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Agenda

An invitation (multi-point Pade)
What we have been doing in Lattice QCD

What we could do for the 2d Ising model: finite size scaling

Can we do the same for QCD?
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A few words on multi-point PADE

Suppose you know the values of a function (and of its derivatives) at a number of points

L fGR)s FR) e T (), k=1...N
If you want to approximate the function with a rational function
ST a; 2
Pm Pm 1=
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the obvious requirement is that 7=
R™U (z,) = U9 (z) k=1...N, j=0...s—1

This is the starting point for a multi-point Pade approximation: solve the linear system

from which we want to get the unknown

{a;|i=0...m} {bjlj=1...n} n+m+1=Ns



A few words on multi-point PADE

~

In principle you should require that Bz : Po(20) = Qn(z) =0
... but we will need to give up with this ...



A few words on multi-point PADE

~

In principle you should require that Bz : Po(20) = Qn(z) =0
... but we will need to give up with this ...

Why a rational approximation instead of a polynomial? Because you have POLES that can
mimic the SINGULARITIES of your function! (at least the nearest ones ...)




A few words on multi-point PADE

~

In principle you should require that Bz : Po(20) = Qn(z) =0
... but we will need to give up with this ...

Why a rational approximation instead of a polynomial? Because you have POLES that can
mimic the SINGULARITIES of your function! (at least the nearest ones ...)

Any useful ...?



A few words on multi-point PADE

~

In principle you should require that Bz : Po(20) = Qn(z) =0
... but we will need to give up with this ...
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Yes! LATTICE QCD at IMAGINARY values of the baryonic chemical potential
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A few words on multi-point PADE

~

In principle you should require that Bz : Po(20) = Qn(z) =0
... but we will need to give up with this ...

Why a rational approximation instead of a polynomial? Because you have POLES that can
mimic the SINGULARITIES of your function! (at least the nearest ones ...)

Any useful ...?

Yes! LATTICE QCD at IMAGINARY values of the baryonic chemical potential

... anatural analytic continuation to real chemical potential!
PHYSICAL REVIEW D 105, 034513 (2022)

... and not only that: singularities!

Contribution to understanding the phase structure of strong interaction
matter: Lee-Yang edge singularities from lattice QCD

P. Dimopoulos ,1 L. Dini,2 F. Di Renzo ,1 J. Goswami ,2 G. Nicotra ,2 C. Schmidt ,2
S. Singh 1 K. Zambello®,! and F. Ziesché?

... where we computed and “multi-point Pade approximated” )(f(T, V,,MB)

8 nan(T’ V’/’ll’/’ts)
Ofip VT3

10 _|_l O \"InZ(T,V,u;,us)
300, 30, VT3




PHYSICAL REVIEW D 105, 034513 (2022)

We present a calculation of the net baryon number density as a function of imaginary baryon number
chemical potential, obtained with highly improved staggered quarks at temporal lattice extent of N, = 4, 6.
We construct various rational function approximations of the lattice data and discuss how poles in the
complex plane can be determined from them. We compare our results of the singularities in the chemical
potential plane to the theoretically expected positions of the Lee-Yang edge singularity in the vicinity of the
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Roberge-Weiss and chiral phase transitions. We find a temperature scaling that is in accordance with the
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FIG. 5.

Singularity structure in the ji5 plane for three different temperatures (from left to right 7 = 201.4, 186.3, 167.4). Upper row:
Ansatz (15); lower row: Ansatz (20).
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Shown are three distinct data sets for the real parts of the jip
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Can we do berzer than this ?!?

As reported at Lattice 2022,
we tested our approach on the

2D ISING model



Let’s compare to a beautiful paper...
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Determination of universal critical exponents using Lee-Yang theory
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Zeros of the partition function determined via
computations of cumulants (derivatives of log(Z) with
respect to inverse temperature)

Scaling relations are supposed to describe the approach of leading zeros to critical inverse temperature.
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Dealing instead with leading zeros from magnetisation cumulants (now derive with respect to magnetic field)
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Please notice: here we are [ollowing the right order! (i.e.we first get the critical temperature)
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Let us focus on the second plOt (i.e. we look at 7 as a function of /, sitting at the critical temperature)
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(Can we repeat this
for (Lattice) QCD?



Who is who ...

We now move to the setting of QCD with baryonic chemical potential

I ,LL_B (L) B (L) ~ o 0 In /

which we probe at on a coarse lattice N, = 4 with N, = L = 12,16, 20,24

at imaginary baryonic chemical potential, looking for the Roberge Weiss transition.
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You have to cheat /lOlZ&J‘[[)/ (C. Michael, private communication)

-2.4188 vs -2.4818  12=1.64
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Something still preliminary...

(Also, again,) in view of inspecting finite size scaling, we can play the other game

fzi) = ot P (Tps/T)  Rp(z0) = RLE(T;pp/T)
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CONCLUSIONS

1. The program of (multi-point) Pade analysis in the complex baryonic chemical
potential plane could provide interesting informations on Lee Yang edge
singularities in QCD. RW seems solid (TALK BY Christian Schmidt on Fri);
we are trying to better understand other transitions... The Holy Grail (needless

to say) is the critical point... MORE ON THIS IN THE TALK BY DAVID
CLARKE (Fri)!

2. Having gained more confidence in the method (from Ising 2d) we now think
we can inspect finite size scaling (also) in LQCD.

3. There is much to do for Pade analysis in the complex temperature plane.
Results started making sense...



