
Nucleon elastic & resonance structures from hadronic tensor  
In lattice QCD : implications for neutrino-nucleon scattering
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 Essence for calculating hadronic tensor

Two major challenges:

Long baseline (   ) neutrino oscillation experiments: Hyper-K, DUNE, …

Neutrino beams are not mono-energetic (      )

Modeling of unknown nuclear effects (and even at the level of nucleons) 
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The BIG question: why the universe is the way it is?
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Inverse Laplace transform – formally correct but not practical

Wμν in Euclidean SpaceHadronic tensor on the lattice
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four-point function with 3-dimensional Fourier transform

Euclidean hadronic tensor defined as a function of time difference between the currents

K.-F. Liu, PRD 62, 074501 (2000)

J. Liang et. al., EPJ Web Conf. 175, 14014 (2018)

K.F. Liu and S. J. Dong, PRL 72, 1790 (1994)

Solving the inverse problem of a Laplace transform to get back to Minkowski space

W̃μν (p, q , τ) = ∫ dνWμν (p, q , ν)e−ντ

J. Liang et. al., PRD (2020), 1906.05312

New long-baseline neutrino experiments are in preparation: T2K, NOvA, 
PINGU, ORCA, Hyper-Kamiokande, DUNE... 

Besides nuclear effects and modeling, input of fundamental neutrino-
nucleon scattering is needed.

Challenge: at different neutrino energies, different contributions dominate the 
cross section.

Hadronic tensor and neutrino-nucleus scattering

 X
J.A. Formaggio and G.P. Zeller, RMP84, 1307 (2012) 

elastic form factors

inclusive hadronic tensor! inclusive hadronic tensor!

Parton distribution functions

Omar Benhar

Neutrino cross sections at atmospheric Neutrino cross sections at atmospheric nn energies energies

Paschos,JYY,PRD65(2002)033002

P. Lipari, hep-ph/0207172

Neutrino cross sections at atmospheric ν energies
With increasing energy E the deep inelastic region dominates the phase space!
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Hadronic tensor is relevant in all energy regions
 Motivation for calculating hadronic tensor from lattice QCD  

Cross sections can be factored into a leptonic and hadronic piece: 
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d� ⇠ |A|2 ⇠ Lµ⌫W
µ⌫
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White paper by USQCD Collaboration [2019] / A. Meyer, et al [Annu. Rev. 2022]  

Ability to investigate different channels with different current combinations on lattice

LQCD formalism for calculating hadronic tensor  [K.F. Liu, PRL 1994]
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can be used to numerically study of the poorly understood higher-twist e↵ects which can be as important as the
leading twist contribution in the low-energy lepton-nucleon scattering.

***********************************
will discuss ..... how near detector tunes, widely adopted in accelerator neutrino experiments to address cross section

uncertainties, a↵ect new physics searches. We present three illustrative scenarios, ...... .....light sterile neutrinos and
missing energy signatures, present the relevant observable spectra before and after tune, and discuss the prospects of
identifying new physics.

Hadronic tensor in LQCD provides a theoretical method for predicting the free nucleon amplitudes directly from
the Standard Model of Particle Physics, with systematically improvable theoretical uncertainties.

The important ongoing experimental e↵ort addressing the questions of neutrino oscillations is bringing out, as a
fortunate byproduct, much information on the structure of hadrons and nuclei. Apart from the intrinsic interest of
the knowledge of axial form factors, structure functions or the strange quark content of the nucleon, a proper and
precise understanding of various processes induced by neutrino interactions is required in the experimental analysis
of background substraction, ⌫-flux determination and particle identification in the neutrino oscillation experiments.

Pheno application: The measurement of electromagnetic transition amplitudes and their dependence on the distance
scales probed. This will provide us with information on the wave function of the excited states assuming we know the
wave function of the ground state nucleon.

cite LFHQCD paper on N ! R transition FF.
The rest of this paper is organized as follows. In Sec. II, we briefly present the theoretical formulation of hadronic

tensor calculation on the Euclidean lattice. In Sec. III, we briefly describe the lattice QCD methodologies for the
construction of the gluonic currents needed for the gluon helicity distribution, nucleon two-point correlators and our
lattice setup for this calculation of gluonic matrix elements. Sec. IV describes the methodology we implement to
calculate the reduced pseudo-ITD from the nucleon three-point correlators. In Sec. V, we extract the polarized gluon
pseudo-ITD and discuss the potential of extracting the gluon helicity PDF from the reduced pseudo-ITD and compare
our results with phenomenological distributions. Sec. VI contains our concluding remarks and outlook.

In infinite volume, the spectral density is a continuousfunction above the two-particle threshold. In finite vol-ume,
where simulations are carried out, it is a collectionof delta functions.

II. PATH INTEGRAL FORMALISM OF HADRONIC TENSOR

The hadronic tensor involved in lepton-nucleon scattering cross section, an inclusive reaction, can be written in the
following form for spin-averaged nucleon states:

Wµ⌫ =
1

2

X

n

Z nY

i=1


d3pi

(2⇡)32Epi

�
hN(p)| Jµ(0) |ni hn| J⌫(0) |N(p)i (2⇡)3�4(pn � p� q), (1)

where p and pn are the 4-momentum of the nucleon and n-th intermediate states, q is the momentum transfer
(q2 = �Q2), and ⌫ is the energy transfer (a more detail on ⌫). Being an inclusive reaction, the hadronic tensor
in the lepton-nucleon scattering includes all intermediate states as shown in Eq. (1). Wµ⌫ cannot be calculated in
perturbation theory. It parametrizes our ignorance of the nucleon when analyzing experimentally measured cross
sections. Relevant for the numerical part of the present calculation, with current conservation and parity symmetry
the hadronic tensor can be written in terms of two independent structure functions (for a more general form of the
hadronic tensor relevant for neutrino-nucleon charged current scattering, see Sec. XA):

Wµ⌫ =

✓
� gµ⌫ +

qµq⌫
q2

◆
F1(x,Q

2) +
1

M2

✓
pµ � p · q
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◆
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2) (2)

where x = q2/(2p · q), the structure functions Fi can depend only on the Lorentz-invariants p2 = M2, q and p · q and
Fi = Fi(⌫, q2) or Fi = Fi(x,Q2).

To calculate the hadronic tensor on the lattice, we start with the nucleon 2-point function as

G2pt
↵� (~p, t,~0, t0) =

X

~x

e�i~p·~x h0|�N
↵ (~x, t)�N

� ( ~x0, t0) |0i , (3)

whew �N (�N ) is the nucleon annihilation(creation) interpolation field. In the limit (t� t0) large,

Tr
�
�eG

2pt
�
(t, t0) = |Z|2 (Ep +m)

Ep
e�Ep(t�t0) (4)
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 Motivation for calculating hadronic tensor from lattice QCD  
Hadronic tensor gives access to nucleon form factors and structure functions:
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The other elements may be calculated using a similar technique, and the result is

W
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BBBBBBBBBB@

4M2
G
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E �2iMQGEGMPy 2iMQGEGMPx 0
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The diagonal elements are real, spin-independent and proportional to the form factors

squared. The o↵-diagonal elements are imaginary and depend on components of the

polarization vector P; in other words, the information regarding the polarization of the

nucleon during the scattering process is contained in these elements. Note that W
µ⌫
N

may be separated into a sum of a symmetric and an antisymmetric tensor, or

W
µ⌫
N = W

µ⌫
N,S +W

µ⌫
N,A, (2.93)

which e↵ectively separates the unpolarized components from the polarized components,

respectively.

The leptonic tensor may be calculated utilizing a similar method, i.e. explic-

itly using spinors with the polarized and unpolarized completeness relations found in

Eqn A.2. However, there is another method which is valid for massless fermions. Recall

**coefficients in front of electromagnetic form factors depend on the definition of spinors and choice of frames

Form factors:

Structure functions:

4



Lattice QCD calculation
RBC/UKQCD 32If DWF ensemble
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fmL⇥ T = 323 ⇥ 64 MeV
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m⇡ = 370
q
ds+ q̄

ds (Fig. 1e) [1, 2]. In our approach, they can be calculated separately which is a great

feature especially for the CS anti-partons that are responsible for the Gottfried sum rule

violation [1, 2, 12].
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Figure 1: Topologically distinct diagrams in the Euclidean-path integral formulation of the

nucleon hadronic tensor. Figs. 1a, 1b and 1c contain all twists and Figs. 1d, 1e and 1f

contain high twists only.

After the Euclidean hadronic tensor is calculated, we need to convert it back to Minkowski

space to obtain physical results. Formally, the inverse Laplace transform fulfills this objec-

tive:

W
M
µ⌫ (~p, ~q, ⌫) =

1

i

Z c+i1

c�i1
d⌧e

⌫⌧
W

E
µ⌫(~p, ~q, ⌧). (11)

However in practice, the Euclidean hadronic tensor is a function of Euclidean time, which is

real, so that the integral in the inverse Laplace transform along the imaginary time axis is

not possible. Numerically, one can try to solve the inverse problem of the Laplace transform

to determine an estimation of WM
µ⌫ [3, 4],

W
E
µ⌫(~p, ~q, ⌧) =

Z
d⌫W

M
µ⌫ (~p, ~q, ⌫)e

�⌫⌧
. (12)

Details about solving the inverse problem are discussed in the next section.
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No. of configurations 643
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a = 0.063

Calculation set up similar to Liang, et al (XQCD) [PRD 2020]

Contributes  
at low energy



Requires calculation of 4pt function

Lattice QCD calculation
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⌧ = t2 � t1

Nucleon source and sink at rest :

Momentum insertion at currents: 

Temporal separation between currents, 
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.
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In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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Fit the correlation function with:

Fit form motivated by (PDG) but no priors on fit parameters for the values of          
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used in Refs. [62] and [63].
The prior distribution used in the MEM has been derived, based on very general axioms that were chosen with image

reconstruction in mind [2]. In our case the focus is quite di↵erent. Besides emphasizing the faithful reconstruction of
the structures actually encoded in the data, we aim at preventing the appearance of artificial peaks, which otherwise
impede the physics interpretation of the obtained results. Hence we wish our prior probability to favor smooth
functions if no other prior information is given1.

Where the data constrains the spectrum and overrides the prior, sharp peaks arise. Everywhere else, our prior
favors a smooth functional form, which becomes parallel to m(!) at large !.

1. Baye’s theorem

ABOUT ERROR BUDGET OF BR: after choosing accordingt o one’s domain knowledge a prior distribution
P [⇢|I(m,↵)] and assigning appropriate uncertainty intervals to their hyperparameters P [↵] and P [m] via mock-data
studies, we can proceed to evaluate the posterior distribution P [⇢|D, I]. If we can access this highly dimensional object
through a Monte-Carlo simulation it provides us not only with the information of what the most probable spectral
function is, given our simulation data, but also contains the complete uncertainty budget, including both statistical
(data related) and systematic errors (hyperparameter related). The maximum of the prior defines the most probable
value for each ⇢l and its spread allows a robust uncertainty quantification beyond a simple Gaussian approxima-
tion (i.e. standard deviation) as it may contain tails that lead to a deviation of the mean from the most probable value.

are axiomatically constructed, incorporating the assumption of positivity of the function ⇢. The assumption mani-
fests itself via the presence of a logarithmic term that forces ⇢ to be positive-semidefinite in the former and positive-
definite in the latter case. It is this logarithm that is responsible for the numerical optimization problem (6) to
become genuinely nonlinear. Note that all three functions are concave, which (as proven for example in [6]) guaran-
tees that if an extremum of P [⇢|D, I] exists, it is unique—i.e., within the N! dimensional solution space spanned by
the discretized parameters ⇢l, in the case that a Bayesian solution exists, we will be able to locate it with standard nu-
merical methods in a straightforward fashion. Bayesian inference forces us to acknowledge two sources of uncertainty:
statistical uncertainty in the data and uncertainty associated to the choice and parameters of the prior probability.

Mention the BNL Roper as they are at a = 0.075 fm and towards smaller lattice spacing the chiral symmetry is
being restored [predicted/mentioned in the chiQCD Roper paper.]

ABOUT UNCERTAINTY IN BR: It is only in the Bayesian continuum limit, which refers to taking simultaneously
the error on the input data to zero while increasing the number of available datapoints toward infinity, that the whole
of the spectral function is fixed by input data alone. Our choice of regulator determines how e�ciently we converge
to this limit and which type of artefacts (e.g. ringing or over-damping) one will encounter on the way. One important
element of uncertainty analysis in Bayesian spectral reconstruction therefore amounts to exploring how reconstructed
spectra improve as the data improves[4]. This is a well- established practice in the community.

The hadronic tensor can hence be expressed as:

Wµ⌫(q,!) = Wµ⌫(q,!) +Wµ⌫(q,!)2p2h +Wµ⌫(q,!)1p1h1⇡ + · · · (17)

accounting for quasielastic (“1p-1h”) multiple nucleon excitations (two-particles two-holes, “2p-2h”), pion production
and higher inelastic channels. According to Equationthe above decomposition holds for the cross section.

We need finite volume ⇡N discussion from Luka’s paper and need to say how the peak is higher than the zero
momentum expectation....so this is not ⇡N

Reasoning of why �(1232) is not reconstructed (in terms of quantum number) from the BR
write the attractive ⇡N will eventually bring the speactrum below
Reconstruction of spectral function using arbitrary smearing function has been recently proposed in [41, 42].

VII. ROPER RESONANCE
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Extraction of form factors

Consistency in extracting masses
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.
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In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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Extraction of form factors
Elastic form factor:
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.
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In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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Difference is minimized after inclusion of systematic uncertainties



Extraction of transition form factors

Nucleon to Roper transition form factor: 

Matrix element for nucleon-to-Roper transition current:
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.
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In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.

P (⌫↵ ! ⌫�) ⇡ sin2 2✓ sin2
✓
�m2L

4E⌫

◆
(20)

WE
44(µ = ⌫ = 4) (21)

psink = psource = (0, 0, 0) (22)

qmax = (1, 1, 2) (23)

WE
µ⌫ ⇡ ⇢1e

��E1 + ⇢2e
��E2 + ⇢3e

��E3 (24)

N(940)[1/2+], N(1440)[1/2+], N(1710)[1/2+] (25)

hN⇤(p0,�0)| Jµ(0) |N(p,�)i = ū(p0,�0)
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In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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Longitudinal helicity amplitude for nucleon-to-Roper transition

11[In preparation]
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(qx, qy, qz) MN (GeV) M⇤
1 (GeV) M⇤

2 (GeV)

(0, 0, 1) 1.30(0.13) 1.92(0.13) 1.94(0.12)

(0, 1, 1) 1.23(0.14) 1.94(0.17) 1.96(0.13)

(1, 1, 1) 1.30(0.18) 2.02(0.25) 2.09(0.19)

(0, 0, 2) 1.24(0.18) 1.90(0.29) 1.99(0.23)

(0, 1, 2) 1.23(0.31) 2.04(0.42) 2.07(0.37)

(1, 1, 2) 1.04(0.17) 1.81(0.26) 1.84(0.32)

TABLE I. The fitted parameters and the goodness of the fits for the matrix elements fMe↵(t) shown in Fig. ??. For a
particular flow time and nucleon momentum, we first fit the matrix elements at z = 2a; the information regarding the fit
parameter �E from this fit is used to set the prior for �E in a simultaneous correlated fit for the matrix elements of all the
non-zero separations.

P (⌫↵ ! ⌫�) ⇡ sin2 2✓ sin2
✓
�m2L

4E⌫

◆
(20)

WE
44(µ = ⌫ = 4) (21)

psink = psource = (0, 0, 0) (22)

qmax = (1, 1, 2) (23)

WE
µ⌫ ⇡ ⇢1e

��E1 + ⇢2e
��E2 + ⇢3e

��E3 (24)

N(940)[1/2+], N(1440)[1/2+], N(1710)[1/2+] (25)

hN⇤(p0,�0)| Jµ(0) |N(p,�)i = ū(p0,�0)
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W 2 = (p+ q)2 = M2
N �Q2 + 2Ep⌫ � 2~p · ~q (31)

In the spectrum of nucleon and its nucleon-like higher states, the Roper resonance [43] N(1440) 1/2+ lies in between
the ground-state nucleon N(940) 1/2+ and the negative-parity state N(1535)1/2� with the Roper resonance and the
negative-parity state roughly having the same width. The Roper decays dominantly to N⇡ with the most prominent
channel n⇡+. The Roper also couples to the two-pion channel, N(1440) ! p⇡+⇡�. In the above n, p label neutron
and proton.
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Impact of hadronic tensor calculation in lattice QCD

Thank you!

First attempt towards studying resonance structure from hadronic tensor and 
encouraging result towards comparing with experimental data

Next, nucleon-to-Delta transition (most dominant resonance structure for neutrino 
oscillation experiment)

Understanding various lattice systematics is crucial

Investigating nucleon’s DIS structures is in progress

1.1 Motivation

Figure 1.1: Schematic overview of the nuclear response to a electroweak probe as a
function of the energy transfer ω. Taken from Ref. [Pra09].

its structure functions and charge radius, as the distribution of its quark and gluon
constituents, and its excitation spectrum has been gathered. Neutrinos provide a
unique opportunity to gain even more information on the structure of the nucleon and
baryonic resonances since they probe not only the vector but also the axial structure.
Current and future experiments address relevant problems like the extraction of the
nucleon and N − ∆ axial form factors. NC neutrino-nucleus interactions are also
relevant to answer a fundamental question of hadronic structure, namely, the strange-
quark contribution to the nucleon spin.

Fig. 1.1 shows schematically what processes contribute to the neutrino-nucleus re-
action in the few-GeV region. There, the nuclear response is plotted as a function of
the energy ω that is transferred from the neutrino to the system. At very small en-
ergy transfers of only a few MeV, one scatters into discrete nuclear states and excites
so-called giant resonances. We focus on the energy region of the quasielastic (QE),
∆ and N∗ peaks with energy transfers of few hundred MeV up to about a GeV. The
QE peak is caused by processes like !N → !′N′ where one has only nucleons, both in
the initial and final state. With increasing ω, one can excite the ∆ resonance (second
peak) or even higher lying resonances (third peak) via !N → !′R. At even higher ω,
one reaches the deep-inelastic scattering (DIS) region where one starts to probe quark
degrees of freedom.
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Hadronic tensor at large momentum transfers180 The Structure of Hadrons
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Fig. 8.6 The ep -> eX cross section as a function of the missing mass W. Data are from
the Stanford Linear Accelerator. The elastic peak at W = M has been reduced by a factor
of 8.5.

The problem now facing us is illustrated by recalling (8.11), (8.12), and Fig. 8.2.
The switch from a muon to a proton target was made by replacing the lepton
current)" (- uy"u) by a proton current J" (- uf"u), and the most general form
of f" was constructed. This is inadequate to describe the inelastic events of Fig.
8.5. Although everything above the dashed line in Fig. 8.5 remains unchanged (a
fact which we shall exploit), the final sLate below it is not a single fermion
described by a Dirac "u" entry in the matrix element or Current. Therefore, J"
must have a more complex structure than (8.12). Instead, the expression for the
cross section [see (6.18)]

(8.22)

is directly generalized to

do - L;"W"" , (8.23)
where L;" represents the lepton tensor of (6.20), since everything in the leptonic
part of the diagram above the photon propagator in Fig. 8.5 is left unchanged.
The hadronic tensor W"" serves to parametrize our total ignorance of the form of
the current at the other end of the propagator. The most general form of the
tensor W"" must now be constructed out of g"" and the independent momenta p
and q (pi = P + q). y" is not included, as we are parametrizing the cross section
which is already summed and averaged over spins. We write

W2 W4 Jt5
W"" = - W:g"" + -p"p" + -q"q" + -(p"q" + q"p"). (8.24)

I M2 M2 M 2
We have omitted antisymmetric contributions to W"", since their contribution to
the cross section vanishes after insertion into (8.23) because the tensor L;" is
symmetric. Note the omission of W3 in our notation; this spot is reserved for a
parity-violating structure function when a neutrino beam is substituted for the
electron beam, so that the virtual photon probe is replaced by a weak boson; see
Perl (1974), Close (1979), or Llewellyn Smith (1972).

‘Continuum’ or ‘inelastic’ region at <latexit sha1_base64="vFPSsJse+cizRRf2d6BynNNbBUY=">AAACAnicbVBNS8NAEN34WetX1JN4WSyCBwmJFO2x6EGPFewHNKFsttN26W4SdjdCCcWLf8WLB0W8+iu8+W/ctjlo64OBx3szzMwLE86Udt1va2l5ZXVtvbBR3Nza3tm19/YbKk4lhTqNeSxbIVHAWQR1zTSHViKBiJBDMxxeT/zmA0jF4uhejxIIBOlHrMco0Ubq2IdNv6+NLbDnVLB/hjNfCnwDjXHHLrmOOwVeJF5OSihHrWN/+d2YpgIiTTlRqu25iQ4yIjWjHMZFP1WQEDokfWgbGhEBKsimL4zxiVG6uBdLU5HGU/X3REaEUiMRmk5B9EDNexPxP6+d6l4lyFiUpBoiOlvUSznWMZ7kgbtMAtV8ZAihkplbMR0QSag2qRVNCN78y4ukce54F075rlyqXuVxFNAROkanyEOXqIpuUQ3VEUWP6Bm9ojfryXqx3q2PWeuSlc8coD+wPn8A052Vyw==</latexit>

W & 1.8GeV

With negative      , lattice QCD can provide access to                     
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Large Momentum Transfer Case

13

243 × 128, as ∼ 0.12 fm, ξ ∼ 3.5, mπ ∼ 380 MeV, 2π
L

∼ 0.42 GeV (0,3,3) (0,-6,-6) 2.15 2.15 3.57 [2.96, 3.28] [4, 2] [0.16, 0.07]

p q Ep En=0 |q | ν Q2 xandμ = ν = 1 p1 = q1 = 0 W11(ν) = F1(x, Q2)

J. Liang et. al., Phys.Rev.D 101 (2020) 11, 114503

Fine lattice spacings!
Better solving the inverse problem!

BR ME

<latexit sha1_base64="iadNMdkEWc2zxY/ShrBsd5IqB9k="></latexit>

W 2 = (p+ q)2 = M2
N �Q2 + 2Ep⌫ � 2~p · ~q

Q2 = 11.7 GeV2 

W = 2.5 GeV
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J. Liang et al. 
(Liang:2019frk)
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 Contractions for down quarkContractions (d quark)
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 Contractions for up quark
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AN
3/2 = ±

√

(2J − 1)(2J + 3)

16
B̂l±, (24)

SN
1/2 = −

2J + 1

2
√
2

Ŝl±, (25)

where

Âl±(B̂l±, Ŝl±) ≡ aImAR
l±(B

R
l±, S

R
l±)(W = M), (26)

a ≡
1

CI

[

(2J + 1)π
|q|r
Kr

M

m

Γ

βπN

]1/2

, (27)

Γ, M , J and I are, respectively, the total width, mass, spin and isospin of the resonance, J = l± 1
2 for l±

amplitudes, βπN is the branching ratio of the resonance to the πN channel, Kr and |qr| are the photon
equivalent energy and the pion 3-momentum at the resonance position in the c.m.s. of γ∗N → Nπ, and
CI are the isospin Clebsch-Gordon coefficients in the decay N∗ → πN :

C1/2 = ∓
√

1
3 , C3/2 =

√

2
3 for γ∗p → π0p (γ∗n → π0n), (28)

C1/2 = −
√

2
3 , C3/2 = ∓

√

1
3 for γ∗p → π+n (γ∗n → π−p), (29)

where we have taken into account that the pion isomultiplet is π = (π−, π0,−π+).
At the photon point, the helicity amplitudes (23,24) are related to the N∗ → Nγ decay width by:

Γ(N∗ → Nγ) =
2K2

r

π(2J + 1)

m

M

(

|AN
1/2|2 + |AN

3/2|2
)

. (30)

For the transverse amplitudes AN
1/2 and AN

3/2, the relations (23,24) were introduced by Walker [103]; for
the longitudinal amplitude, the relation (25) coincides with that from Refs. [104, 105].

According to the definitions (23-25), the γ∗N → N∗ helicity amplitudes extracted from the data on
the γ∗N → Nπ reaction contain the sign of the πNN∗ vertex; it defines the relative sign of the diagrams
that correspond to the resonance (Fig. 4d) and Born terms (Figs. 4a,b,c) contributions to γ∗N → Nπ.
The situation is analogous in other reactions. For example, the γ∗N → N∗ helicity amplitudes extracted
from the data on the γ∗N → Nη reaction contain the sign of the ηNN∗ vertex.

π

*γ π

*γ π

*γ π

*N
NN

NN

N
NN

(c) (d)(a) (b)

N NN

π∗γ

(b)

Figure 4: The diagrams corresponding to the Born terms (a,b,c) and resonance (d) contri-
butions to γ∗N → Nπ.

In the calculations of the γ∗N → N∗ helicity amplitudes in theoretical approaches, the commonly
used definition relates these amplitudes to the matrix elements of the electromagnetic current:

ÃN
1

2

=

√

2πα

Kr

1

e
< N∗, S∗

z =
1

2
|ε(+)

µ Jµ
em|N, Sz = −

1

2
>, (31)
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q
ds+ q̄

ds (Fig. 1e) [1, 2]. In our approach, they can be calculated separately which is a great

feature especially for the CS anti-partons that are responsible for the Gottfried sum rule

violation [1, 2, 12].
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Figure 1: Topologically distinct diagrams in the Euclidean-path integral formulation of the

nucleon hadronic tensor. Figs. 1a, 1b and 1c contain all twists and Figs. 1d, 1e and 1f
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III. SOLVING THE INVERSE PROBLEM

A general form of the inverse problem reads

c(⌧i) =

Z
k(⌧i, ⌫)!(⌫)d⌫, (13)

where c(⌧i) denotes discrete lattice data with finite number of points (usually O(10)), k(⌧i, ⌫)

is the integral kernel that is a function of both ⌧i and ⌫, and !(⌫) is the target function

which is usually continuous with respect to ⌫. In principle, determining every detail of a

totally unknown continuous function with finite input information is not possible; videlicet,

more than one solution can be found to match the input data. Numerically, we can discretize

!(⌫):

c(⌧i) =
X

j

k(⌧i, ⌫j)!(⌫j)�⌫j; (14)

however, the number of ⌫j one needs to reproduce the structures of !(⌫) is, in many cases,

much larger than the number of input points, so the problem is still ill-posed. Nevertheless,

many algorithms are available to extract the most probable solution at a certain resolution.

Actually, this is a common problem, not only in physics, and the algorithms have been kept

updated and improved.

In this section, we will briefly introduce three methods of solving the inverse problem,

discuss their features and use some mock data to test their resolutions and robustness.

A. Backus-Gilbert method

The Backus-Gilbert (BG) method [18–20] utilizes the fact that the kernel functions can

be linearly combined to approximate the Delta function, if they span a complete function

basis
X

i

a(⌧j, ⌫0)k(⌧i, ⌫) ⇠ �(⌫ � ⌫0), (15)

where a(⌧i, ⌫0) are the coefficients for the i’th kernel function at a specific point ⌫0, which

can be calculated by assuming a criterion of “deltaness” and solving the linear equations.

Having a(⌧i, ⌫0), the value of the target function at ⌫0 is

X

i

a(⌧i, ⌫0)c(⌧i) ⇠
Z

�(⌫ � ⌫0)!(⌫)d⌫ = !(⌫0). (16)
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The precision to which oscillation parameters can be determined 
experimentally therefore depends on our ability to extract Φα(E, L) 
from Nα(Erec, L), see Fig. 1. This is largely determined by the accuracy of 
the theoretical models used to calculate σi(E) and f E E( , )σ reci

. The mod-
els currently used have many free parameters that are poorly con-
strained and are ‘tuned’ by each neutrino experiment. Current 
oscillation experiments report substantial systematic uncertainties 
owing to these interaction models7–10 and simulations show that energy 
reconstruction errors can lead to large biases in extracting δCP at DUNE11. 
There is a robust theoretical effort to improve these models12–14.

Because there are no mono-energetic high-energy neutrino beams, 
these models cannot be tested for individual neutrino energies. Instead, 
experiments tune models of σi(E) and f E E( , )σ reci

 to reproduce their 
near-detector data, where the unoscillated flux Φ(E, 0) is calculated 
from hadronic reaction rates15–17.

Although highly informative, such integrated constraints are insuf-
ficient to ensure that the models are correct for each value of E. Thus, 
for precision measurements using a broad-energy neutrino beam, the 
degree to which the near-detector data alone can constrain models is 
unclear, since the neutrino flux can be very different at the far detector, 
owing to oscillations.

Here we report a measurement of f E E( , )σ reci
 for mono-energetic elec-

tron–nucleus scattering, and use it to test interaction models widely 
used by neutrino oscillation analyses. Both types of leptons, e and v, 
interact similarly with nuclei, via a vector current; whereas neutrinos 
have an additional axial-vector current. The nuclear ground state is the 
same in both cases and many of the nuclear reaction effects are similar 
(see Methods for details). Therefore, any model of neutrino interactions 
(vector + axial-vector) should also be able to reproduce electron (vector) 
interactions. The data presented here can therefore test neutrino–
nucleus interaction models to be used in analysis of neutrino oscillation 
measurements. Although previous work has compared these interaction 
models with inclusive electron scattering, (e, e′),18,19 here we compare 
semi-exclusive electron scattering data (data with one or more detected 
hadrons) with these interaction models.

We examined events with one detected electron, one proton and zero 
pions (1p0π), which were expected to be dominated by well understood 
QE scattering (that is, by scattering of the lepton from a single moving 
nucleon in the nucleus). Even these simpler events reconstructed to the 

correct energy less than 50% of the time, and the models used strongly 
overestimated the amount of mis-reconstructed events that are due to 
non-QE processes at the higher incident energies. This highlights a 
major shortcoming in our current understanding of neutrino interac-
tions which, if not corrected, could limit the exploitation of the full 
potential of next-generation, high-precision oscillation experiments, 
namely DUNE and Hyper-Kamiokande.

Electron data selection
The experiment measured electron scattering from 4He, 12C and 56Fe 
nuclei at beam energies of 1.159, 2.257 and 4.453 GeV, and detected 
the scattered electron and knocked-out particles over a wide range of 
angles and momenta in the CEBAF Large Acceptance Spectrometer 
(CLAS)20 at the Thomas Jefferson National Accelerator Facility ( Jeffer-
son Lab). We detected electrons with energy Ee ≥ 0.4, 0.55 and 1.1 GeV for 
Ebeam = 1.159, 2.257 and 4.453 GeV, respectively, and angles 15° ≤ θe ≤ 45°; 
hadrons with momenta above 150 to 300 MeV/c and 10–20° ≤ θh ≤ 140°; 
and photons with energy Eγ ≥ 300 MeV. These hadron detection thresh-
olds are similar to those of neutrino detectors21; however, neutrino 
detectors have full angular coverage and lower lepton energy thresh-
olds. See Methods for details concerning all aspects of this section.

The incident energies used here span the range of typical 
accelerator-based neutrino beams (Extended Data Fig. 1). The carbon 
data are relevant for scintillator-based experiments such as MINERνA 
and NOνA22 and similar to the oxygen in water-based Cherenkov detec-
tors such as Super-Kamiokande7,8 and Hyper-Kamiokande60. The iron is 
similar to the argon in the liquid argon time projection chambers of Micro-
Boone23, the Fermilab short-baseline oscillation program24 and DUNE25.

We selected events with one electron and zero pions or photons 
from π0 decay above threshold. We did this to maximize the contribu-
tion of well understood events where the incident lepton scattered 
quasi-elastically from a single nucleon in the nucleus, as is done in 
many neutrino oscillation analyses1,26.

Electrons, unlike neutrinos, radiate bremsstrahlung photons in the 
electric field of the nucleus. We vetoed events where the photons from 
scattered-electron radiation were detected in CLAS.

We subtracted from our data contributions from events where 
unwanted pions or photons were produced but not detected owing 
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Fig. 1 | Neutrino oscillations and energy spectra measurements. Neutrino 
energy spectra reconstruction depends on our ability to model the interaction 
of neutrinos with nuclei and the propagation of particles through the nucleus. 
This flow chart shows the process, starting with an oscillated far-detector 

incident-energy spectrum (green), differentiating the physical neutrino 
interactions (green arrows) from the experimental analysis (blue arrows), and 
ending up with an inferred incident-energy spectrum that provides an estimate 
for the real spectrum.Khachatryan, et al Nature 2021


