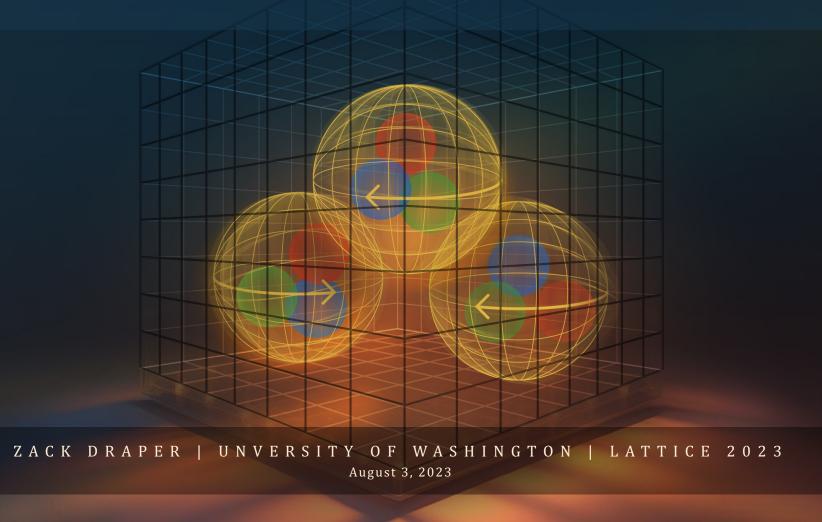
Three Relativistic Spinning Particles in a Box



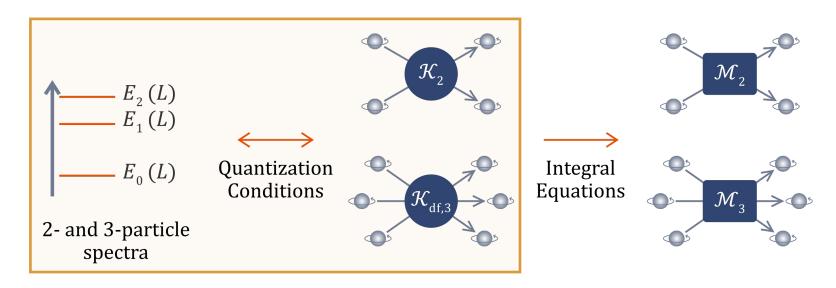
Three Relativistic Spinning Particles in a Box

Based on work with Max Hansen, Fernando Romero-López, and Steve Sharpe arXiv:2303.10219v2 (JHEP)

Introduction

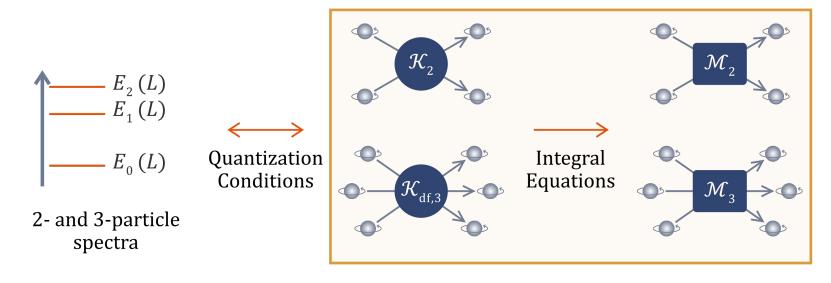
- Why study three relativistic fermions in finite volume?
- Lattice QCD calculations of two-baryon scattering amplitudes are rapidly progressing
 - Includes determination of masses and other properties of light nuclei and hypernuclei with heavy quark masses
- Less progress for the three-nucleon interaction
 - Important for nuclei near neutron driplines
 - For nuclear saturation
 - For determining neutron star equation of state
- Step on the path to studying the Roper: $N(1440) \rightarrow \pi N + \pi \pi N$
- A formalism relating finite-volume energies to infinite-volume quantities is needed

Introduction to Three-Particle Formalisms



- Quantization condition relates finite-volume 2- and 3-particle spectra to 2- and 3-particle Kmatrices
 - $\mathcal{K}_{df,3}$ is a real, infinite-volume K matrix, smooth apart from 3-particle resonance poles
 - Parametrize \mathcal{K}_2 and $\mathcal{K}_{df,3}$ in effective-range-like expansion about threshold
 - Determine parameters by fitting spectrum

Introduction to Three-Particle Formalisms



- Integral equations relate two- and three-particle K-matrices to the two- and three-particle scattering amplitudes, \mathcal{M}_2 and \mathcal{M}_3 .
- Formalism exists for arbitrary choice of spinless particles

Introduction to Three-Particle Formalisms

- Three approaches used in derivation:
 - Relativistic Field Theory (RFT) [M.T. Hansen & S.R. Sharpe 1408.5933]
 - Non-Relativistic Effective Field Theory (NREFT)

[H.W. Hammer, J.Y. Pang & A. Rusetsky, 1706.07700 & 1707.02176]

- Finite-volume Unitarity (FVU) [M. Mai & M. Döring, 1709.08222]
- Formally equivalent up to technical details
- We use the RFT approach

Overview of RFT Approach

QC3 always has same form, though matrix structure varies

$$\det\left[F_3^{-1}(E, \mathbf{P}, L) + \mathcal{K}_{\mathrm{df},3}(E^*)\right] = 0$$

• F_3 contains three quantities we will revisit

$$F_3 = \frac{F}{3} - F \frac{1}{\mathcal{K}_{2,L}^{-1} + F + G} F$$

With the range of validity

$$\sqrt{4m_N^2 - m_\pi^2} + m_N < E_3^* < 3m_N + m_\pi$$

- QC3 derived by determining (power-law) volume dependence of 3-particle correlation function
 - Calculations to all orders in an expansion using a generic relativistic EFT
 - Volume dependence arises (in part) from 3-particle cuts: *F* and *G*

Extension to Spin-1/2 Particles

- How does QC3 change when we incorporate spin?
 - Additional matrix indices for spin
 - Antisymmetrization of states as a result of Fermi statistics
 - Wigner rotations resulting from boosts imply total spin is not conserved
 - In the non-relativistic limit, total spin is conserved

Defining Spin States

- Now we define our spin-1/2 states
 - Start with stationary spin state in center of mass frame, then boost to moving frame

•
$$|\mathbf{p}, s m_s\rangle = U(L(\beta_p))|\mathbf{0}, s m_s\rangle \equiv |\mathbf{p}, m_s(\mathbf{p})\rangle$$
 for spin-1/2

With our boost defined as follows

•
$$L(\beta_p) = R(\theta_p, \hat{n}_p) \cdot L(\beta_p \hat{z}) \cdot R(\theta_p, \hat{n}_p)^{-1}$$

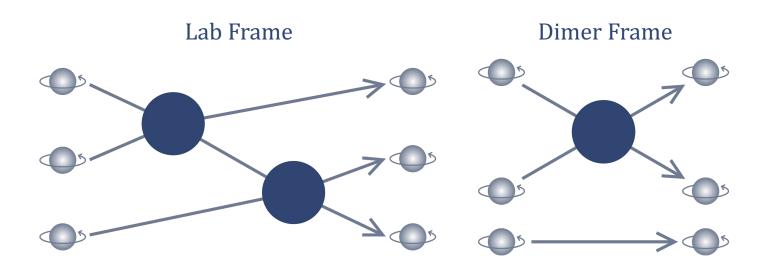
This object rotates as a 2-component spinor

•
$$U(R)|\mathbf{p}, s m_s\rangle = |R\mathbf{p}, s m_s'\rangle \mathcal{D}_{m_s', m_s}^{(s)}(R)$$

- In the lab frame, we have
 - $|\mathbf{k}, m_{S}(\mathbf{k})\rangle \otimes |\mathbf{a}, m_{S}(\mathbf{a})\rangle \otimes |\mathbf{b}, m_{S}(\mathbf{b})\rangle$

Picking a Frame

- What basis should we use?
- Two natural bases in the problem
 - A natural choice for defining G the lab frame in which total spin is conserved
 - A natural choice for defining \mathcal{K}_2 the (two-particle C.O.M.) dimer frame
- Transforming between the two requires Wigner matrices



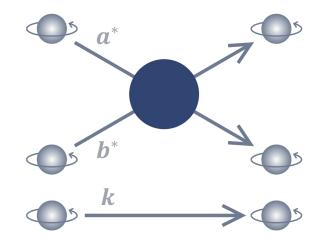
The Dimer Frame

- To combine spins with orbital angular momentum of interacting pair, boost to find a^* and b^*
 - Start with stationary spin state in center of mass frame, boost to moving frame

•
$$|\boldsymbol{a}^*, m_S(\boldsymbol{a}^*)\rangle = U(L(\boldsymbol{\beta}_{\boldsymbol{a}^*}))|\boldsymbol{0}, m_S\rangle$$
 and $|\boldsymbol{b}^*, m_S(\boldsymbol{b}^*)\rangle = U(L(\boldsymbol{\beta}_{\boldsymbol{b}^*}))|\boldsymbol{0}, m_S\rangle$

- In the dimer-axis frame, we have
 - $|\mathbf{k}, m_{S}(\mathbf{k})\rangle \otimes |\mathbf{a}^{*}, m_{S}(\mathbf{a}^{*})\rangle \otimes |\mathbf{b}^{*}, m_{S}(\mathbf{b}^{*})\rangle$
 - This is a natural basis for \mathcal{K}_2 and for derivation of QC3
- Orbital and spin axes aligned in dimer-frame, not lab-frame
- Wigner rotation relates spin components

•
$$|\boldsymbol{a}^*, m_S(\boldsymbol{a})\rangle = |\boldsymbol{a}^*, m_S'(\boldsymbol{a}^*)\rangle \mathcal{D}(R_a)_{m_S', m_S}$$



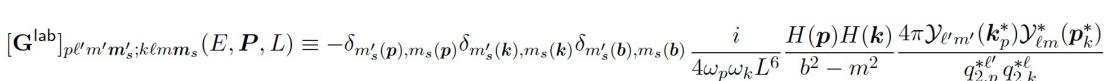
Incorporating Spin in *G*

$$\det[F_3^{-1}(E, \mathbf{P}, L) + \mathcal{K}_{df,3}(E^*)] = 0 \quad \text{where} \quad F_3 = \frac{F}{3} - F \frac{1}{\mathcal{K}_{2,L}^{-1} + F + G} F$$

- G arises for 3-particle cuts in which the spectator is switched
- Spin components are conserved in the lab frame

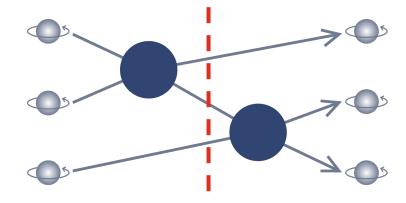
$$\Delta_{L,\alpha\beta}(b) = i \frac{(\not b + m)_{\alpha\beta}}{b^2 - m^2 + i\epsilon} + R_{L,\alpha\beta}(b)$$

In the lab frame, we have



• To transform to the dimer-axis frame, Wigner matrices are needed for each pair of spins

$$\mathbf{G}_{p\ell'm'm_s'^*;k\ell mm_s^*} = \mathcal{D}_{m_s'^*m_s''}^{(p,k)\dagger} \; \mathbf{G}_{p\ell'm'm_s'';k\ell mm_s''}^{\mathsf{lab}} \; \mathcal{D}_{m_s'''m_s^*}^{(k,p)}$$



Incorporating Spin in F

$$\det[F_3^{-1}(E, \mathbf{P}, L) + \mathcal{K}_{df,3}(E^*)] = 0$$
 where $F_3 = F_3$

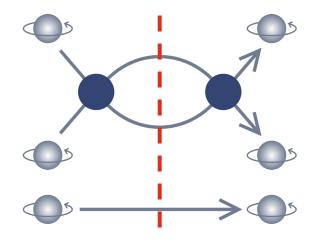
• *F* arises for 3-particle cuts in which the spectator is fixed

$$[\mathbf{F}^{\mathsf{lab}}]_{k'\ell'm'm'_{s};k\ell mm_{s}}(E,\boldsymbol{P},L) \equiv \delta_{m'_{s}m_{s}}\delta_{k'k}\frac{iH(\boldsymbol{k})}{2\omega_{k}L^{3}}\frac{1}{2}\left[\frac{1}{L^{3}}\sum_{\boldsymbol{a}}-\text{p.v.}\int_{\boldsymbol{a}}\right]\frac{4\pi\mathcal{Y}_{\ell'm'}(\boldsymbol{a}_{k}^{*})\mathcal{Y}_{\ell m}^{*}(\boldsymbol{a}_{k}^{*})}{2\omega_{a}(b^{2}-m^{2})}\frac{1}{(q_{2,k}^{*})^{\ell+\ell'}}$$

Where the Kronecker delta enforces spin conservation in the lab frame

$$\delta_{m_s'm_s} = \delta_{m_s'(k)m_s(k)}\delta_{m_s'(a)m_s(a)}\delta_{m_s'(b)m_s(b)}$$

- Wigner D-matrices cancel when transforming to dimer-axis frame $\mathbf{F} = \mathbf{F}^{\mathsf{lab}}$



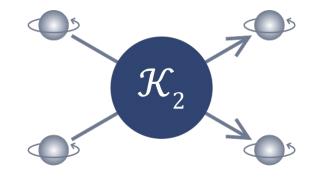
Incorporating Spin in \mathcal{K}_2

$$\det[F_3^{-1}(E, \mathbf{P}, L) + \mathcal{K}_{df,3}(E^*)] = 0$$
 where $F_3 = \frac{F}{3} - F_{\underbrace{\mathcal{K}_{2,L}^{-1} + F + G}}^{1} F$

- \mathcal{K}_2 incorporates 2-particle interactions
 - Natural to express in the dimer-axis
- Spin components are conserved in the lab frame

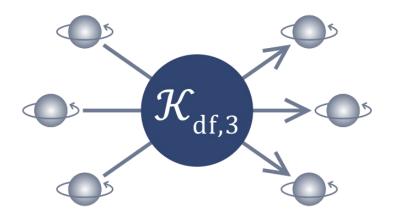
$$[\mathbf{K}_2]_{k'\ell'm'm_s'^*;k\ell mm_s^*}(E,\boldsymbol{P}) = i\delta_{k'k}2\omega_k L^3 \mathcal{K}_2^{(\ell'm'm_s'^*,\ell mm_s^*)}(E_{2,k}^*)$$

$$\mathcal{K}_{2}^{(\ell'm'm'_{s}^{*},\ell mm_{s}^{*})}(E_{2,k}^{*}) = \delta_{m'_{s}(k)m_{s}(k)} \ \mathcal{K}_{2}^{[\ell'm'm'_{s}(a'^{*})m'_{s}(b'^{*})],[\ell mm_{s}(a^{*})m_{s}(b^{*})]}(E_{2,k}^{*})$$



Threshold Expansion for $\mathcal{K}_{ ext{df,3}}$

- Have collected all the quantities entering $F_3 = \frac{F}{3} F \frac{1}{\mathcal{K}_{2,L}^{-1} + F + G} F$
- Final term appearing in quantization condition, $\det[F_3^{-1}(E, \mathbf{P}, L) + \mathcal{K}_{df,3}(E^*)] = 0$, is $\mathcal{K}_{df,3}$
- To implement quantization condition, need a parameterization of $\mathcal{K}_{df,3}$
 - Analogous to effective range expansion for \mathcal{K}_2



Threshold Expansion for $\mathcal{K}_{df,3}$

- Start with nucleon field operator ${\mathcal N}$
- Write down all operators of form $(\mathcal{N}\overline{\mathcal{N}})^3$ with any gamma matrix structure and derivatives
 - Lorentz and parity invariant, requiring even numbers of derivatives
- Expand each in powers of 3-momentum using non-relativistic Dirac spinor expansion
- Results in two independent terms up to order p^2

$$\mathcal{K}_{A} = \overline{\mathcal{A}} \left[(\chi_{k'}^{\dagger} \boldsymbol{\sigma} \cdot \boldsymbol{k'} \boldsymbol{\sigma} \cdot \boldsymbol{k} \chi_{k}) (\chi_{a'}^{\dagger} \chi_{a}) (\chi_{b'}^{\dagger} \chi_{b}) \right] \qquad \qquad \mathcal{K}_{B} = \overline{\mathcal{A}} \left[\boldsymbol{k'} \cdot \boldsymbol{k} (\chi_{k'}^{\dagger} \chi_{k}) (\chi_{a'}^{\dagger} \chi_{a}) (\chi_{b'}^{\dagger} \chi_{b}) \right]$$

Conclusion and Future Steps

- Including spin in the three-particle formalism requires
 - Additional matrix structures
 - Antisymmetrization and changed signs
 - Momentum-dependent Wigner rotations
- The first step toward implementation of QC3 has begun for toy model interactions
- In future the formalism should be generalized to incorporate
 - 3 nucleons at arbitrary isospin
 - $N\pi\pi$ at maximal isospin
 - $N\pi\pi + N\pi$ to understand the Roper

