Raza Sabbir Sufian (on behalf of the χ QCD Collaboration)

LAUICE

Essence for calculating hadronic tensor

- Long baseline (L) neutrino oscillation experiments: Hyper-K, DUNE, ... The BIG question: why the universe is the way it is?
- Two major challenges:
- Neutrino beams are not mono-energetic (E_{ν})
- Modeling of unknown nuclear effects (and even at the level of nucleons)

- Hadronic tensor is relevant in all energy regions
- White paper by USQCD Collaboration [2019] / A. Meyer, et al [Annu. Rev. 2022]
- Ability to investigate different channels with different current combinations on lattice
- Cross sections can be factored into a leptonic and hadronic piece:

$$
d \sigma \sim|\mathcal{A}|^{2} \sim L_{\mu \nu} W^{\mu \nu}
$$

$$
W_{\mu \nu}=\frac{1}{2} \sum_{n} \int \prod_{i=1}^{n}\left[\frac{\mathrm{~d}^{3} p_{i}}{(2 \pi)^{3} 2 E p_{i}}\right]\langle N(p)| J_{\mu}(0)|n\rangle\langle n| J_{\nu}(0)|N(p)\rangle(2 \pi)^{3} \delta^{4}\left(p_{n}-p-q\right)
$$

- Hadronic tensor gives access to nucleon form factors and structure functions:
- Form factors:

$$
W_{N}^{\mu \nu}=\left(\begin{array}{cccc}
4 M^{2} G_{E}^{2} & -2 i M Q G_{E} G_{M} P_{y} & 2 i M Q G_{E} G_{M} P_{x} & 0 \\
2 i M Q G_{E} G_{M} P_{y} & Q^{2} G_{M}^{2} & -i Q^{2} G_{M}^{2} P_{z} & 0 \\
-2 i M Q G_{E} G_{M} P_{x} & i Q^{2} G_{M}^{2} P_{z} & Q^{2} G_{M}^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

** coefficients in front of electromagnetic form factors depend on the definition of spinors and choice of frames

- Structure functions:

$$
W_{\mu \nu}=\left(-g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{q^{2}}\right) F_{1}\left(x, Q^{2}\right)+\frac{1}{M^{2}}\left(p_{\mu}-\frac{p \cdot q}{q^{2}} q_{\mu}\right)\left(p_{\nu}-\frac{p \cdot q}{q^{2}} q_{\nu}\right) F_{2}\left(x, Q^{2}\right)
$$

RBC/UKQCD 32If DWF ensemble

- $L \times T=32^{3} \times 64 \quad a=0.063 \mathrm{fm}$
$m_{\pi}=370 \mathrm{MeV}$

Calculation set up similar to Liang, et al (XQCD) [PRD 2020]

No. of configurations 643

Lattice QCD calculation

Requires calculation of 4 pt function

- Nucleon source and sink at rest : $\mathbf{p}_{\text {sink }}=\mathbf{p}_{\text {source }}=(0,0,0)$
- Momentum insertion at currents: $\mathbf{q}_{\min }=(0,0,0), \quad \mathbf{q}_{\max }=(1,1,2)$
- Temporal separation between currents, $\tau=t_{2}-t_{1}=0-16 a$

For electric form factor, calculate $W_{44}^{E}(\mu=\nu=4)$

$$
\begin{aligned}
& \frac{\operatorname{Tr}\left[\Gamma_{e} C_{4}\right]}{\operatorname{Tr}\left[\Gamma_{e} C_{2}\right]} \rightarrow W_{\mu \nu}^{E}=\sum_{n} \rho_{n} e^{-\left(E_{n}-E_{p}\right) \tau} \\
& >\rho_{n} \equiv \sum_{\vec{x}_{2} \vec{x}_{2}} e^{-i \vec{q} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right)}\langle p, s| J_{\mu}^{\dagger}\left(\vec{x}_{2}, 0\right)|n\rangle\langle n| J_{\nu}\left(\vec{x}_{1}, 0\right)|p, s\rangle
\end{aligned}
$$

Fit the correlation function with: $W_{\mu \nu}^{E}=\sum_{n} \rho_{n} e^{-\left(E_{n}-E_{p}\right) \tau}$

$$
W_{\mu \nu}^{E} \approx \rho_{1} e^{-\Delta E_{1}}+\rho_{2} e^{-\Delta E_{2}}+\rho_{3} e^{-\Delta E_{3}}
$$

Fit form motivated by (PDG) but no priors on fit parameters for the values of ΔE_{n}

$$
N(940)\left[1 / 2^{+}\right], N(1440)\left[1 / 2^{+}\right], N(1710)\left(1 / 2^{+}\right)
$$

$\left(q_{x}, q_{y}, q_{z}\right)$	$M_{N}(\mathrm{GeV})$	$M_{1}^{*}(\mathrm{GeV})$	$M_{2}^{*}(\mathrm{GeV})$
$(0,0,1)$	$1.30(0.13)$	$1.92(0.13)$	$1.94(0.12)$
$(0,1,1)$	$1.23(0.14)$	$1.94(0.17)$	$1.96(0.13)$
$(1,1,1)$	$1.30(0.18)$	$2.02(0.25)$	$2.09(0.19)$
$(0,0,2)$	$1.24(0.18)$	$1.90(0.29)$	$1.99(0.23)$
$(0,1,2)$	$1.23(0.31)$	$2.04(0.42)$	$2.07(0.37)$
$(1,1,2)$	$1.04(0.17)$	$1.81(0.26)$	$1.84(0.32)$

Elastic form factor: $\sqrt{\rho_{1}} \equiv K_{1}\left(E_{q}, M_{N}\right) G_{E}\left(Q^{2}\right)$

- Difference is minimized after inclusion of systematic uncertainties

Matrix element for nucleon-to-Roper transition current:
$\left\langle N^{*}\left(p^{\prime}, \lambda^{\prime}\right)\right| J^{\mu}(0)|N(p, \lambda)\rangle=\bar{u}\left(p^{\prime}, \lambda^{\prime}\right)\left[F_{1}^{N N^{*}}\left(Q^{2}\right)\left(\gamma^{\mu}-\gamma \cdot q \frac{q^{\mu}}{q^{2}}\right)+F_{2}^{N N^{*}}\left(Q^{2}\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{\left(M^{*}+M_{N}\right)}\right] u(p, \lambda)$
Nucleon to Roper transition form factor: $\sqrt{\rho_{2}} \equiv K_{2}\left(E^{*}, M^{*}, Q^{2}\right) \times\left[F_{1}^{N N^{*}}\left(Q^{2}\right)-\frac{Q^{2}}{\left(M^{*}+M_{N}\right)^{2}} F_{2}^{N N^{*}}\left(Q^{2}\right)\right]$

- Previous lattice calculation: Lin, Cohen, Edwards, Richards [PRD 2008]
$S_{1 / 2}\left(Q^{2}\right)=\sqrt{(2 \pi \alpha) \frac{Q^{2}+\left(M^{*}-M_{N}\right)^{2}}{M_{N}\left(M^{* 2}-M_{N}^{2}\right)} \frac{M^{*}+M_{N}}{2 \sqrt{2} Q^{2} M^{*}} \sqrt{\left[Q^{2}+\left(M^{*}-M_{N}\right)^{2}\right]\left[Q^{2}+\left(M^{*}+M_{N}\right)^{2}\right]}} G_{E}^{*}\left(Q^{2}\right)$

Causing large uncertainty

Longitudinal helicity amplitude for $\gamma^{*} p \rightarrow N(1440) P_{11}$ transition

Impact of hadronic tensor calculation in lattice QCD

First attempt towards studying resonance structure from hadronic tensor and encouraging result towards comparing with experimental data

Next, nucleon-to-Delta transition (most dominant resonance structure for neutrino oscillation experiment)

Investigating nucleon's DIS structures is in progress
Understanding various lattice systematics is crucial

- 'Continuum' or 'inelastic' region at $W \gtrsim 1.8 \mathrm{GeV}$

- $W^{2}=(p+q)^{2}=M_{N}^{2}-Q^{2}+2 E_{p} \nu-2 \vec{p} \cdot \vec{q}$
- With negative \vec{q}, lattice QCD can provide access to $W \gtrsim 2.5 \mathrm{GeV}$
- Ongoing project

Contractions for down quark

$$
C_{4}=\sum_{x_{f}} e^{-i p \cdot x_{f}} \sum_{x_{2} x_{1}} e^{-i q \cdot\left(x_{2}-x_{1}\right)}\left\langle\chi_{N}\left(x_{f}, t_{f}\right) J_{\mu}\left(\boldsymbol{x}_{2}, t_{2}\right) J_{\nu}\left(x_{1}, t_{1}\right) \bar{\chi}_{N}\left(\mathbf{0}, t_{0}\right)\right\rangle
$$

- plus all possible backward propagating ones

Longitudinal helicity amplitude for $\gamma^{*} p \rightarrow N^{*}\left(1 / 2^{+}\right)$transition

Figure 4: The diagrams corresponding to the Born terms (a,b,c) and resonance (d) contributions to $\gamma^{*} N \rightarrow N \pi$.

$$
\begin{gathered}
W_{\mu \nu}^{M}(\vec{p}, \vec{q}, \nu)=\frac{1}{i} \int_{c-i \infty}^{c+i \infty} d \tau e^{\nu \tau} W_{\mu \nu}^{E}(\vec{p}, \vec{q}, \tau) \\
W_{\mu \nu}^{E}(\vec{p}, \vec{q}, \tau)=\int d \nu W_{\mu \nu}^{M}(\vec{p}, \vec{q}, \nu) e^{-\nu \tau} \\
c\left(\tau_{i}\right)=\int k\left(\tau_{i}, \nu\right) \omega(\nu) d \nu \\
c\left(\tau_{i}\right)=\sum_{j} k\left(\tau_{i}, \nu_{j}\right) \omega\left(\nu_{j}\right) \Delta \nu_{j} \\
\sum_{i} a\left(\tau_{j}, \nu_{0}\right) k\left(\tau_{i}, \nu\right) \sim \delta\left(\nu-\nu_{0}\right) \\
\sum_{i} a\left(\tau_{i}, \nu_{0}\right) c\left(\tau_{i}\right) \sim \int \delta\left(\nu-\nu_{0}\right) \omega(\nu) d \nu=\omega\left(\nu_{0}\right)
\end{gathered}
$$

Khachatryan, et al Nature 2021

