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Figure 2: Untwisted Action

Figure 3: Untwisted Action again

Figure 4: Twisted Action
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Figure 10.2: Integration of SA curves (in red) starting from U0 as well as from a gauge-transformed config-
uration UG

0
, both belonging to the critical manifold M0 (in black). The thimble is pictorially represented

with a bowl emanating from M0. The gauge transformation G connecting U(t) and UG(t) is shown in green.
The same gauge transformation connects U0 and UG

0
in the critical manifold M0.

the nG Takagi vectors of H(S;U0) with zero Takagi value62 and N+

U0
M0 spanned by the n+ Takagi vectors

of H(S;U0) with positive Takagi value. The number of such vectors is n+ = n� nG, with n = V d(N2 � 1)
the total number of degrees of freedom and nG = V (N2 � 1) the number of gauge degrees of freedom, which
means that n+ = V (d � 1)(N2 � 1). We can easily compute the Takagi vectors {vG(i)} spanning TUG

0
J0

given the Takagi vectors {v(i)} spanning TU0J0. Consider a couple of configurations U(t0) and UG(t0) with
|ci| ⌧ 1, so that they are close to M0, that is63
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Let us set

G(n) = ei gn,aT
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The previous considerations lead to setting UG
µ̂ (n; t0) = G(n)Uµ̂(n; t0)G†(n+ µ̂), which imply

62Directions tangent to M0 at U0 represent infinitesimal gauge transformations around U0.
63We generically take |ci| ⌧ 1 in order not to leave TUJ0 while leaving the critical point U . This condition is automatically

ensured for directions corresponding to �i > 0: for these directions ci = nie�it0 with t0 ! �1, so that we can safely take
ni = O(1). For directions corresponding to �i = 0, however, the coefficients ci have to be taken small explicitly.
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the obvious requirement is that 

Rm (j)
n (zk) = f (j)(zk) k = 1 . . . N, j = 0 . . . s� 1

This is the starting point for a multi-point Padè approximation: solve the linear system
. . .

Pm(zk)� f(zk)Qn(zk) = f(zk)

P 0
m(zk)� f 0(zk)Qn(zk)� f(zk)Q

0
n(zk) = f 0(zk)

. . .
from which we want to get the unknown

{ai | i = 0 . . .m} {bj | j = 1 . . . n} n+m+ 1 = N s
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We present a calculation of the net baryon number density as a function of imaginary baryon number
chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of Nτ ¼ 4, 6.
We construct various rational function approximations of the lattice data and discuss how poles in the
complex plane can be determined from them. We compare our results of the singularities in the chemical
potential plane to the theoretically expected positions of the Lee-Yang edge singularity in the vicinity of the
Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
expected power law behavior.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we
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where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
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with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
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many ab initio calculations of lattice QCD are performed to
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Unfortunately, the notorious sign problem hampers
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of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
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Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π#.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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(iii) All the other features (e.g., zero-pole cancellations)
show up much the same as they do in the original
μB plane.

In Table I, we collect all the findings that we discussed so
far. In particular, for each temperature that we probed at
Nτ ¼ 4, we list the nearest singularities as obtained (a) from
the solution of the linear system (19) in the μB=T plane
(method I), (b) from the minimization of the generalized χ2

(21) (method II), and (c) from the solution of the linear
system (19) in fugacity plane, both mapping back results in
the original plane and inspecting them in the fugacity plane
(methods III* and III). The errors are computed out of a
bootstrap procedure in which we repeat our Padé analysis

letting the input data (i.e., the results of our Monte Carlo
measurements) vary within errors. As one can see, results
are well consistent.
The singularities which we have been discussing so far

(and that are listed in Table I) are not the only ones on
display in Fig. 1. Results obtained on Nτ ¼ 6 at T ¼
145 MeV apparently point at a singular point that could be
consistent with a chiral singularity. While this result is
intriguing, in this case extra care is in order.

(i) In this case, we have a (far) enhanced dependence
on the interval our Padé analysis takes into account.
In particular, this singularity shows up if we limit our
analysis to μ̂IB ∈ ½0; π#.

FIG. 5. Singularity structure in the μ̂B plane for three different temperatures (from left to right T ¼ 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).

FIG. 6. Singularity structure in the fugacity (z ¼ e
μB
T ) plane for three different temperatures (from left to right T ¼ 201.4, 186.3,

167.4).
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I. INTRODUCTION

The phase diagram of quantum chromodynamics (QCD)
belongs to the most pressing open issues in high energy
physics. With large scale experimental programs at RHIC
and LHC, the phase diagram is scanned for hints of a
critical point or a first order phase transition. In addition,
many ab initio calculations of lattice QCD are performed to
infer on the QCD phase diagram.
Unfortunately, the notorious sign problem hampers

numerical studies of the QCD phase diagram. At vanishing
baryon chemical potential (μB ≡ 0), lattice QCD calcula-
tions rely onMonte Carlo methods for an efficient sampling
of the QCD partition sum. At nonvanishing baryon chemi-
cal potentials (μB > 0), standard Monte Carlo methods
cease working as the fermion determinant becomes genu-
inely complex. Hence, the kernel of the QCD partition sum
is strongly oscillating with increasing lattice volumes.
Over the last decades, manymethods have been developed

which potentially circumvent or solve theQCDsign problem.
These methods include reweighting [1,2], Taylor expansions
[3–5], analytic continuation from purely imaginary chemical
potentials [6,7], canonical partition functions [8,9], strong
coupling/dual methods [10–13], the density of states method
[14–16], and complex Langevin dynamics [17–20]. Related

to the latter is also the Lefschetz thimble method [21–23],
which is based on a deformation of the integration manifold
into complex field space. Recent developments are reviewed,
e.g., in [24–26]. However, all these methods face severe
limitations that restrict their applicability toward the thermo-
dynamic and/or continuum limits.
With this study, we systematically investigate singularities

of the grand canonical potential in the complex chemical
potential plane, which we identify from an (analytically
continued) rational approximation of lattice data obtained at
purely imaginary chemical potentials. The rational approxi-
mation of the net baryon number density is done in
consistency with the second, third, and fourth order cumu-
lants of the baryon number density. In this sense, our method
could be seen as a combination of the Taylor expansion
approach and the imaginary chemical potential method. The
position of those singularities provides very valuable infor-
mation on the QCD phase diagram. We find that they are in
agreement with the critical scaling of the Lee-Yang edge
singularities in the vicinity of the Roberge-Weiss transition
and the chiral transition. We also discuss the scaling of the
Lee-Yang edge singularity in the vicinity of a hypothetical
critical end point. Finally, we point out that the position of the
singularities can be used to estimate the radius of conver-
gence of any analytic expansion and to extract nonuniversal
parameters that map QCD to the universal scaling function.
Among the latter might also be the position of the QCD
critical end point, which was demonstrated recently in the
case of the Gross-Neveu model [27]. Genuine Lee-Yang
zeros have been recently also studied in other works [28,29].
This paper is organized as follows. In Sec. II, we

introduce the scaling theory of the Lee-Yang edge
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extrapolated numbers for the pseudocritical temperature
Tpc ¼ ð156.5# 1.5Þ MeV [45] and the chiral critical tem-
perature Tc ¼ 132þ3

−6 MeV [44]. We also note that the
corresponding Nτ ¼ 6 results are 10–15 MeV higher. In
conclusion, the probed temperature of T ¼ 145 MeV is
compatible with the chiral critical temperature, and we thus
expected it to be sensitive to chiral scaling.
We now compare the position of the singularity we find

for this temperature with the expected position of the Lee-
Yang edge singularity, governed by Oð2Þ critical behavior
[70]. Hence, we fix the critical exponents to βδ ¼ 1.6682.
The chiral transition has been subject to various lattice
QCD studies in the past; the nonuniversal parameters that
appear in Eq. (8) are known to some extent, as discussed
already in Sec. II B. In Fig. 10, we calculate the 68% and
95% confidence areas of the expected Lee-Yang edge
singularity when we vary the nonuniversal parameter under
the assumption of Gaussian distributed errors. In particular,
we chose for the Nτ ¼ 6 specific values and errors [71],

Tc ¼ ð147# 6Þ MeV;

z0 ¼ 2.35# 0.2;

κB2 ¼ 0.012# 0.002; ð24Þ

and in addition, we take jzcj ¼ 2.032 [36]. As can be seen
from Fig. 10, the results from the rational approximation to
our data (method II), ðμ̂RB; μ̂IBÞ ¼ ð3.03ð28Þ; 1.61ð10ÞÞ, lie
within the 68% confidence area of this prediction.

VI. SUMMARY AND CONCLUSIONS

We computed cumulants of the net baryon number
density as a function of the imaginary baryon number
chemical potential in lattice QCD, the fermionic regulari-
zation being that of highly improved staggered quarks
(HISQ). The results were the input for a multipoint Padé
analysis by which rational approximations were calculated,
with various choices of both the functional forms of the
latter and of the methods by which the approximants were
determined. The results have been shown to be stable, in
particular, also if we repeat our analysis in the fugacity
plane (i.e., after a conformal map). Our rational approx-
imations not only describe very well the data but appear to
be quite well under control when we analytically continue
them to real values of the baryonic chemical potential.
The main focus of our analysis has been on the singularity

structure that we can infer from the complex poles of our
rational approximations. By comparing the latter with the
theoretically expected Lee-Yang edge singularities in the
vicinity of the Roberge-Weiss phase transition, we found a
quitegoodagreement. Inparticular, the temperature scalingof
the singularities is consistent with the expected power law
behavior. We also found a preliminary evidence of a singular

FIG. 9. Scaling fit to the Lee-Yang edge singularities in the
vicinity of the Roberge-Weiss transition to the Ansatz (22).
Shown are three distinct data sets for the real parts of the μ̂B
(imaginary parts of h) as a function of the reduced temperature
ðTRW − TÞ=TRW, as obtained from methods I–III.

TABLE II. Fit parameters a, b, obtained from a scaling fit to the
Lee-Yang edge singularities in the vicinity of the Roberge-Weiss
transition. Also given are the reduced χ2 and the deduced values
for the nonuniversal constant z0 for the data sets obtained from
methods I–III, respectively.

Method a b χ2 z0

I 24.77 (2.68) 0.1192(80) 1.14 9.18(99)
II 25.54 (79) 0.0806(9) 0.49 9.37(29)
III 26.08 (63) 0.0541(1) 0.96 9.49(23)

FIG. 10. Comparison of the expected Lee-Yang edge singu-
larity at T ¼ 145 MeV (Nτ ¼ 6) from previously estimated
nonuniversal parameters (68% and 95% confidence areas), with
the singularity obtained from our multipoint Padé analysis (data
point). The dashed line indicates the predicted temperature
dependence of the Lee-Yang edge singularity.
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such scaling fits also to lattice QCD data, which is however
currently beyond the scope of this exploratory study.

D. Thermal singularities

The Lee-Yang edge singularities are not the only singu-
larities in the complexμB=T plane.At temperatures above the
QCD crossover (T > Tpc), we expect that quasifree quarks
are the relevant degrees of freedom in the system. Quarks are
distributed according to the Fermi-Dirac distribution
fpðT; μÞ ¼ 1=ðexp ðεp − μÞ=T þ 1Þ. The singularities of
this function are located at %iπT % εp. In particular, the
singularities which are closest to the origin are located at
%iπT % ϵ0, whereε0 ¼ m is the restmass of the particle. The
thermal singularities of quasifree quarks are modified by
residual interactions as long as we are not considering the
Stefan-Boltzmann limit (T → ∞). We expect that to leading
order these modifications are expressed through a substan-
tially larger thermal mass m̃ðTÞ ≫ m.
The analytic structure of the Fermi-Dirac distribution

function interferes with the scaling of the Lee-Yang edge
singularity of the Roberge-Weiss transition, as given in
Eqs. (4) and (5). It is a priori not clear which type of
singularities are closer to the origin/imaginary axis and can
thus be found by a Padé/rational approximation of the data.
As a result of this study, we find that the leading singularities
at Im½μB=T' ¼ %π follow the RW scaling, see Sec. VA.

III. LATTICE SETUP AND OBSERVABLES

The partition function of a (2þ 1)-flavor of highly
improved staggered quarks (HISQ) [50] with imaginary
chemical potential can be written as

Z ¼
Z

DU det½Mðml; iμIlÞ'2=4

× det½Mðms; iμIsÞ'1=4e−S GðUÞ; ð12Þ

where Mðm; iμIÞ represents the fermion matrix of a HISQ
flavor with mass m and chemical potential μ ¼ iμI . The
first determinant represents the two degenerate light flavors
(up and down quarks). For the gauge part S GðUÞ, we are
using the Symanzik improved Wilson action, which is
correct to Oða2Þ in the lattice spacing. For the gauge field
generation, we were using the SIMULATeQCD package
[51] with and implementation of the rational hybrid
Monte Carlo algorithm (RHMC) [52]. The lattice bare
parameters are used from various publications of HotQCD.
The lattice bare quark masses are varied with the lattice
coupling such that for each coupling physical meson
masses are obtained; i.e., we stay on the line of constant
physics (LCP). Here, we make use of the parametrization of
the LCP (for the physical value of the pion mass,
ml=m

phys
s ¼ 1=27) obtained and refined in previous works

[53–55]. The same holds true for the scale setting, where

we used the parametrization of the β function based on the
kaon decay constant. For simplicity, we fix the ratio of the
explored chemical potential in this study to μl=μs ¼ 1.
The observables we calculate are the cumulants of the net

baryon number density, given as

χBn ðT;V;μBÞ¼
! ∂
∂μ̂B

"
n lnZðT;V;μl;μsÞ

VT3

¼
!
1

3

∂
∂μ̂lþ

1

3

∂
∂μ̂s

"
n lnZðT;V;μl;μsÞ

VT3
; ð13Þ

with μ̂X ¼ μX=T, X ¼ B, l, s. Note that the normalization is
done with appropriate powers of the temperature, such that
the observables are dimensionless. The derivatives generate
traces of the type Tr½ðM−1∂M=∂μXÞn ', which we evaluate
with the random noise method, using Oð500Þ random
vectors. For more details on the required traces and the
method of evaluation, see, e.g., [3].
For obvious reasons (sign problem), we perform our

calculations at purely imaginary baryon chemical potential
iμ̂IB, with μ̂IB ∈R. Exploiting all symmetries, we restrict
values for μ̂IB to half the period, i.e., μ̂IB ∈½0; π'. The
symmetries of the partition function generate specific
properties of the observables χBn . At imaginary chemical
potential, they are imaginary and odd functions of μ̂IB for
odd n and real and even functions of μ̂IB for even n . These
properties have been verified by us and can be seen from
Fig. 2, where we show results for the first three cumulants.

FIG. 2. Cumulants of the net baryon number fluctuations as a
function of a purely imaginary chemical potential, for three
different temperatures, obtained on 243 × 4 lattices. Shown are
Im[χB1 ] (top), Re½χB2 ' (middle), and Im[χB3 ]. Data points are
connected by dashed lines to guide the eye.
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Lee-Yang zeros are points in the complex plane of an external control parameter at which the partition function
vanishes for a many-body system of finite size. In the thermodynamic limit, the Lee-Yang zeros approach the
critical value on the real axis, where a phase transition occurs. Partition function zeros have for many years been
considered a purely theoretical concept; however, the situation is changing now as Lee-Yang zeros have been
determined in several recent experiments. Motivated by these developments, we here devise a direct pathway
from measurements of partition function zeros to the determination of critical points and universal critical
exponents of continuous phase transitions. To illustrate the feasibility of our approach, we extract the critical
exponents of the Ising model in two and three dimensions from the fluctuations of the total energy and the
magnetization in lattices of finite size. Importantly, the critical exponents can be determined even if the system
is away from the phase transition. Moreover, in contrast to standard methods based on Binder cumulants, it
is not necessary to drive the system across the phase transition. As such, our method provides an intriguing
perspective for investigations of phase transitions that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures.
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I. INTRODUCTION

Phase transitions are characterized by the abrupt change
of a many-body system from one state of matter to another
as an external control parameter is varied [1– 3]. In their
seminal works, Lee and Yang developed a rigorous theory of
phase transitions based on the zeros of the partition function
in the complex plane of the control parameter, for instance
the fugacity or an external magnetic field [4– 7]. The crucial
insight of Lee and Yang was that the partition function zeros
with increasing system size will approach the real value of the
control parameter for which a phase transition occurs. These
ideas are now considered a theoretical cornerstone of statis-
tical physics, and they have found applications across a wide
range of topics, including protein folding [8,9], percolation
[10– 13], and Bose-Einstein condensation [14,15].

Despite these developments, partition function zeros were
for a long time considered a purely theoretical concept. This
situation is changing now as Lee-Yang zeros have been de-
termined in several experiments [16– 23]. Recently, partition
function zeros were measured using carefully engineered
nanostructures involving the precession of interacting molec-
ular spins [17– 19], Cooper pair tunneling in superconducting
devices [20– 22], or fermionic atoms in driven optical lattices
[23]. In parallel with these experiments, several theoretical
proposals have been put forward for the detection of parti-
tion function zeros [24– 28]. These advances motivate further

Published by the American Physical Society under the terms of the
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and the published article’s title, journal citation, and DOI.

investigations of the information that can be extracted from
the determination of Lee-Yang zeros in systems of finite size
and how future experiments on scalable many-body systems
may improve our understanding of phase transitions.

In this work, we present a direct pathway from the detec-
tion of partition function zeros by measuring or simulating
fluctuating observables in systems of finite size to the de-
termination of critical points and universal critical exponents
of continuous phase transitions [1– 3]. Our method combines

(a) (b)

FIG. 1. Ising lattice and Fisher zeros. (a) The Ising model, here
in d = 3 dimensions with linear size L = 20 and N = Ld = 8000
lattice sites. The color of each site denotes the orientation of its spin,
blue (up) or red (down). (b) From the energy fluctuations, we find the
leading partition function zeros in the complex plane of the inverse
temperature using Eq. (8). The inverse temperature is βJ = 0.23,
where J is the coupling between neighboring spins. No magnetic
field is applied. The Fisher zeros approach the critical inverse temper-
ature βc with increasing system size, L = 4, 5, . . . , 10. Importantly,
from the scaling of the Fisher zeros, we can determine the critical
exponents as shown in Fig. 2.
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ideas and concepts from finite-size scaling analysis [29– 32]
with the Lee-Yang formalism [4– 7] and theories of high
cumulants [33– 36], and it can be applied in experiments
on a variety of phase transitions including nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38 ] and dynamical phase transitions in quantum
many-body systems after a quench [39– 41]. Specifically, we
determine the partition function zeros from fluctuations of
thermodynamic observables and find the critical exponents
from the approach of the zeros to the critical value on the
real axis. As a paradigmatic application, we determine the
critical points and the universal critical exponents of the Ising
model from the fluctuations of energy and magnetization in
small lattices. Unlike most conventional methods, based for
instance on Binder cumulants [30– 32], which require the
control parameter to be tuned across the phase transition,
we can determine the critical exponents even if the system
is away from the phase transition, for example at a fixed
high temperature. (In the Appendices, we discuss the sta-
tistical aspects of our method, and we compare it with the
use of Binder cumulants.) As such, our method provides an
intriguing perspective for investigations of phase transitions
that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures [42,43]. Moreover,
our method opens an avenue for bottom-up experiments on
phase transitions, in which nanoscale structures are carefully
assembled, for example by adding single spins to an atomic
chain on a surface [44] or by loading individual atoms into an
optical lattice one at a time [45], to increase the system size in
a controllable manner.

II. ISING LATTICE AND CRITICALITY

Figure 1(a) illustrates the Ising lattice that we consider in
this work. The lattice has N = Ld sites, where L is the linear
size and d = 2, 3 denotes the spatial dimension. Each site
hosts a classical spin which can take on the values σi = ± 1.
An external magnetic field of magnitude h can be applied, and
neighboring spins are coupled via a ferromagnetic interaction
of strength J > 0. The total energy corresponding to a specific
spin configuration σ = {σi} is then

U (σ) = −J
∑

⟨i, j⟩
σiσ j − h

∑

i

σi, (1)

where the brackets ⟨i, j⟩ denote summation over nearest-
neighbor spins. The thermodynamic properties of the lattice
are fully encoded in the partition function

Z (β, h ) =
∑

σ

e−βU (σ ), (2)

where β = 1/(kBT ) is the inverse temperature. Phase tran-
sitions are signaled by values of the control parameters for
which the scaled free energy f (β, h ) = −[ln Z (β, h )]/(Nβ )
becomes nonanalytic in the thermodynamic limit of large
lattices [1– 3]. The partition function also captures fluctua-
tions of thermodynamic observables. For instance, energy
fluctuations can be characterized by the moments ⟨U n⟩ =
[∂n

−βZ (β, h )]/Z (β, h ) or cumulants ⟨⟨U n⟩⟩ = ∂n
−β ln Z (β, h ),

which follow upon differentiation with respect to the conju-
gate variable, here the inverse temperature. The moments and

cumulants of the magnetization are given in a similar manner
by differentiation with respect to the magnetic field strength.

The Ising model exhibits a continuous phase transition,
which close to the critical inverse temperature β ≃ βc can be
completely characterized by a few critical exponents that are
independent of microscopic details and are determined solely
by general features such as the dimensionality of the problem
and its universality class [1– 3]. As such, the determination
of critical exponents is of key importance in statistical me-
chanics. In the vicinity of the critical point, we may assume
that the probability distribution for the total energy obeys
the scaling relation PL(U ) = L−1/ν f∞(UL−1/ν ), where f∞ is
a scaling function and the critical exponent ν describes the
divergence of the correlation length as we approach the critical
temperature [29– 32]. After some algebra, we then obtain
scaling relations for the cumulants of the form

⟨⟨U n⟩⟩ = Ln/νun, (3)

where the un’s depend only weakly on the system size. As we
will see, these relations carry over to the partition function
zeros and their approach to the critical point.

III. PARTITION FUNCTION ZEROS
AND FINITE-SIZE SCALING

Following the seminal ideas of Lee and Yang, we consider
the zeros of the partition function in the complex plane of the
control parameter [4– 7]. For finite-size lattices, the partition
function is analytic and it can be factorized as

Z (β, h ) = Z (0, h )eβc
∏

k

(1 − β/βk ), (4)

where βk are the zeros in the complex plane of the inverse
temperature and c is a constant. The zeros come in complex
conjugate pairs, since the partition function is real for real
values of β. Often these zeros are referred to as Fisher zeros,
while zeros for complex external fields are known as Lee-
Yang zeros. With increasing system size, the partition function
zeros approach the real value of the control parameter for
which a phase transition occurs in the thermodynamic limit.
From the definition of the cumulants, we now obtain the
relation [20– 22]

⟨⟨U n⟩⟩ = (−1)(n−1)
∑

k

(n − 1)!
(βk − β )n

, n > 1, (5)

between the cumulants and the partition function zeros. We
then see that the high cumulants are mainly determined by the
pair of Fisher zeros, βo and β∗

o , that are closest to the actual
inverse temperature β on the real axis. The contributions
from other zeros are suppressed with the distance to β and
the cumulant order n [33– 36]. Moreover, close to criticality,
we expect the scaling relations (3) to hold and thus that the
leading zeros must approach the critical inverse temperature
as [46– 48 ]

|βo − βc| ∝ L−1/ν (6)

and

Im[βo] ∝ L−1/ν, (7)
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ideas and concepts from finite-size scaling analysis [29– 32]
with the Lee-Yang formalism [4– 7] and theories of high
cumulants [33– 36], and it can be applied in experiments
on a variety of phase transitions including nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38 ] and dynamical phase transitions in quantum
many-body systems after a quench [39– 41]. Specifically, we
determine the partition function zeros from fluctuations of
thermodynamic observables and find the critical exponents
from the approach of the zeros to the critical value on the
real axis. As a paradigmatic application, we determine the
critical points and the universal critical exponents of the Ising
model from the fluctuations of energy and magnetization in
small lattices. Unlike most conventional methods, based for
instance on Binder cumulants [30– 32], which require the
control parameter to be tuned across the phase transition,
we can determine the critical exponents even if the system
is away from the phase transition, for example at a fixed
high temperature. (In the Appendices, we discuss the sta-
tistical aspects of our method, and we compare it with the
use of Binder cumulants.) As such, our method provides an
intriguing perspective for investigations of phase transitions
that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures [42,43]. Moreover,
our method opens an avenue for bottom-up experiments on
phase transitions, in which nanoscale structures are carefully
assembled, for example by adding single spins to an atomic
chain on a surface [44] or by loading individual atoms into an
optical lattice one at a time [45], to increase the system size in
a controllable manner.

II. ISING LATTICE AND CRITICALITY

Figure 1(a) illustrates the Ising lattice that we consider in
this work. The lattice has N = Ld sites, where L is the linear
size and d = 2, 3 denotes the spatial dimension. Each site
hosts a classical spin which can take on the values σi = ± 1.
An external magnetic field of magnitude h can be applied, and
neighboring spins are coupled via a ferromagnetic interaction
of strength J > 0. The total energy corresponding to a specific
spin configuration σ = {σi} is then

U (σ) = −J
∑

⟨i, j⟩
σiσ j − h

∑

i

σi, (1)

where the brackets ⟨i, j⟩ denote summation over nearest-
neighbor spins. The thermodynamic properties of the lattice
are fully encoded in the partition function

Z (β, h ) =
∑

σ

e−βU (σ ), (2)

where β = 1/(kBT ) is the inverse temperature. Phase tran-
sitions are signaled by values of the control parameters for
which the scaled free energy f (β, h ) = −[ln Z (β, h )]/(Nβ )
becomes nonanalytic in the thermodynamic limit of large
lattices [1– 3]. The partition function also captures fluctua-
tions of thermodynamic observables. For instance, energy
fluctuations can be characterized by the moments ⟨U n⟩ =
[∂n

−βZ (β, h )]/Z (β, h ) or cumulants ⟨⟨U n⟩⟩ = ∂n
−β ln Z (β, h ),

which follow upon differentiation with respect to the conju-
gate variable, here the inverse temperature. The moments and

cumulants of the magnetization are given in a similar manner
by differentiation with respect to the magnetic field strength.

The Ising model exhibits a continuous phase transition,
which close to the critical inverse temperature β ≃ βc can be
completely characterized by a few critical exponents that are
independent of microscopic details and are determined solely
by general features such as the dimensionality of the problem
and its universality class [1– 3]. As such, the determination
of critical exponents is of key importance in statistical me-
chanics. In the vicinity of the critical point, we may assume
that the probability distribution for the total energy obeys
the scaling relation PL(U ) = L−1/ν f∞(UL−1/ν ), where f∞ is
a scaling function and the critical exponent ν describes the
divergence of the correlation length as we approach the critical
temperature [29– 32]. After some algebra, we then obtain
scaling relations for the cumulants of the form

⟨⟨U n⟩⟩ = Ln/νun, (3)

where the un’s depend only weakly on the system size. As we
will see, these relations carry over to the partition function
zeros and their approach to the critical point.

III. PARTITION FUNCTION ZEROS
AND FINITE-SIZE SCALING

Following the seminal ideas of Lee and Yang, we consider
the zeros of the partition function in the complex plane of the
control parameter [4– 7]. For finite-size lattices, the partition
function is analytic and it can be factorized as

Z (β, h ) = Z (0, h )eβc
∏

k

(1 − β/βk ), (4)

where βk are the zeros in the complex plane of the inverse
temperature and c is a constant. The zeros come in complex
conjugate pairs, since the partition function is real for real
values of β. Often these zeros are referred to as Fisher zeros,
while zeros for complex external fields are known as Lee-
Yang zeros. With increasing system size, the partition function
zeros approach the real value of the control parameter for
which a phase transition occurs in the thermodynamic limit.
From the definition of the cumulants, we now obtain the
relation [20– 22]

⟨⟨U n⟩⟩ = (−1)(n−1)
∑

k

(n − 1)!
(βk − β )n

, n > 1, (5)

between the cumulants and the partition function zeros. We
then see that the high cumulants are mainly determined by the
pair of Fisher zeros, βo and β∗

o , that are closest to the actual
inverse temperature β on the real axis. The contributions
from other zeros are suppressed with the distance to β and
the cumulant order n [33– 36]. Moreover, close to criticality,
we expect the scaling relations (3) to hold and thus that the
leading zeros must approach the critical inverse temperature
as [46– 48 ]

|βo − βc| ∝ L−1/ν (6)

and

Im[βo] ∝ L−1/ν, (7)
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ideas and concepts from finite-size scaling analysis [29– 32]
with the Lee-Yang formalism [4– 7] and theories of high
cumulants [33– 36], and it can be applied in experiments
on a variety of phase transitions including nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38 ] and dynamical phase transitions in quantum
many-body systems after a quench [39– 41]. Specifically, we
determine the partition function zeros from fluctuations of
thermodynamic observables and find the critical exponents
from the approach of the zeros to the critical value on the
real axis. As a paradigmatic application, we determine the
critical points and the universal critical exponents of the Ising
model from the fluctuations of energy and magnetization in
small lattices. Unlike most conventional methods, based for
instance on Binder cumulants [30– 32], which require the
control parameter to be tuned across the phase transition,
we can determine the critical exponents even if the system
is away from the phase transition, for example at a fixed
high temperature. (In the Appendices, we discuss the sta-
tistical aspects of our method, and we compare it with the
use of Binder cumulants.) As such, our method provides an
intriguing perspective for investigations of phase transitions
that may be hard to reach experimentally, for instance at very
low temperatures or at very high pressures [42,43]. Moreover,
our method opens an avenue for bottom-up experiments on
phase transitions, in which nanoscale structures are carefully
assembled, for example by adding single spins to an atomic
chain on a surface [44] or by loading individual atoms into an
optical lattice one at a time [45], to increase the system size in
a controllable manner.

II. ISING LATTICE AND CRITICALITY

Figure 1(a) illustrates the Ising lattice that we consider in
this work. The lattice has N = Ld sites, where L is the linear
size and d = 2, 3 denotes the spatial dimension. Each site
hosts a classical spin which can take on the values σi = ± 1.
An external magnetic field of magnitude h can be applied, and
neighboring spins are coupled via a ferromagnetic interaction
of strength J > 0. The total energy corresponding to a specific
spin configuration σ = {σi} is then

U (σ) = −J
∑

⟨i, j⟩
σiσ j − h

∑

i

σi, (1)

where the brackets ⟨i, j⟩ denote summation over nearest-
neighbor spins. The thermodynamic properties of the lattice
are fully encoded in the partition function

Z (β, h ) =
∑

σ

e−βU (σ ), (2)

where β = 1/(kBT ) is the inverse temperature. Phase tran-
sitions are signaled by values of the control parameters for
which the scaled free energy f (β, h ) = −[ln Z (β, h )]/(Nβ )
becomes nonanalytic in the thermodynamic limit of large
lattices [1– 3]. The partition function also captures fluctua-
tions of thermodynamic observables. For instance, energy
fluctuations can be characterized by the moments ⟨U n⟩ =
[∂n

−βZ (β, h )]/Z (β, h ) or cumulants ⟨⟨U n⟩⟩ = ∂n
−β ln Z (β, h ),

which follow upon differentiation with respect to the conju-
gate variable, here the inverse temperature. The moments and

cumulants of the magnetization are given in a similar manner
by differentiation with respect to the magnetic field strength.

The Ising model exhibits a continuous phase transition,
which close to the critical inverse temperature β ≃ βc can be
completely characterized by a few critical exponents that are
independent of microscopic details and are determined solely
by general features such as the dimensionality of the problem
and its universality class [1– 3]. As such, the determination
of critical exponents is of key importance in statistical me-
chanics. In the vicinity of the critical point, we may assume
that the probability distribution for the total energy obeys
the scaling relation PL(U ) = L−1/ν f∞(UL−1/ν ), where f∞ is
a scaling function and the critical exponent ν describes the
divergence of the correlation length as we approach the critical
temperature [29– 32]. After some algebra, we then obtain
scaling relations for the cumulants of the form

⟨⟨U n⟩⟩ = Ln/νun, (3)

where the un’s depend only weakly on the system size. As we
will see, these relations carry over to the partition function
zeros and their approach to the critical point.

III. PARTITION FUNCTION ZEROS
AND FINITE-SIZE SCALING

Following the seminal ideas of Lee and Yang, we consider
the zeros of the partition function in the complex plane of the
control parameter [4– 7]. For finite-size lattices, the partition
function is analytic and it can be factorized as

Z (β, h ) = Z (0, h )eβc
∏

k

(1 − β/βk ), (4)

where βk are the zeros in the complex plane of the inverse
temperature and c is a constant. The zeros come in complex
conjugate pairs, since the partition function is real for real
values of β. Often these zeros are referred to as Fisher zeros,
while zeros for complex external fields are known as Lee-
Yang zeros. With increasing system size, the partition function
zeros approach the real value of the control parameter for
which a phase transition occurs in the thermodynamic limit.
From the definition of the cumulants, we now obtain the
relation [20– 22]

⟨⟨U n⟩⟩ = (−1)(n−1)
∑

k

(n − 1)!
(βk − β )n

, n > 1, (5)

between the cumulants and the partition function zeros. We
then see that the high cumulants are mainly determined by the
pair of Fisher zeros, βo and β∗

o , that are closest to the actual
inverse temperature β on the real axis. The contributions
from other zeros are suppressed with the distance to β and
the cumulant order n [33– 36]. Moreover, close to criticality,
we expect the scaling relations (3) to hold and thus that the
leading zeros must approach the critical inverse temperature
as [46– 48 ]

|βo − βc| ∝ L−1/ν (6)

and

Im[βo] ∝ L−1/ν, (7)
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FIG. 2. Fisher zeros and critical exponents. (a) The leading Fisher zeros (blue circles) for the Ising model with d = 2 are extracted from the
energy cumulants of order n = 6, 7, 8, 9. With increasing system size, the Fisher zeros approach the critical inverse temperature βcJ ≃ 0.4404
(red circle), which is close to the exact result β2DJ = ln(1 +

√
2)/2 ≃ 0.4407. The simulations were carried out at a temperature above the

phase transition, βJ = 0.35 (black circle). For the Ising model in Fig. 1 with d = 3, we find βcJ = 0.22169, which is close to the best
numerical estimate of β3DJ ≃ 0.22165. The critical inverse temperatures are determined in panel (c). (b) The extracted critical exponents ν

from the finite-size scaling of the imaginary parts are close to the known values for the Ising model, ν2D = 1 (exact) and ν3D ≃ 0.630 (numerics)
[49]. (c) In the thermodynamic limit, the imaginary part of the zeros vanishes, and the real parts approach the critical values indicated with red
circles in panels (a) and (c).

since the critical inverse temperature is real. These relations
are important as they allow us to obtain the critical exponent
ν from the partition function zeros.

IV. FISHER ZEROS AND CRITICAL EXPONENTS

Partition function zeros have recently been experimentally
determined [16– 23]. Lee-Yang zeros have been determined by
measuring the quantum coherence of a probe spin-coupled
to an Ising-type spin bath [17– 19], and Fisher zeros have
been extracted for a dynamical phase transition involving
fermionic atoms in a driven optical lattice [23]. Partition
function zeros have also been obtained from the fluctuations
of the number of transferred particles in an experiment on full
counting statistics of Cooper pair tunneling [20– 22]. Here,
we first determine the Fisher zeros of the Ising lattice from
fluctuations of the energy, since the energy is conjugate to the
inverse temperature. To this end, Eq. (5) can be solved for high
orders, n ≫ 1, to yield the expression

[
−2Re[βo −β]

|βo −β|2

]

=

⎡

⎣
1 −κ (+)

n
n

1 −κ (+)
n+1

n+1

⎤

⎦
−1[

(n −1)κ (−)
n

n κ (−)
n+1

]

(8)

for the position of the leading partition function zeros, βo and
β∗

o , in terms of the ratios κ (± )
n ≡ ⟨⟨U n± 1⟩⟩/⟨⟨U n⟩⟩ of cumulants

of subsequent orders. We stress that the energy fluctuations
can be measured (or simulated) at a single fixed temperature,
and the Fisher zeros can then be determined using Eq. (8).

To mimic an experiment, we perform Monte Carlo simu-
lations based on the standard Metropolis algorithm [50,51].
We thereby evaluate the high cumulants of the energy and
subsequently obtain the leading Fisher zeros from Eq. (8)
with increasing system size. The results of this procedure are
shown in Fig. 2(a) and Fig. 1(b) for the Ising lattice in two
and three dimensions. Already for small lattices of linear size
L ! 10, we clearly see that the Fisher zeros approach the
critical inverse temperature on the real axis. A quantitative

analysis is provided in Fig. 2(b), where we investigate the
finite-size scaling of the imaginary part and extract the critical
exponent ν based on Eq. (7) [52]. Remarkably, the extracted
critical exponents are close to the best-known values for the
Ising model in two and three dimensions [49], even if obtained
for very small lattices. Moreover, in contrast to conventional
methods [30– 32], which typically require that the control
parameter be tuned across the phase transition, we are here
able to determine the critical exponents from the energy
fluctuations at a fixed temperature above the phase transition.
Having determined the critical exponents, we can also find
the critical inverse temperature by extrapolating the position
of the leading Fisher zeros to the thermodynamic limit in
Fig. 2(c). The imaginary part of the Fisher zeros vanishes in
the thermodynamic limit, while the real part comes close to
the best-known values for the Ising model.

V. LEE-YANG ZEROS AND CRITICAL EXPONENTS

Our method can be applied to a variety of phase transitions,
not only in equilibrium settings but also in nonequilibrium
situations such as space-time phase transitions in glass for-
mers [37,38] and dynamical phase transitions in many-body
systems after a quench [39– 41]. (In these cases, the role of the
partition function is played by a moment-generating function
or a return amplitude, both of which deliver the moments of
the fluctuating observable upon differentiation with respect to
the appropriate conjugate field.) For example, for the Ising
model we may also consider the partition function zeros in the
complex plane of the magnetic field. These Lee-Yang zeros
can be obtained from the fluctuations of the magnetization
similar to how the Fisher zeros are determined using Eq. (8).
At the critical temperature, the magnetization is assumed to
obey the scaling relation PL(M ) = L

B
ν
−d g∞(ML

B
ν
−d ), where

g∞ is a scaling function for the total magnetization and the
critical exponent B describes how the average magnetization
vanishes as the critical temperature is approached from below
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FIG. 3. Lee-Yang zeros and critical exponents. (a) The leading Lee-Yang zeros (blue circles) for the Ising model with d = 2 are extracted
from the magnetization cumulants of order n = 6, 7, 8, 9. Above the critical temperature, β = 0.8βc, the Lee-Yang zeros remain complex in the
thermodynamic limit (pair of red circles). For the sake of clarity, these results have been shifted horizontally away from the line Re[h/J] = 0.
At the critical inverse temperature, β = βc, the Lee-Yang zeros approach the critical field hc = 0 (red circle) with increasing system size. We
note that the perpendicular approach to the real-axis shows that the system exhibits a first-order phase transition as a function of the magnetic
field [6,7,53,54]. (b) Finite-size scaling of the imaginary parts of the Lee-Yang zeros and extraction of the ratio of critical exponents B/ν for
d = 2, 3. (c) Determination of the convergence points of the Lee-Yang zeros (red circle) for d = 2, 3. For d = 3, the real part also vanishes
(not shown).

[55– 58]. This scaling hypothesis translates into scaling rela-
tions for the Lee-Yang zeros of the form

|ho − hc| ∝ L
B
ν
−d (9)

and

|Im(ho)| ∝ L
B
ν
−d , (10)

where hc is the magnetic field strength at which the phase tran-
sition occurs. We can now determine the Lee-Yang zeros from
the simulated fluctuations of the magnetization. The results of
this procedure for the Ising lattice with d = 2 are shown in
Fig. 3(a). Above the critical temperature, the Lee-Yang zeros
remain complex in the thermodynamic limit, since there is no
phase transition. By contrast, at the critical temperature (and
also below; not shown), the Lee-Yang zeros reach the real
axis, and we can proceed with the finite-size scaling analysis
in Fig. 3(b) for d = 2 and d = 3. Using Eq. (10), we then
extract the ratio B/ν of the critical exponents, also known
as the scaling dimension, and again find good agreement
with existing estimates. We note that from two independent
critical exponents we can obtain all other exponents using
the hyperscaling relations derived in renormalization group
theory [59]. Finally, in Fig. 3(c), we show how both the real
and imaginary parts of the leading Lee-Yang zeros vanish
in the thermodynamic limit, signaling that a phase transition
occurs at zero magnetic field.

VI. CONCLUSIONS

We have presented a method that makes it possible to iden-
tify critical points and determine critical exponents by measur-
ing fluctuations of thermodynamic observables in finite-size
systems kept at fixed external control parameters. Our method
can not only be applied to equilibrium situations but also
nonequilibrium phase transitions, including space-time phase
transitions in glass formers and dynamical phase transitions
in many-body systems after a quench. We have illustrated

the feasibility of our approach using the Ising model for
which the critical behavior depends on the dimensionality
of the problem as confirmed by our results. Importantly,
we can determine the critical points and critical exponents
without having to drive the system across the phase transition,
which is typically required by other methods. As such, our
method paves the way for investigations of phase transi-
tions that may be hard to reach experimentally, for instance
at low temperatures. Extending these ideas to the quantum
realm constitutes an exciting theoretical challenge for future
work.

Note added. Recently we became aware of a preprint that
also investigates partition function zeros for continuous phase
transitions [60].
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APPENDIX A: MONTE CARLO SIMULATIONS
AND ERROR ESTIMATES

Here we further discuss the use of our method on the Ising
model in d = 2 dimensions. As shown in the main text, we can
identify the critical points and determine the universal critical
exponents by analyzing fluctuating observables for different
lattice sizes N = Ld at a single fixed temperature above (or
below) the critical point. As such, our method can be applied
to a variety of phase transitions in finite-size systems that
are away from the critical temperature. To further analyze
the feasibility of our approach, we here discuss the statistical

023004-4

Scaling relations are supposed to describe the approach of leading zeros to critical inverse temperature.
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Let us focus on the second plot (i.e. we look at m as a function of h, sitting at the critical temperature)
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at different magnetic fields and lattice sizes 

and obtain Padè approximants

i.e. 

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

h

f(z) 7! m(L)(h) Rn
m(z) 7! Rn (L)

m (h)



-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.1 0 0.1 0.2 0.3 0.4 0.5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

h

We determine the leading pole (red circle) 
from the Padè approximants


(figures are in complex h plane)

f(z) 7! m(L)(h) Rn
m(z) 7! Rn (L)

m (h)

Let us focus on the second plot (i.e. we look at m as a function of h, sitting at the critical temperature)

We compute magnetisation 

at different magnetic fields and lattice sizes 

and obtain Padè approximants

i.e. 



-0.15 -0.1 -0.05 0 0.05 0.1 0.15
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

h

We determine the leading pole (red circle) 
from the Padè approximants


0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
-0.01

0

0.01

0.02

0.03

0.04

0.05

And finally we inspect the scaling of 
leading poles (red circles)


(figure again in complex h plane)

Combination of the relevant critical exponents 
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Can we repeat this 
for (Lattice) QCD?



Who is who …

We now move to the setting of QCD with baryonic chemical potential

h 7! µ̂B =
µB

T
m(L)(h) 7! �B (L)

1 (µ̂B) =
@

@µ̂B

lnZ

V T 3

which we probe at                           on a coarse lattice              with T ⇠ 200MeV N⌧ = 4 N� = L = 12, 16, 20, 24

at imaginary baryonic chemical potential, looking for the Roberge Weiss transition.

and we have to look for the    scaling of

µ̂B cr = i⇡

µ̂ (R)
B 0
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(figure again in complex chem.pot. plane)

As for the combination of the relevant critical 
exponents we get 2.4188 vs 2.4818

µ̂ (R)
B 0 ⇠ L� ��

⌫



You have to cheat honestly (C. Michael, private communication)



You have to cheat honestly (C. Michael, private communication)

We need to enlarge our statistics …
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(Also, again,) in view of inspecting finite size scaling, we can play the other game
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only one value (L=24) of lattice size… 


… making sense …



CONCLUSIONS

1. The program of (multi-point) Padè analysis in the complex baryonic chemical 
potential plane could provide interesting informations on Lee Yang edge 
singularities in QCD. RW seems solid (TALK BY Christian Schmidt on Fri); 
we are trying to better understand other transitions… The Holy Grail (needless 
to say) is the critical point… MORE ON THIS IN THE TALK BY DAVID 
CLARKE (Fri)!


2. Having gained more confidence in the method (from Ising 2d) we now think 
we can inspect finite size scaling (also) in LQCD.


3. There is much to do for Padé analysis in the complex temperature plane. 
Results started making sense…


