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Introduction

Why study three relativistic fermions in finite volume?
Lattice QCD calculations of two-baryon scattering amplitudes are rapidly progressing

Includes determination of masses and other properties of light nuclei and hypernuclei
with heavy quark masses

Less progress for the three-nucleon interaction
Important for nuclei near neutron driplines
For nuclear saturation
For determining neutron star equation of state
Step on the path to studying the Roper: N(1440) —» N + nnN

A formalism relating finite-volume energies to infinite-volume quantities is needed



Introduction to Three-Particle Formalisms
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Quantization condition relates finite-volume 2- and 3-particle spectra to 2- and 3-particle K-
matrices
Kgg 3 is a real, infinite-volume K matrix, smooth apart from 3-particle resonance poles

Parametrize K, and K¢ 3 in effective-range-like expansion about threshold

Determine parameters by fitting spectrum
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Integral equations relate two- and three-particle K-matrices to the two- and three-particle
scattering amplitudes, M, and M3.

Formalism exists for arbitrary choice of spinless particles




Introduction to Three-Particle Formalisms

Three approaches used in derivation:
Relativistic Field Theory (RFT)
Non-Relativistic Effective Field Theory (NREFT)

Finite-volume Unitarity (FVU)
Formally equivalent up to technical details

We use the RFT approach




Overview of RFT Approach

QC3 always has same form, though matrix structure varies
det|F;1(E,P, L) + Kgs3(E))| =0

F; contains three quantities we will revisit

Fy=oF ! F
3 I+ FHG

With the range of validity

JAm% —m2 + my < E} < 3my + my,
QC3 derived by determining (power-law) volume dependence of 3-particle correlation function
Calculations to all orders in an expansion using a generic relativistic EFT

Volume dependence arises (in part) from 3-particle cuts: F and G



Extension to Spin-1/2 Particles

How does QC3 change when we incorporate spin?
Additional matrix indices for spin
Antisymmetrization of states as a result of Fermi statistics
Wigner rotations resulting from boosts imply total spin is not conserved

In the non-relativistic limit, total spin is conserved




Defining Spin States

Now we define our spin-1/2 states

Start with stationary spin state in center of mass frame, then boost to moving frame

|p,s ms) =U (L(,Bp)) |O,s ms) = |p, my;(p)) for spin-1/2
With our boost defined as follows
. . -1
L(Bp) = R(6p, i) - L(BpZ) - R(6p, i)
This object rotates as a 2-component spinor

UR)|p,s mg) = |Rp,s ms') DY, (R)

s,: mg
In the lab frame, we have

|k, my(k)) ® |a,ms(a)) ® |b,ms(b))




Picking a Frame

What basis should we use?

Two natural bases in the problem
A natural choice for defining ¢ — the lab frame in which total spin is conserved
A natural choice for defining X, — the (two-particle C.0.M.) dimer frame

Transforming between the two requires Wigner matrices
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The Dimer Frame

To combine spins with orbital angular momentum of interacting pair, boost to find a* and b*
Start with stationary spin state in center of mass frame, boost to moving frame
la*, mg(a*)) = U(L(B4))|0,ms) and |b*,mg(b*)) = U(L(By))|0,my)

In the dimer-axis frame, we have
|k, ms(k)) ® |a*,ms(a*)) & |b*, ms(b*)) ©: ©

This is a natural basis for K, and for derivation of QC3

Orbital and spin axes aligned in dimer-frame, not lab-frame

Wigner rotation relates spin components

la*, mg(a)) = |a*, mg' (a”)) D(Ra)ms’, mg
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Incorporating Spin in G

det[F5(E,P,L) + Kgg3(E)] =0 where Fy=_—F Kﬂ;
G arises for 3-particle cuts in which the spectator is switched Q : Q>
Spin components are conserved in the lab frame |
¢+m)aﬁ © ©
Apap(b) = 15—+ Ry ap(b) :
In the lab frame, we have © I ©

) H(p)H(k) 47Ty€’m’ (k*)yz(m (pZ)

x0 %/

lab
(G lprmmekemms (By Py L) = =001 (p),ms (p) O, (k),ms (k) Omt, (b),ms (b) - >
dwpwi L b= —m 4., 95,

To transform to the dimer-axis frame, Wigner matrices are needed for each pair of spins

(p;{f)TH G lab p)

pr’m’m’s*;kﬁmmﬁ = Dms m pl!'m!m! ;kfmm!!’ Dm,,/m




Incorporating Spin in F

det[F;1(E,P,L) + Kge3(E)]| =0 where Fy =@@K_—11@@
2,L

F arises for 3-particle cuts in which the spectator is fixed

H k 47Ty€’m’ y (a ) il
Flab J b e 5T B P Ey=d. (5 < [ E /] (771 :

Where the Kronecker delta enforces spin conservation in the lab frame

Omims = O (kyms (k) Omd, (a)ms(a) Ol (b)ms (b) Qs
Wigner D-matrices cancel when transforming to dimer-axis frame
F = Flab
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Incorporating Spin in K,

1

— * F A
det|F5'(E,P,L) + Kar3(E")| = 0 where F3 = — F FiG

K, incorporates 2-particle interactions

Natural to express in the dimer-axis
Spin components are conserved in the lab frame

/ / £ *
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Threshold Expansion for K¢ 3

. : F 1
Have collected all the quantities entering F3 = = — F ———
3 K5 L+F+G
Final term appearing in quantization condition, det|F;1(E,P,L) + Kas3(E*)| = 0, is Kys3
To implement quantization condition, need a parameterization of K¢

Analogous to effective range expansion for K,




Threshold Expansion for K¢ 3

Start with nucleon field operator N

Write down all operators of form (N N')3 with any gamma matrix structure and derivatives
Lorentz and parity invariant, requiring even numbers of derivatives

Expand each in powers of 3-momentum using non-relativistic Dirac spinor expansion

Results in two independent terms up to order p*

Ka= A [(X;L/ o ko k xk)(xlfxa)(xZ/Xb)] Kp=A [k' ' k(XLXk)(Xl/Xa)(XZ/Xw]




Conclusion and Future Steps

Including spin in the three-particle formalism requires

Additional matrix structures

Antisymmetrization and changed signs

Momentum-dependent Wigner rotations
The first step toward implementation of QC3 has begun for toy model interactions
In future the formalism should be generalized to incorporate

3 nucleons at arbitrary isospin

Nnrr at maximal isospin

Nnr + Nm to understand the Roper




Thank You

Questions?




