Nucleon-hyperon interaction from lattice QCD on physical point

土居孝寛 (Takahiro Doi in Kyoto Univ.)

And HAL QCD collaboration.

S. Aoki, E. Itou, (YITP),
T. M. Doi, (Kyoto)
T. Aoyama (KEK)
T. Doi, T. Hatsuda, L. Yan (RIKEN)
F. Etminan (Univ. of Birjand)
N. Ishii, T. Sugiura, K. Murano, H. Nemura (RCNP)
Y. Ikeda, K. Sasaki (Osaka Univ.)
T. Inoue (Nihon Univ.)
K. Murakami (Tokyo Tech)

2023 08/03 Lattice 2023, Fermilab, USA
Purpose of HAL QCD collaboration:
To obtain the hadron-hadron interaction from the first-principles calculation of QCD.

Our hadron-hadron interaction can be input of many-body calculation of hadrons, then we want to quantitatively understand phenomena related to hadron physics.
Baryon-Baryon interactions in Strangeness=-1

☞ $S=-1$: $N\Lambda-N\Sigma$ potentials

◎ Importance
 · They are important to go from nuclear physics (including only nucleons),
 to strangeness nuclear physics (nucleons + hyperons).

 · Experiment for $N\Lambda-N\Sigma$ is more difficult than experiment of NN.
 Then, it is important to determine the interaction by theoretical calculations (lattice QCD).

 · $N\Lambda-N\Sigma$ interaction can be determined also by recent experiments at J-PARC,
 and HAL QCD potential can be directly compared to the experimental results.

◎ Application
 · Spectroscopy of hyper nucleus
 · Microscopic understanding of inner structure of a neutron star.

◎ Difficult
 · large error (light baryons)
 · Bad signals due to contamination from higher excited states \leftrightarrow discussed later
Outline

- Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
- NΛ-NΣ potential
- Outlook
K-computer (Japan) 2012-2019
Action: $N_f=2+1$, Iwasaki gauge + clover fermion
Size: $96^4 \leftrightarrow (8.1 \text{ fm})^4$
Mass: $(\kappa_{u,d}, \kappa_s) = (0.126117, 0.124790)
\rightarrow (m_\pi, m_K) = (146, 525) \text{[MeV]}$

Fugaku (Japan) 2021-
Action: $N_f=2+1$, Iwasaki gauge + clover fermion
Size: $96^4 \leftrightarrow (8.1 \text{ fm})^4$
Mass: $(\kappa_{u,d}, \kappa_s) = (0.126117, 0.124902)$

Light baryon’s masses [MeV]

Nucleon \bar{N}
939.6(1.5)(+0.1-0.5)

Lambda Λ
1120.9(2.8)(+0.0-1.8)

Sigma Σ
1201.7 (4.9)(+0.0-1.7)

Ref: Experimental data (Particle Data Group 2020)

Nucleon \bar{N}
938.92(938.27+939.57)/2

Lambda Λ
1115.68

Sigma Σ
1193.15(1192.64+1189.37+1197.45)/3

See the detail on poster by Etsuko Itou (presentation ID=96)
Outline

・Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
・$\Lambda N - N\Sigma$ potential
・Outlook
In the case of NN potential

\[G_{NN}(r, t) = \langle 0 | N(r, t) N(0, t) | J_{\text{src}}(t = 0) | 0 \rangle \]

- We can extract scattering phase shift from NBS wave function.
- NN potential can be calculated so that Schrödinger eq. has NBS w.f. as solution.

Nambu-Bethe-Salpeter (NBS) wave function with relative momentum k is obtained at infinite t

\[G_{NN}(r, t) \rightarrow \psi_{l,k}(r) \sim A_{l,k} \frac{\sin(kr - l\pi/2 + \delta_l(k))}{kr} \quad (r > R) \]

R: interaction range

NBS wave function is a solution of Schrödinger eq. with NN potential.

- We can extract scattering phase shift from NBS wave function.
- NN potential can be calculated so that Schrödinger eq. has NBS w.f. as solution.
(time-dependent) HAL QCD method

In the case of NN potential

\[G_{NN}(\mathbf{r}, t) = \langle 0 | N(\mathbf{r}, t) N(\mathbf{0}, t) | J_{\text{src}}(t = 0) | 0 \rangle \]

\[R(\mathbf{r}, t) \equiv \frac{G_{NN}(\mathbf{r}, t)}{G_N(t)^2} = \sum_i A_{W_i} \psi_{W_i}(\mathbf{r}) e^{-(W_i - 2m)t} \]

Many states contributes

i: each energy eigen state

Under inelastic threshold, all excited scattering states share the same U(r,r’):

\[(\nabla^2 + k_{W_i}) \psi_{W_i}(\mathbf{r}) = m \int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') \psi_{W_i}(\mathbf{r}') \]

• All equations (i=0,1,2,3,… up to elastic threshold) can be combined as

\[\left(-\frac{\partial}{\partial t} + \frac{1}{4m} \frac{\partial^2}{\partial t^2} + \frac{\nabla^2}{m} \right) R(\mathbf{r}, t) = \int d\mathbf{r}' U(\mathbf{r}, \mathbf{r}') R(\mathbf{r}', t) \]

• Local potential is obtained by derivative expansion

\[U(\mathbf{r}, \mathbf{r}') = V_C(\mathbf{r}) + V_T(\mathbf{r}) S_{12} + V_{LS}(\mathbf{r}) L \cdot S + \cdots \]

LO LO NLO
Partial wave (L=0,2) decomposition on the lattice

Method 1. A_1^+ projection of cubic group

$$R^{A_1^+}(\mathbf{r}) \equiv \frac{1}{48} \sum_{g \in O_h} R(g^{-1}\mathbf{r})$$

This has dominant contribution from L=0 and small contribution from L=4,6,....

Method 2. Misner’s method

Use

$$R(\mathbf{r}) = \sum_{n,l,m} c_{nlm}^\Delta G_n^\Delta (\mathbf{r}) Y_{lm}(\theta, \phi)$$

new basis function in r (radial direction)

instead of

$$R(\mathbf{r}) = \sum_{l,m} g_{lm}(\mathbf{r}) Y_{lm}(\theta, \phi)$$

sophisticated partial wave decomposition on the lattice
Outline

・Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
・$N\Lambda-N\Sigma$ potential
・Outlook
\sum \text{potential}

1S0, l=3/2
central
binsize=80
Nconf=1600
w/ Misner

t=0, t=t

\begin{align*}
t &= 12 \\
t &= 11 \\
t &= 10 \\
t &= 9 \\
t &= 8
\end{align*}

V(r) [MeV]

r [fm]

source

r
\[V(r) \text{ [MeV]} \]

\[r \text{ [fm]} \]

- **Potential**
- **central**
- **binsize=80**
- **Kconf:**
 - Nconf=414
- **Fconf:**
 - Nconf=1600

\[m_\pi \simeq 146 [\text{MeV}] \]

\[m_\pi \simeq 137 [\text{MeV}] \]

w/ Misner
Outline

- Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
- $\Lambda-N\Sigma$ potential
- Outlook

\[S = -1 \]

- Λ & Σ \(I = 1/2 \)
 - 1S0 central Λ-Σ potential: bad
 - 3S1-3D1 central & tensor Λ-Σ potential: good

- Σ \(I = 3/2 \)
 - 1S0 central Σ potential: good
 - 3S1-3D1 central & tensor Σ potential: bad

\[S = 1 \]

- Λ & Σ \(I = 1/2 \)
 - 1S0 central Λ-Σ potential: signal

- Σ \(I = 3/2 \)
 - 3S1-3D1 central & tensor Σ potential: good
$N \Lambda - N \Sigma$
coupled channel potential

3S1, $l=1/2$
central
binsize=80
$N_{\text{conf}}=1600$

w/ Misner
$N^A - N^\Sigma$
coupled channel potential

$3S1, l=1/2$
tensor

binsize=80
Nconf=1600
w/ Misner
Outline
- Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
- $N\Lambda-N\Sigma$ potential
- Outlook

\[
\begin{align*}
S &= 1 \\
N\Lambda & \text{ & } N\Sigma \quad I = 1/2 \\
N\Sigma & \quad I = 3/2
\end{align*}
\]

- $1S0$ central $N\Lambda-N\Sigma$ potential: signal
- $3S1-3D1$ central & tensor $N\Lambda-N\Sigma$ potential: bad
- $1S0$ central $N\Sigma$ potential: good
- $3S1-3D1$ central & tensor $N\Sigma$ potential: good
- $3S1-3D1$ central & tensor $N\Sigma$ potential: bad
Λ – Σ
coupled channel potential

$|S_0, l=1/2$
central
bin size = 80
$N_{\text{conf}}=1600$
with Misner

\begin{align*}
V(r) \text{ [MeV]} & \quad r \text{ [fm]} \\
0 & \quad 4 \\
-40 & \quad 0 \\
-20 & \quad 20 \\
0 & \quad 40 \\
-40 & \quad 0 \\
V(r) \text{ [MeV]} & \quad r \text{ [fm]} \\
0 & \quad 4 \\
-40 & \quad 0 \\
-20 & \quad 20 \\
0 & \quad 40 \\
-40 & \quad 0
\end{align*}

\begin{align*}
\text{t=12} \\
\text{t=11} \\
\text{t=10} \\
\text{t=9} \\
\text{t=8}
\end{align*}
Outline

- Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
- Λ-Σ potential
- Outlook

\[
\begin{align*}
S=-1 & \quad \text{signal} \\
\Lambda & \quad \text{bad} \\
\Sigma & \quad \text{good} \\
\end{align*}
\]

\[
\begin{align*}
N\Lambda & \quad I=1/2 \\
1S_0 \text{ central } & \quad \Lambda-\Sigma \text{ potential} \\
3S_1-3D_1 \text{ central & tensor } & \quad \Lambda-\Sigma \text{ potential} \\
N\Sigma & \quad I=3/2 \\
1S_0 \text{ central } & \quad \Sigma \text{ potential} \\
3S_1-3D_1 \text{ central & tensor } & \quad \Sigma \text{ potential} \\
\end{align*}
\]
$N\Sigma$ potential

$3S1$, $l=3/2$

central

binsize=80

$N_{\text{conf}}=1600$

w/ Misner

$V(r)$ [MeV] vs. r [fm]

- $t=12$
- $t=11$
- $t=10$
- $t=9$
- $t=8$
$N\Sigma$ potential

3S1, $l=3/2$

tensor

binsize=80

$N_{\text{conf}}=1600$

w/ Misner

$V(r)$ [MeV]

\begin{itemize}
 \item $t=12$
 \item $t=11$
 \item $t=10$
 \item $t=9$
 \item $t=8$
\end{itemize}
baryon-baryon potentials in SU(3) limit

<table>
<thead>
<tr>
<th>flavor multiplet</th>
<th>baryon pair (isospin)</th>
<th>attractive</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>${NN}(I=1), {N\Sigma}(I=3/2), {\Sigma\Sigma}(I=2)$, ${\Sigma\Xi}(I=3/2), {\Xi\Xi}(I=1)$</td>
<td>none</td>
</tr>
<tr>
<td>1S0</td>
<td>8_a</td>
<td>none</td>
</tr>
<tr>
<td>3S1</td>
<td>$^{10^*}$</td>
<td>${NN}(I=0), {\Sigma\Xi}(I=3/2)$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>${\Sigma\Xi}(I=3/2), {\Xi\Xi}(I=0)$</td>
</tr>
<tr>
<td></td>
<td>8_a</td>
<td>repulsive</td>
</tr>
</tbody>
</table>

\[
S = -1, I = 1/2, \ 1S_0 \ \text{sector.}
\]

\[
\left(\begin{array}{c} \langle NA \rangle \\ \langle N\Sigma \rangle \end{array} \right) = \left(\begin{array}{cc} \sqrt{9/10} & -\sqrt{1/10} \\ \sqrt{1/10} & \sqrt{9/10} \end{array} \right) \left(\begin{array}{c} 27 \\ 8_a \end{array} \right)
\]

\[
S = -1, I = 1/2, \ 3S_1 \ \text{sector.}
\]

\[
\left(\begin{array}{c} \langle NA \rangle \\ \langle N\Sigma \rangle \end{array} \right) = \left(\begin{array}{cc} \sqrt{1/2} & -\sqrt{1/2} \\ \sqrt{1/2} & \sqrt{1/2} \end{array} \right) \left(\begin{array}{c} 10^* \\ 8_a \end{array} \right)
\]
Outline
• Generation of Gauge Configuration on Supercomputer Fugaku (Only results)
• NΛ-NΣ potential
• Outlook

\[\begin{align*}
S=-1 & \quad NΛ & NΣ & I=1/2 & \quad 1S0 \text{ central } NΛ-NΣ \text{ potential} \\
& \quad NΣ & I=3/2 & \quad 3S1-3D1 \text{ central & tensor } NΛ-NΣ \text{ potential} \\
& & & \quad 1S0 \text{ central } NΣ \text{ potential} \\
& & & \quad 3S1-3D1 \text{ central & tensor } NΣ \text{ potential}
\end{align*} \]
We want to extract signals

\[G_{N\Lambda}(r, t) = \langle 0 | N(r, t) \Lambda(0, t) | J_{\text{src}}(t = 0) | 0 \rangle \]

\[R(r, t) \equiv \frac{G_{N\Lambda}(r, t)}{G_N(t)G_\Lambda(t)} \]

\[= \sum_i A_{W_i} \psi_{W_i}(r) e^{-(W_i - m_N - m_\Lambda) t} \]

\[R(r, t) = R^{\text{signal}}(r, t) + R^{\text{inelastic}}(r, t) \quad (R^{\text{inelastic}}(r, t) \to 0(t \to \infty)) \]

We can get only LHS from lattice QCD, but we want to get only first term in RHS. (Second term is noise from inelastic excited states)

If we take large t enough, second term will vanish, but this method does not work in practice. Then, we want to subtract second term other than taking large t enough.
Approximately subtract inelastic contamination

Consider inelastic contamination into one-baryon correlator:

\[
G_B(t) = \sum \langle 0 | B(r, t) | J_{src}(t = 0) | 0 \rangle \\
G_B^{\text{ela}}(t) \equiv A_B e^{-m_B t} \text{ Fitted function} \\
G_B^{\text{inel}}(t) \equiv G_B(t) - G_B^{\text{ela}}(t)
\]

Estimate the inelastic contamination of two-baryon correlator (NBS wave function) using the inelastic contamination of one-baryon correlator

\[
G_{N\Lambda}^{\text{inel}}(t) = G_N^{\text{ela}}(t)G_{\Lambda}^{\text{inel}}(t) + G_N^{\text{inel}}(t)G_{\Lambda}^{\text{ela}}(t) + G_N^{\text{inel}}(t)G_{\Lambda}^{\text{inel}}(t)
\]

Calculate potentials using improved two-baryon correlator:

\[
G_{N\Lambda}(r, t) \rightarrow G_{N\Lambda}(r, t) - \alpha G_{N\Lambda}^{\text{inel}}(t)
\]

In the case of free gauge configuration:

\[
G_{N\Lambda}(r, t) = \frac{1}{4L^3} G_N(t)G_{\Lambda}(t) \quad \alpha = \frac{1}{4V}
\]
original results

\[R(r, t) = \frac{G_{NA}(r, t)}{G_N(t)G_\Lambda(t)} \]

\[V_{NA}(r) \]

Graph showing \(V(r) \) in MeV vs. \(r \) in fm for different values of \(t \): t=9, t=10, t=11, t=12.
Approximately subtract inelastic contamination

\[V_{N\Lambda}(r) \]

\[\tilde{R}(r, t) = \frac{G_{NA}(r, t) - \alpha G_{NA}^{\text{inel}}(t)}{G_{N}^{\text{ela}}(t)G_{\Lambda}^{\text{ela}}(t)} \]
\[= R(r, t) - \alpha R^{\text{inel}}(t) \]
\[\alpha = \frac{1}{4V} \]

\[R(r, t) \equiv \frac{G_{NA}(r, t)}{G_{N}^{\text{ela}}(t)G_{\Lambda}^{\text{ela}}(t)} \]

- It seems that this subtraction works well and we need tuning of \(\alpha \) for better results.
- We have to check that this subtraction works in other channels (e.g. \(\Xi\Xi \)).
Summary

◎ Motivation

• Λ-Σ interaction is important for strangeness nuclear physics (nucleons + hyperons).
• In near future, we can compare the lattice QCD results and experimental results.

◎ Results

• hadron interactions are calculated on physical point.
• We see (light) quark-mass dependence.
• We must subtract the contamination from inelastic excited states for noisy channel, e.g., Λ-Σ.

We must establish the way of subtraction, then it will be applied to Λ-Σ potential.
Appendix
$\Xi \Lambda - \Xi \Sigma$
coupled channel potential

$3S1-3D1, I=1/2$
central
binsize=80
Nconf=800
w/ Misner

t=14
t=13
t=12
t=11
t=10
\[\Xi \Lambda - \Xi \Sigma \]
coupled channel potential

3S1-3D1, \(I=1/2 \)
tensor

binsize=80

Nconf=800

w/ Misner
$\Xi\Sigma$ potential

$1S_0, l=3/2$

central

binsize=80

Nconf=800

w/ Misner

$V(r)$ [MeV]

r [fm]
$$\sum$$ potential

3S1-3D1, l=3/2
central
binsize=80
Nconf=800
w/ Misner

\[V(r) \text{ [MeV]} \]

\[r \text{ [fm]} \]

t=14
t=13
t=12
t=11
t=10
3S1-3D1, l=3/2

potential

tensor

binsize=80

Nconf=800

w/ Misner