi^r(U(x)U(x+\hat{\nu}))$$

Integration over U(x)
 Clebsch-Gordon coefficients

Expand the nearest-neighbor weight:

$$e^{-\frac{\beta}{2}\Re \operatorname{Tr}[U(x)U(x+\hat{\nu})]} = \sum_{r=0}^{\infty} F_r(\beta)\chi^r(U(x)U(x+\hat{\nu}))$$

Integration over U(x)
 Clebsch-Gordon coefficients

$$T_{(r_1m_1n_1)(r_2m_2n_2)(r_3m_3n_3)(r_4m_4n_4)(r_5m_5n_5)(r_6m_6n_6)} = \sqrt{\prod_{p=1}^6 F_{r_p}(\beta)}$$

$$\times \sum_{R_{12}=|r_{1}-r_{2}|}^{r_{1}+r_{2}} \sum_{R_{12}=|R_{12}-r_{3}|}^{R_{12}+r_{3}} \sum_{R_{56}=|r_{5}-r_{6}|}^{r_{5}+r_{6}} \sum_{M_{12},N_{12}} \sum_{M_{123},N_{123}} \sum_{M_{56},N_{56}} \sum_{N_{56},N_{56}} \sum_{R_{12},N_{12}} \sum_{M_{12},N_{12}} \sum_{M_{12},N_{12}} \sum_{M_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12},N_{12},N_{12}} \sum_{M_{12},N_{12},N_{12},N_{12},N_{12},N_{12},N_{12}} \sum_{M_{12},N_{12}$$

Tensor formulations ATRG

$$T_{(r_1m_1n_1)(r_2m_2n_2)(r_3m_3n_3)(r_4m_4n_4)(r_5m_5n_5)(r_6m_6n_6)} \approx \sum_{\gamma} U_{(r_1m_1n_1)(r_2m_2n_2)(r_3m_3n_3)\gamma} \sigma_{\gamma} V_{(r_4m_4n_4)(r_5m_5n_5)(r_6m_6n_6)\gamma}^*$$

SVD of initial tensorinitial truncation

Tensor formulations Triads

$$T_{ijklmn} = \sum_{a,b,c} A_{ika} B_{amb} C_{bnc} D_{clj}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Tensor formulations Triads

$$T_{ijklmn} = \sum_{a,b,c} A_{ika} B_{amb} C_{bnc} D_{clj}$$

$$\begin{aligned} A_{(r_{y},m_{2},n_{3}),(r_{x},m_{1},n_{3}),(R,M,N)} &= \sqrt{F_{r_{x}}(\beta)F_{r_{y}}(\beta)C_{r_{x}m_{1}r_{y}m_{3}}^{RM}C_{r_{x}n_{1}r_{y}m_{3}}^{RN}} \\ B_{(R,M,N),(r_{z},m_{5},n_{5}),(R',M',N')} &= \frac{1}{\sqrt{d_{R'}}}\sqrt{F_{r_{z}}(\beta)}C_{R,M,r_{z}m_{5}}^{R'M'}C_{R,N,r_{z}n_{5}}^{R'N'} \\ C_{(R',M',N'),(r_{-z},m_{6},n_{6}),(R'',M'',N'')} &= \frac{1}{\sqrt{d_{R'}}}\sqrt{F_{r_{-z}}(\beta)}C_{R'',M'',r_{-z}m_{6}}^{R'M'}C_{R'',N'',r_{-z}n_{6}}^{R'N'} \\ D_{(R'',M'',N''),(r_{-x},m_{2},n_{2}),(r_{-y},m_{4},n_{4})} &= \sqrt{F_{r_{-x}}(\beta)F_{r_{-y}}(\beta)}C_{r_{-x}m_{2}r_{-y}m_{4}}^{R''N''}C_{r_{-x}n_{2}r_{-y}n_{4}}^{R''N''} \end{aligned}$$

_ . .

Observables

The free energy density:

$$F\equiv rac{1}{V}\log(Z)$$

The average action density:

$$\langle s
angle \equiv -rac{\partial}{\partial eta} F$$

Action susceptibility

$$\chi_{s} = V(\langle s^{2} \rangle - \langle s \rangle^{2}) \equiv \frac{\partial^{2}}{\partial \beta^{2}} F$$

 $X \equiv$

[Gu and Wen, 2009]

Results Average action varying r_{max}

Figure: ATRG, D = 40, $V = 1024^3$

Figure: Triad, D = 40, $V = 1024^3$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

X varying r_{\max} and β_c

Figure: Triad,
$$D = 40$$
, $V = 1024^3$
 $r_{max} = 1/2$: $\beta_c = 0.935(5)$
 $r_{max} = 1$: $\beta_c = 0.915(5)$
 $r_{max} = 3/2$: $\beta_c = 0.915(5)$

Figure: β_c from ATRG using X, $V = 1024^3$, $\beta_c = 0.9360(1)$ [López-Contreras et al., 2022]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへぐ

Convergence of X, high-temperature, $\beta = 0.8$

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Convergence of X, low-temperature, $\beta = 1.1$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Figure: Triad low-high temp fit, D = 40, $V = 1024^3$ $r_{max} = 1/2$: $\beta_c = 0.933(1)$ $r_{max} = 1$: $\beta_c = 0.9232(1)$ $r_{max} = 3/2$: $\beta_c = 0.92295(4)$

$$\langle S \rangle / V = A + B | \beta - \beta_c |$$

+ $C | \beta - \beta_c |^{1-lpha}$

- α = -0.247(6)
 [Toldin et al., 2003]
- β_c = 0.9360(1)
 [López-Contreras et al., 2022]

► Fix β_c from X ► Fit for α $r_{max} = 1/2: \alpha = -0.21259(1)$ $r_{max} = 1: \alpha = -0.2151(1)$ $r_{max} = 3/2: \alpha = -0.22676(4)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Conclusions:

Conclusions:

Both ATRG and triads seem useful.

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

► ATRG is slightly more accurate at fixed *D*.

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► ATRG is slightly more accurate at fixed *D*.

Future work:

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► ATRG is slightly more accurate at fixed *D*.

Future work:

• Calculate $\langle \operatorname{Tr}[U] \rangle$

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► ATRG is slightly more accurate at fixed *D*.

Future work:

- Calculate $\langle \operatorname{Tr}[U] \rangle$
- ► Study *SU*(3) PCM

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

► ATRG is slightly more accurate at fixed *D*.

Future work:

- Calculate $\langle \operatorname{Tr}[U] \rangle$
- Study SU(3) PCM
- Investigate link to 4d SU(2) gauge

Conclusions:

- Both ATRG and triads seem useful.
- ATRG & triads both identify a phase transition.
- First determination of β_c using X with continuous global symmetry.
- ► ATRG is slightly more accurate at fixed *D*.

Future work:

- Calculate $\langle \operatorname{Tr}[U] \rangle$
- Study SU(3) PCM
- Investigate link to 4d SU(2) gauge

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

References I

- Adachi, D., Okubo, T., and Todo, S. (2020). Anisotropic tensor renormalization group. *Phys. Rev. B*, 102:054432.
- Bernard, C., DeTar, C., Gottlieb, S., Heller, U. M., Hetrick, J., Rummukainen, K., Sugar, R. L., and Toussaint, D. (2000).
 Critical behavior in N_t = 4 staggered fermion thermodynamics. *Phys. Rev. D*, 61:054503.
- Gerster, M., Silvi, P., Rizzi, M., Fazio, R., Calarco, T., and Montangero, S. (2014).

Unconstrained tree tensor network: An adaptive gauge picture for enhanced performance.

Phys. Rev. B, 90:125154.

References II

Gu, Z.-C. and Wen, X.-G. (2009).

Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order.

Phys. Rev. B, 80:155131.

- Hauru, M., Delcamp, C., and Mizera, S. (2018).
 Renormalization of tensor networks using graph-independent local truncations. *Phys. Rev. B*, 97:045111.
- Kadoh, D. and Nakayama, K. (2019). Renormalization group on a triad network.

 López-Contreras, E., García-Hernández, J. A., Polanco-Euán, E. N., and Bietenholz, W. (2022).
 The 3d o(4) model as an effective approach to the QCD phase diagram. Suplemento de la Revista Mexicana de Física, 3(2).

References III

Pisarski, R. D. and Wilczek, F. (1984). Remarks on the chiral phase transition in chromodynamics. *Phys. Rev. D*, 29:338–341.

- Shi, Y.-Y., Duan, L.-M., and Vidal, G. (2006).
 Classical simulation of quantum many-body systems with a tree tensor network.
 Phys. Rev. A, 74:022320.
- **Susskind**, L. (1979).

Lattice models of quark confinement at high temperature. *Phys. Rev. D*, 20:2610–2618.

Toldin, F. P., Pelissetto, A., and Vicari, E. (2003).
 The scaling equation of state of the 3-d o(4) universality class.
 Journal of High Energy Physics, 2003(07):029.

Toussaint, D. (1997). Scaling functions for o(4) in three dimensions. *Phys. Rev. D*, 55:362–366.

Verstraete, F. and Cirac, J. I. (2004).

Renormalization algorithms for quantum-many body systems in two and higher dimensions.

Xie, Z. Y., Chen, J., Qin, M. P., Zhu, J. W., Yang, L. P., and Xiang, T. (2012). Coarse-graining renormalization by higher-order singular value decomposition. *Phys. Rev. B*, 86:045139.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00