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• Renormalization-group flow from UV to IR in asymptotically free gauge theory; types
of IR behavior; role of IR fixed point

• Calculations of anomalous dimensions of fermion bilinear operators via series expan-
sions in gauge coupling and via scheme-independent series expansions; application to
theories with fermions in a single representation and in multiple representations of the
gauge group

• Comparison of results with recent lattice measurements for SU(3) withNF = 10 and
SU(4) for NF = 4 and NA2 = 4 fermions, where F and A2 are the fundamental
and antisymmetric tensor representations

• Higher-loop studies of the beta functions of O(N ) |~φ|44 and |~φ|63 theories

• Conclusions

This talk contains new results from Ryttov and RS, 2307.12426 and from RS, PRD
107, 056018 (2023) [2301.01830] and RS, PRD 107, 096009 (2023) [2302.05422]



RG Flow from UV to IR; Types of IR Behavior and Role
of IR Fixed Point

Consider an asymptotically free, vectorial gauge theory with gauge group G and a set
of massless fermions, either (i) Nf fermions f in a single representation R of G, or (ii)
Nf fermions f and Nf ′ fermions f ′ in different reps. R and R′.

Asymptotic freedom ⇒ theory is weakly coupled, properties are perturbatively
calculable for large Euclidean momentum scale µ in deep ultraviolet (UV).

One can analyze the renormalization-group (RG) flow from large µ in the UV to small
µ in the infrared (IR).

If a fermion had mass m0, it would be integrated out in the effective low-energy field
theory for µ < m0, and hence would not affect the IR limit of interest here, so no loss
of generality in taking massless fermions (mass-split models can also be of interest).

Denote running gauge coupling at scale µ as g = g(µ), and let
α(µ) = g(µ)2/(4π) and a(µ) = g(µ)2/(16π2).



The dependence of α(µ) on µ is described by the β function

β ≡
dα

d lnµ
= −2α

∞
∑

ℓ=1

bℓ a
ℓ

where ℓ = loop order of the coeff.

Coefficients b1 (Gross and Wilzcek, Politzer, 1973) and b2 (Caswell, Jones, 1974) in β
are independent of regularization/renormalization scheme, while bℓ for ℓ ≥ 3 are
scheme-dependent.

Asymptotic freedom means b1 > 0, so β < 0 for small α(µ), in neighborhood of UV
fixed point (UVFP) at α = 0.

As the scale µ decreases from large values, α(µ) increases. For a sufficiently large
fermion content satisfying asymptotic freedom, β has an infrared (IR) zero, denoted
αIR, which is an IR fixed point (IRFP) of the renormalization group.

At this IRFP, the theory is scale-invariant and is inferred to be conformal-invariant,
hence the term “conformal window” (CW) for this regime.



The properties of the theory at such an IRFP are of fundamental interest. These include
anomalous dimensions of (gauge-invariant) operators. Denoting the dimension of an
operator O as DO, the anomalous dimension γO is given by DO = DO, free − γO.

Besides the intrinsic field-theoretic interest in anomalous dimensions of operators in the
conformal window, theories slightly below the lower end of the CW exhibit
quasi-conformal behavior, with slow variation of the gauge coupling over an extended
interval of Euclidean momentum, µ, owing to the small β.

This is of interest for particle physics because as this theory flows into the IR and
eventually undergoes spontaneous chiral symmetry breaking (SχSB), the dynamical
breaking of scale invariance yields a light approx. Nambu-Goldstone boson, the dilaton.
Insofar as the Higgs boson can be modelled as at least partially dilatonic, this could
protect its mass from large radiative corrections. Lattice simulations (LSD, LatKMI,
Lat-HC groups) have verified the appearance of a light 0++ scalar in these theories.

In the chirally broken phase, just as the IR zero of β is only an approx. IRFP, so also,
the γψ̄ψ,IR is only approx., describing the running of ψ̄ψ over an extended interval of
energies.



The asymptotic freedom condition is b1 > 0, i.e. 11CA − 4
∑

f NfTf > 0. For a
theory with fermions in a single rep., this sets an upper bound on Nf :
Nf,u = 11CA/(4Tf), where with T aR are generators of the Lie algebra of G in the
representation R, and dR = dim(R), and group invariants include

T aRT
a
R = C2(R)IdR×dR , TrR(T aRT

b
R) = T (R)δab

We use the notation CA ≡ C2(G) and, for f in R, Tf ≡ T (R) and Cf ≡ C2(R).

The condition that the 2-loop β fn. should have an IR zero (IRZ) is b2 < 0, i.e.,

34C2
A − 4

∑

f

(5CA + 3Cf)NfTf < 0

which sets a lower bound on Nf . The region in which b1 > 0 and b2 < 0 is denoted
IIRZ. The upper (u) and lower (ℓ) boundaries BIRZ,u and BIRZ,ℓ of the IRZ regions
are the lines b1 = 0 and b2 = 0.

The upper and lower boundaries of the conformal window are denoted
BCW,u = BIRZ,u and BCW,ℓ. We first discuss theories with fermions in a single
representation, and then theories with fermions in multiple different reps.



Calculations of Anomalous Dimensions

An operator of particular interest is the fermion bilinear, ψ̄ψ =
∑Nf

j=1 ψ̄jψj with
anom. dim. γψ̄ψ and its value at the IRFP, γψ̄ψ,IR.

One way to calculate γψ̄ψ,IR is via a power series expansion in the coupling,
a = α/(4π):

γψ̄ψ =
∞
∑

ℓ=1

cℓ a
ℓ

where cℓ is ℓ-loop coefficient. To calculate the n-loop result for the anom. dim.,
γψ̄ψ,nℓ,IR, one first calculates αIR,nℓ,IR from the IR zero in the n-loop beta function
and then sets α = αIR,nℓ,IR in above eq.

For a given G and R, as Nf decreases below Nf,u, αIR,2ℓ increases. This motivates
calculation of the IR zero in β to higher-loop order. With T. Ryttov, we calculated
γψ̄ψ,IR in this way up to 5-loop order in Ryttov and RS, PRD 94, 105014 (2016), PRD
94, 105015 (2016).

The anom. dim. γψ̄ψ,IR is a physical quantity and is independent of the scheme used
for regularization and renormalization.



The conventional expansion of γψ̄ψ,IR as a power series in α, calculated to finite order,
does not maintain this scheme independence beyond the lowest order, since the bℓ are
scheme-dependent for ℓ ≥ 3 and the cℓ are scheme-dependent for ℓ ≥ 2.

This scheme-dependence of higher-order calculations is well-known in QCD and
uncertainties due to it are routinely taken into account in comparing higher-order QCD
calculations with data, e.g., from the Tevatron and LHC.

We studied the effects of scheme dependence by applying scheme transformations in a
series of papers, incl. Ryttov and RS, PRD 86, 065032, 085005 (2012); RS, PRD 88,
036003 (2013); RS, PRD 90, 045011 (2014); Choi and RS, PRD 90 125029 (2014);
PRD 94, 065038 (2016); Ryttov, PRD 89, 016013 (2014); PRD 89, 056001 (2014);
PRD 90, 056007 (2014); also J. Gracey, Simms, PRD 91, 085037 (2015); Gracey et al.,
2306.09056.

It is valuable to calculate and analyze series expansions for physical quantities such as
anomalous dimensions that are scheme-independent at each order.



Since αIR → 0 as Nf → Nf,u and also ∆f = Nf,u −Nf has the property that
∆f → 0 as Nf → Nf,u, one can alternatively express these quantities as power
series in ∆f rather than α (Banks-Zaks). Note that ∆f = 3b1/(4Tf).

Because ∆f depends only on the group G, the rep. R, and the number Nf , these
power series are obviously scheme-independent (at each order).

This scheme-independent series expansion is

γψ̄ψ,IR =
∞
∑

j=1

κj∆
j
f

We denote the truncation of the above series to maximal order (power) j as γ
ψ̄ψ,IR,∆

j
f
.

The calculation of κj requires, as inputs, the values of the bℓ for 1 ≤ ℓ ≤ j + 1 and
the cℓ for 1 ≤ ℓ ≤ j. It It may also provide a rough guide for anomalous dimensions
in quasi-conformal theories that are close to the lower edge of the conformal window.



Define a denominator factor D = 7CA + 11Cf . The first two κj are

κ1 =
8CfTf

CAD
,

κ2 =
4CfT

2
f (5CA + 88Cf)(7CA + 4Cf)

3C2
AD

3
,

and similarly for κ3 (Ryttov, PRL 117, 071601 (2016). In Ryttov and RS, PRD 94,
105014 (2016) we calculated κ4 and hence γψ̄ψ,IR to O(∆4

f) for SU(3).

In Ryttov and RS, PRD 95, 085012 (2017); PRD 95, 105004 (2017); PRD 96, 105015
(2017) we carried out these scheme-independent series expansions of γψ̄ψ,IR for an
arbitrary gauge group G and fermion representation R up to O(∆4

f) and analyzed
them in detail for specific groups and reps. We used b5 from Baikov, Chetyrkin, and
Kühn, PRL 118, 082002 (2017); JHEP 04 (2017) 119 and the Vermaseren group,
Herzog et al., JHEP 02 (2017) 090, together with earlier calculations of c4 by
Chetyrkin, and by Vermaseren, Larin, and van Ritbergen.

Our result for κ4:



κ4 =
T 2
f

35C5
AD

7

[

CACfT
2
f

(

19515671C6
A − 131455044C5

ACf + 1289299872C4
AC

2
f + 2660221312C3

AC
3
f

+1058481072C2
AC

4
f + 6953709312CAC

5
f + 1275715584C6

f

)

+210CfT
2
fD

(

5789C2
A − 4168CACf − 6820C2

f

)

dabcdA dabcdA

dA

−210CACfTfD

(

41671C2
A − 125477CACf − 53240C2

f

)

dabcdR dabcdA

dA

−28 · 112C2
ACfD(2569C2

A + 18604CACf − 7964C2
f

)

dabcdR dabcdR

dA

−214 · 3CAT
2
fD

3d
abcd
R dabcdA

dR
+ 213 · 33C2

ATfD
3d

abcd
R dabcdR

dR

+28D

[

− 3CACfT
2
fD

(

4991C4
A − 17606C3

ACf + 33240C2
AC

2
f − 30672CAC

3
f + 9504C4

f

)

−24CfT
2
f

dabcdA dabcdA

dA

(

17206C2
A − 60511CACf − 45012C2

f

)

+40CACfTf
dabcdR dabcdA

dA

(

35168C2
A − 154253CACf − 88572C2

f

)

−88C2
ACf

dabcdR dabcdR

dA

(

973C2
A − 93412CACf − 56628C2

f

)

+1440CAT
2
fD

2d
abcd
R dabcdA

dR
− 7920C2

ATfD
2d

abcd
R dabcdR

dR

]

ζ3



+
4505600CACfD

2

dA

[

− 4T 2
f d

abcd
A dabcdA + 2Tfd

abcd
R dabcdA (10CA + 3Cf) + 11CAd

abcd
R dabcdR (CA − 3Cf)

]

ζ5

]

where (a, b, c, d are group indices)

dabcdR =
1

3!
TrR

[

T a(R)

(

T b(R)T
c
(R)T

d
(R) + cycl.

)]

dabcdA = dabcdR for R = adj, dR = dim(R), and ζs =
∑∞
n=1

1
ns

is the Riemann zeta function.



For G = SU(Nc) and R = F , our results for general G and R reduce to

κ1,F =
4(N2

c − 1)

Nc(25N2
c − 11)

, κ2,F =
4(N2

c − 1)(9N2
c − 2)(49N2

c − 44)

3N2
c (25N2

c − 11)3

κ3,F =
8(N2

c − 1)

33N3
c (25N2

c − 11)5

[

(

274243N8
c − 455426N6

c − 114080N4
c + 47344N2

c + 35574
)

− 4224N2
c (4N

2
c − 11)(25N2

c − 11)ζ3

]

κ4,F =
4(N2

c − 1)

34N4
c (25N2

c − 11)7

[

(

263345440N12
c − 673169750N10

c + 256923326N8
c

− 290027700N6
c + 557945201N4

c − 208345544N2
c + 6644352

)

+ 384(25N2
c − 11)

(

4400N10
c − 123201N8

c + 480349N6
c

− 486126N4
c + 84051N2

c + 1089
)

ζ3

+ 211200N2
c (25N2

c − 11)2(N6
c + 3N4

c − 16N2
c + 22)ζ5

]



Plot of γ
ψ̄ψ,IR,∆

j
f

with 1 ≤ j ≤ 4 for SU(3) and fermion rep. R = F , as functions

of Nf ∈ I from Ryttov and RS, PRD 94, 105014 (2016) [1608.00068]. Curves:
γψ̄ψ,IR,F,∆f

(red), γψ̄ψ,IR,F,∆2
f

(green), γψ̄ψ,IR,F,∆3
f

(blue), γψ̄ψ,IR,F,∆4
f

(black).

As one moves down from the upper end of the conformal window, γψ̄ψ,IR increases.
Approximate analysis of Schwinger-Dyson eq. for fermion propagator suggests SχSB
occurs at γψ̄ψ,IR = 1, which thus determines the lower boundary BCW,ℓ of the
conformal window (Appelquist et al (1988); Cohen and Georgi (1989))

A rigorous bound in the conformal window is γψ̄ψ,IR < 2 (Mack, 1977), but this need
not be saturated.

Extrapolations of these O(∆4
f) results to O(∆j

f) with limj→∞ given in Ryttov-RS,
PRD 94, 105014 (2016). Combining this extrapolation with the γIR = 1 condition
yields 9 < Nf,cr < 10.

This agrees with extensive lattice simulations of the SU(3), NF = 8 theory (LSD,
LatKMI, LatHC...), which indicate that it is slightly below BCW,ℓ and with Hasenfratz
et al., 2306.07236, who find that the SU(3) Nf = 10 theory is in the CW.





Nc Nf γIR,F,∆f
γIR,F,∆2

f
γIR,F,∆3

f
γIR,F,∆4

f
γIR,F,ext

3 8 0.424 0.698 0.844 1.036 −
3 9 0.374 0.587 0.687 0.804 1.4(2)
3 10 0.324 0.484 0.549 0.615 0.95(6)
3 11 0.274 0.389 0.428 0.462 0.62(2)
3 12 0.224 0.301 0.323 0.338 0.400(5)
3 13 0.174 0.221 0.231 0.237 0.257(5)
3 14 0.125 0.148 0.152 0.153 0.154(4)
3 15 0.0748 0.0833 0.0841 0.0843 0.0841(2)
3 16 0.0249 0.0259 0.0259 0.0259 0.0259(1)

Values of γ
ψ̄ψ,IR,∆

j
f

= γ
IR,∆

j
f

with 1 ≤ j ≤ 4 for SU(2), SU(3), and R = F . Last

column shows extrapolations to j → ∞, denoted γIR,F,ext.



In our papers we discussed the accuracy of these finite order calculations and resultant
γ
IR,∆

j
f

values. A rough estimate can be obtained from the figures.

Where the curves for the γ
IR,∆

j
f

with different j are close to each other, higher-order

terms are expected to be small. As Nf decreases, these curves deviate progressively
more from each other, and higher-order terms are more important.

Additional estimates of effects of higher-order terms were obtained via calculation and
analysis of Padé approximants, e.g., in Ryttov-RS, PRD 97, 025004 (2018).

The approximate analysis of the Schwinger-Dyson eq. (Appelquist, Lane, Mahanta,
1988) also suggested a quadratic criticality condition γCC, γf̄f,IR(2 − γf̄f,IR) = 1
for the onset of SχSB. This eq. has a double root at γf̄f,IR = 1 and hence is formally
equivalent to the linear γCC, γf̄f,IR = 1.

When applied in the context of a truncated series expansions, the quadratic γCC yields
a slightly larger value of Nf,cr at BCW,ℓ than the linear γCC (B. S. Kim, D. K. Hong,
and J.-W. Lee, PRD 101, 056008 (2020); J.-W. Lee, PRD 103, 076006 (2021); J.-W.
Lee, talk at this conf.) This difference decreases as the order O(∆j

f) increases.



For SU(3), with our O(∆4
f) order scheme-independent inputs, the quadratic γCC

condition gives 9 < Nf,c < 10, in agreement with our extrapolation in Ryttov-RS,
PRD 94, 105014 (2016). The CFT bound γ < 2 would give 8 < Nf,c < 9, also in
agreement with lattice simulations.

We also calculated anomalous dimensions for other operators, including higher-spin
fermion bilinears.

One such operator is the Lorentz tensor bilinear OT,µν = ψ̄σµνψ, with anom. dim.
γT,IR at the IRFP and scheme-independent series expansion

γT,IR =
∞
∑

j=1

κT,j ∆
j
f

with truncation to O(∆j
f) denoted γ

T,IR,∆
j
f
.

For a general G and R, using the highest-order inputs available, we calculated γT,IR
up to O(∆3

f) in Ryttov-RS, PRD 94, 125005 (2016).



For the coefficients κT,j in the scheme-independent expansions of these anomalous
dimensions for the Lorentz tensor fermion bilinear, we obtain

κT,1 = −
8CfTf

3CAD

κT,2 = −
4CfT

2
f (259C

2
A + 428CACf − 528C2

f)

9C2
AD

3

κT,3 =
4CfTf

35C4
AD

5

[

3CAT
2
f

{

C4
A(−11319 + 188160ζ3) + C3

ACf(−337204 + 64512ζ3) + C2
AC

2
f(83616 − 890112ζ3)

+ CAC
3
f(1385472 − 354816ζ3) + C4

f(−212960 + 743424ζ3)

}

− 512T 2
fD(−5 + 132ζ3)

dabcdA dabcdA

dA

− 15488C2
AD(−11 + 24ζ3)

dabcdR dabcdR

dA
+ 11264CATfD(−4 + 39ζ3)

dabcdR dabcdA

dA

]

.

Note that in contrast to the κj for γψ̄ψ,IR, which are positive for 1 ≤ j ≤ 4, here for
SU(3), R = F , κF,1 and κF,2 are negative, while κF,3 is positive:

κT,SU(3),F,1 = −(1.6615 × 10−2) , κT,SU(3),F,2 = −(1.12625 × 10−3) ,

κT,SU(3),F,3 = 2.480155 × 10−5



For SU(3) and R = F , fundamental rep., with γT,IR ≡ γ
(σ)
IR,F , these give the

following anomalous dimensions as a function of NF :

Nf γ
(σ)
IR,F,∆f

γ
(σ)

IR,F,∆2
f

γ
(σ)

IR,F,∆3
f

8 −0.141 −0.223 −0.207
9 −0.125 −0.188 −0.1775
10 −0.108 −0.156 −0.149
11 −0.0914 −0.125 −0.121
12 −0.0748 −0.0976 −0.0953
13 −0.05815 −0.07195 −0.0709
14 −0.0415 −0.0486 −0.0482
15 −0.0249 −0.0275 −0.0274
16 −0.00831 −0.00859 −0.00859

Further analysis for other higher-spin operators in Ryttov-RS, PRD 101, 076018 (2020).

Another operator of interest is Tr(FµνF
µν), whose anom. dim. at the IRFP is given

by β′
IR = (dβ/dα)IR. Calculations in RS, PRD 87, 105005 (2013); Ryttov-RS, PRD

94, 125005 (2017); PRD 05, 105004 (2017) to O(∆5
f). Here we focus on anom. dims.

of fermion bilinears.



It is of interest to compare our perturbative calculations of anomalous dimensions with
lattice measurements.

In previous work we have done this for several theories for which there have been
extensive simulations, such as SU(3) with NF = 12 fermions in the fundamental rep.,
SU(3) with 2 fermions in the symmetric tensor rep., SU(2) with various reps. R.

For various G, R, and Nf , there is not yet a complete consensus as to whether a given
theory is inside or outside of the conformal window.

Here we focus on new results on SU(3) with NF = 10 fermions in the fundamental
rep. Previous studies include the following:

Appelquist et al. (LSD Collab.), arXiv:1204.6000 early study

Appelquist et al. (LSD Collab.), PRD 103, 014504 (2021) find that this theory has an
IRFP and hence is in the conformal window, and measure γψ̄ψ,IR = 0.47 ± 0.05

Z. Fodor, K. Holland, J. Kuti, D. Nogradi, Wong, PoS, Lattice 2018, [1812.03972];
PoS, Lattice 2019 [1912.07653]; Z. Fodor, K. Holland, J. Kuti, Wong, PoS, Lattice
2021 [2203.15847] find that this theory is in the chirally broken phase (Kuti, talk at this
conf.)



See also T.-W. Chiu, 1603.08854 and PRD 99, 014507 for study of β function and β′
IR

recently: Hasenfratz, Neil, Shamir, Svetitsky, 2306.07236 (A. Hasenfratz, talk at this
conf.) find that this theory has an IRFP and hence is in the conformal window, and
measure γψ̄ψ,IR and γT,IR to be

γψ̄ψ,IR ≃ 0.6 , γT,IR ≃ −0.2

To within the uncertainties in our scheme-independent perturbative calculations of
γψ̄ψ,IR to O(∆4

F ) and γT,IR to O(∆3
F ), they agree with these measurements:

γψ̄ψ,IR,∆F
= 0.324 , γψ̄ψ,IR,∆2

F
= 0.484

γψ̄ψ,IR,∆3
F

= 0.549 , γψ̄ψ,IR,∆4
F

= 0.615

γT,IR,∆F
= −0.108 , γT,IR,∆2

F
= −0.156 , γT,IR,∆3

F
= −0.149



Theories with Fermions in Multiple Different
Representations

We generalized our scheme-independent calculations of anomalous dimensions to
asymptotically free theories with fermions in multiple different representations in
Ryttov-RS, PRD 98, 096003 (2018), giving results for an an arbitrary nonabelian gauge
group G with (massless) fermions f in rep. R and f ′ in rep. R′ of G. A generalized
’t Hooft-Veneziano limit was studied in Girmohanta, Ryttov, RS, PRD 99, 116022
(2019). Further studies in B. S. Kim, D. K. Hong, J.-W. Lee, PRD 101, 056008
(2020); J.-W. Lee, PRD 103, 076006 (2021).) Here we report new results from Ryttov
and RS, 2307.12426.

Here, asymptotic freedom (AF) condition is b1 > 0 where
b1 = (1/3)[11CA − 4NfTf − 4Nf ′Tf ′]. The eq. b1 = 0 is the upper boundary
BIRZ,u = BCW,u of the IRZ region and conformal window. The resultant upper
bounds on Nf and Nf ′ from AF are Nf < Nf,u and Nf ′ < Nf ′,u, where

Nf,u =
11CA − 4Nf ′Tf ′

4Tf
, Nf ′,u =

11CA − 4NfTf

4Tf ′



The scheme-independent expansion parameters are

∆f = Nf,u −Nf =
3b1

4Tf
, ∆f ′ = Nf ′,u −Nf ′ =

3b1

4Tf ′

so ∆f ′ = (Tf/Tf ′)∆f .

Scheme-independent series expansions of anom. dims at the IRFP are

γf̄f,IR =
∞
∑

j=1

κ
(f)
j ∆j

f , γf̄ ′f ′,IR =
∞
∑

j=1

κ
(f ′)
j ∆j

f ′

Denote truncations of these series to order j as γ
f̄f,IR,∆

j
f

and γ
f̄ ′f ′,IR,∆

j
f ′

.

Define the denominator factor Df = CA(7CA + 11Cf) + 4Nf ′Tf ′(Cf ′ − Cf).

For κ
(f)
j , j = 1, 2, 3 we obtained κ

(f)
1 = 8CfTf/Df ,

κ
(f)
2 =

4CfT
2
f

3D3
f

[

CA(7CA + 4Cf)(5CA + 88Cf)

+ 24Nf ′Tf ′(Cf ′ − Cf)
(

10CA + 8Cf + Cf ′

)

]



κ
(f)
3 =

4CfTf

34D5
f

[

A
(f)
0 +A

(f)
1 Nf ′ +A

(f)
2 N 2

f ′ +A
(f)
3 N 3

f ′

]

where A
(f)
0 , A

(f)
1 , A

(f)
2 , and A

(f)
3 are more complicated functions (given in our paper).

The κ(f ′) are obtained from these κ
(f)
j by interchanging f and f ′ in all expressions.

A particular theory of interest has an SU(4) gauge group and (massless) Dirac fermion
content consisting of NF fermions in the fundamental (F ) rep. and NA2 fermions in
the antisymmetric rank-2 tensor rep. (A2). In this theory, the (6-dim.) A2 rep. is
self-conjugate, so NA2 Dirac fermions are equivalent to 2NA2 Majorana fermions. This
theory is motivated as a model of dynamical electroweak symmetry breaking (EWSB)
that addresses the issue of the large top quark mass.

There have been many earlier efforts at dynamical EWSB models, e.g. Weinberg, PRD
19, 1277 (1979); Susskind, PRD 20, 2619 (1979); Dimopoulos and Susskind, NPB 155,
23, (1979); Eichten and Lane PLB 90, 125 (1980). Early models for a heavy top quark
include Hill, PLB 266, 419 (1991); Kaplan, NPB 365, 259 (1991); Appelquist and
Terning, PRD 50, 2116 (1994); Lane and Eichten, PLB 352, 382 (1995); Chivukula,
Dobrescu, and Terning, PLB 353, 289 (1995); Chivukula and Simmons, PRD 66,
015006 (2002) among others.



Reasonably UV-complete theories of this type involved sequential breaking of an
asymptotically free chiral gauge theory in stages, leading to a vectorial gauge theory
that becomes strongly coupled at the TeV scale. The sequential breaking provided a
way of explaining the hierarchical structure of the SM fermion generations with a
low-scale seesaw for neutrino masses: Appelquist and RS, PLB 548, 204 (2002);
Appelquist and RS, PRL 90, 201801 (2003); Appelquist, Piai, and RS, PRD 69 015002
(2004); Christensen and RS, PRL 94, 241801 (2004) (challenge of getting t-b mass
splitting and still satisfying precision EW constraints). See also Ferretti and Karateev,
JHEP 03 (2014) 077. Another approach assumed a higher-dimensional spacetime, with
SM fermions having wave functions in the extra dimensions that are strongly localized:
Arkani-Hamed and Schmaltz, PRD 61, 033005 (2000); Nussinov and RS, PLB 526, 137
(2002).

In the 2018 Ryttov-RS paper we noted that lattice simulations had been performed of
an SU(4) theory with Dirac fermion content NF = 2 and NA2 = 2 by Ayyar,
DeGrand, et al., PRD 97, 074505, 114505 (2018), but this theory was found to be in
the chirally broken phase where our calculations do not apply directly.



Recently, in PRD 107, 114504 (2023) [2304.11729], Hasenfratz, Neil, Shamir, Svetitsky,
and Witzel have reported results from lattice simulations of the SU(4) theory with
NF = 4 and NA2 = 4 Dirac fermions (c.f. talk by Y. Shamir at this conf.). These
authors find that this theory has an IRFP and hence is in the conformal window, and
measure

γ(4)
m ≃ 0.75 , γ(6)

m ≃ 1.0

An interesting question is whether our general higher-order perturbative calculations of
anomalous dimensions of fermion bilinears, when specialized to this theory, yield results
in agreement with the values measured in this recent lattice study by Hasenfratz et al.

We address and answer this question in Ryttov-RS 2307.12426. We find agreement.

It is instructive to give results for the more general case of an SU(Nc) theory with
massless Dirac fermion content consisting of NF fermions in the F rep. and NA2

fermions in the A2 rep. We label an SU(Nc) theory with NF and NA2 Dirac fermions
as (Nc, NF , NA2)

Denote the F and A2 fermion as ψai and χabj = −χbaj , where a, b are SU(Nc)
gauge indices and the flavor indices are i = 1, ..., NF and j = 1, ..., NA2. We
calculate anomalous dimensions of the operators



ψ̄ψ =

Nf
∑

i=1

ψ̄a,iψ
a
i , χ̄χ =

NA2
∑

j=1

χ̄ab,jχ
ab
j

The scheme-independent expansion variables are

∆F =
11

2
Nc −NF − (Nc − 2)NA2

∆A2 =
11Nc − 2NF − 2(Nc − 2)NA2

2(Nc − 2)

N.B.: ∆A2 = TF
TA2

∆F = ∆F
Nc−2

The scheme-independent expansions of the anomalous dimensions are

γψ̄ψ,IR =
∞
∑

j=1

κ
(F )
j ∆j

F , γχ̄χ,IR =
∞
∑

j=1

κ
(A2)
j ∆j

A2

Truncations of these series to order j are denoted γ
ψ̄ψ,IR,∆

j
F

and γ
χ̄χ,IR,∆

j
A2

.

Notational equivalence for SU(4): γψ̄ψ,IR ≡ γ(4)
m and γχ̄χ,IR ≡ γ(6)

m .



Define denominator factors

DF = Nc(25N
2
c − 11) + 2NA2

(Nc − 2)(Nc + 1)(Nc − 3)

DA2
= Nc(18N

2
c − 11Nc − 22) −NF (Nc − 3)(Nc + 1) .

We find

κ
(F )
1 =

4(N 2
c − 1)

DF

, κ
(A2)
1 =

4(Nc − 2)2(Nc + 1)

DA2

κ
(F )
2 =

4(N 2
c − 1)

3D3
F

[

Nc(9N
2
c − 2)(49N 2

c − 44) + 4NA2
(Nc − 2)(Nc + 1)(Nc − 3)(3Nc − 2)(5Nc + 3)

]

κ
(A2)
2 =

(Nc − 2)3(Nc + 1)

3D3
A2

[

Nc(11N
2
c−4Nc−8)(93N 2

c−88Nc−176)−2NF (Nc−3)(Nc+1)(37N 2
c−16Nc−33)

]

κ
(F )
3 =

8(N 2
c − 1)

27D5
F

[

A
(F )
0 +A

(F )
1 NA2

+A
(F )
2 N 2

A2
+A

(F )
3 N 3

A2

]

κ
(A2)
3 =

(Nc − 2)3(Nc + 1)

54D5
A2

[

A
(A2)
0 +A

(A2)
1 NF +A

(A2)
2 N 2

F + A
(A2)
3 N 3

F

]



where

A
(F )
0 = N 2

c

[

(

274243N 8
c −455426N 6

c −114080N 4
c +47344N 2

c +35574
)

−4224N 2
c (4N

2
c −11)(25N 2

c −11)ζ3

]

,

A
(F )
1 = 4Nc(Nc − 2)(Nc − 3)

[

(

16981N 7
c + 35460N 6

c + 42927N 5
c + 47342N 4

c + 9432N 3
c − 12849N 2

c

− 18843Nc − 11616
)

− 576N 2
c

(

25N 4
c + 198N 3

c + 187N 2
c − 121Nc − 121

)

ζ3

]

,

A
(F )
2 = 8(Nc − 2)(Nc − 3)

[

(

689N 8
c − 1402N 7

c − 9208N 6
c − 15693N 5

c − 9219N 4
c + 16662N 3

c + 19860N 2
c

+ 10617Nc + 5598
)

− 192N 2
c

(

3N 5
c − 65N 4

c − 238N 3
c − 165N 2

c + 231Nc + 198
)

ζ3

]

,

A
(F )
3 = 128Nc(Nc − 2)2(Nc − 3)2(Nc + 1)(3N 2

c + 7Nc + 6)(−11 + 24ζ3) ,



A
(A2)
0 = N 2

c

[

(

1670571N 9
c − 7671402N 8

c + 2181584N 7
c + 25294256N 6

c − 13413856N 5
c

− 17539136N 4
c + 16707328N 3

c + 3046912N 2
c − 27320832Nc − 18213888

)

− 8448N 2
c (Nc + 2)(18N 2

c − 11Nc − 22)(3N 3
c − 28N 2

c + 176)ζ3

]

A
(A2)
1 = −4Nc(Nc − 3)

[

(

60552N 8
c − 150015N 7

c − 373894N 6
c + 138737N 5

c + 300380N 4
c

+ 421197N 3
c + 768345N 2

c + 858660Nc + 435468
)

− 192N 2
c

(

141N 5
c − 2075N 4

c − 6226N 3
c + 1056N 2

c + 17424Nc + 11616
)

ζ3

]

A
(A2)
2 = 8(Nc − 3)

[

(

1148N 8
c − 3919N 7

c − 17365N 6
c − 5724N 5

c + 35724N 4
c + 84915N 3

c + 70641N 2
c

+ 32928Nc + 15588
)

− 192N 2
c

(

3N 5
c − 164N 4

c − 271N 3
c + 396N 2

c + 1320Nc + 792
)

ζ3

]

A
(A2)
3 = −128Nc(Nc + 1)(Nc − 3)2(3N 2

c + 7Nc + 6)(−11 + 24ζ3) .



Specializing to Nc = 4, i.e., the SU(4) theory, we have

κ
(F )
1 =

15

389 + 5NA2

, κ
(F )
2 =

25(5254 + 115NA2
)

(389 + 5NA2
)3

κ
(A2)
1 =

80

888 − 5NF

, κ
(A2)
2 =

400(19456 − 165NF )

(888 − 5NF )3

κ
(F )
3 =

5

36(389 + 5NA2
)5

[

(8039476475 − 696689664ζ3) + (479848740 − 197766144ζ3)NA2

+ (−16264767 + 46568448ζ3)N
2
A2

+ (−288640 + 629760ζ3)N
3
A2

]

κ
(A2)
3 =

640

27(888 − 5NF )5

[

(28645111296 + 7201751040ζ3) − (120552246 + 1055342592ζ3)NF

+ (−12526131 + 33675264ζ3)N
2
F + (72160 − 157440ζ3)N

3
F

]



Substituting these into our scheme-independent expansions, we obtain

γψ̄ψ,IR,∆F
= 0.367 , γψ̄ψ,IR,∆2

F
= 0.576 , γψ̄ψ,IR,∆3

F
= 0.683

γχ̄χ,IR,∆A2
= 0.461 , γχ̄χ,IR,∆2

A2
= 0.748 , γχ̄χ,IR,∆3

A2
= 0.942

Because κ
(F )
j and κ

(A2)
j are positive for all of the orders j = 1, 2, 3 for which we have

calculated them, several monotonicity relations follow for these orders:

With fixed ∆F = 2∆A2, the anom. dims. γ
ψ̄ψ,IR,∆

j
F

and γ
χ̄χ,IR,∆

j
A2

are

monotonically increasing functions of j.

Second, for a fixed j, γ
ψ̄ψ,IR,∆

j
F

is a monotonically increasing function of ∆F and

γ
χ̄χ,IR,∆

j
A2

is a monotonically increasing function of ∆A2.

Since finite-order perturbative calculations of this type become progressively less
accurate as one approaches the lower boundary BCW,ℓ of the conformal window, one
should assess the effect of higher-order corrections. From a rough extrapolation (ex) of
our results for j = 1, 2, 3 to large j, we estimate that these higher orders would yield



γψ̄ψ,IR,ex ≃ 0.7 − 0.8 γχ̄χ,IR,ex ≃ 1.0 − 1.1

To within the uncertainties in our extrapolation and in the lattice measurements, these
results are in agreement with the values γ(4)

m ≃ 0.75 and γ(6)
m ≃ 1.0 obtained in

Hasenfratz et al., PRD 107, 114504 (2023) [2304.11729]. (Recall notational
equivalences in this SU(4) theory: γ(4)

m ≡ γψ̄ψ,IR and γ(6)
m ≡ γχ̄χ,IR.) We have also

used Padé approximants for estimates.

More generally, we have calculated γ
ψ̄ψ,IR,∆

j
F

and γ
χ̄χ,IR,∆

j
A2

for j = 1, 2, 3 in the

SU(4) theory as functions of NF and NA2.

In the figures we show the results on two line segments in IIRZ that intersect at
(NF , NA2) = (4, 4): with NA2 = 4, varying 2 < NF < 14 and with NF = 4,
varying 3 < NA2 < 9. Color coding for f = F, A2: γf̄f,IR,∆f

(red), γf̄f,IR,∆2
f

(green), γf̄f,IR,∆3
f

(blue).
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Figure 1: Plot of γ
ψ̄ψ,IR,∆

j

F
calculated to order j = 1, 2, 3 for G = SU(4), and NA2

= 4, as a function of NF ∈ IIRZ . From bottom to top, the curves refer to

γψ̄ψ,IR,∆F
(red), γψ̄ψ,IR,∆2

F
(green), and γψ̄ψ,IR,∆3

F
(blue).
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Figure 2: Plot of γ
ψ̄ψ,IR,∆

j

F
calculated to order j = 1, 2, 3 for G = SU(4), and NF = 4, as a function of NA2

∈ IIRZ . From bottom to top, the curves refer to

γψ̄ψ,IR,∆F
(red), γψ̄ψ,IR,∆2

F
(green), and γψ̄ψ,IR,∆3

F
(blue).
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Figure 3: Plot of γ
χ̄χ,IR,∆

j
A2

, calculated to order j = 1, 2, 3 for G = SU(4), and NA2
= 4, as a function of NF ∈ IIRZ . From bottom to top, the curves refer to

γχ̄χ,IR,∆A2
(red), γχ̄χ,IR,∆2

A2

(green), and γχ̄χ,IR,∆3

A2

(blue).
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Figure 4: Plot of γ
χ̄χ,IR,∆

j
A2

, calculated to order j = 1, 2, 3 for G = SU(4), and NF = 4, as a function of NF ∈ IIRZ . From bottom to top, the curves refer to

γχ̄χ,IR,∆A2
(red),γχ̄χ,IR,∆2

A2

(green), and γχ̄χ,IR,∆3

A2

(blue).



Hasenfratz et al. find that the (Nc, NF , NA2) = (4, 4, 4) theory has an IFRP and
hence is in the conformal window, close to the lower boundary, since γ(6)

m ≃ 1.

As one moves down from the upper boundary BCW,u of the conformal window toward
the lower boundary, BCW,ℓ, the anomalous dimensions γψ̄ψ,IR and γχ̄χ,IR increase.

The generalization of the condition in the single-rep. theory here is that the lower
boundary BCW,ℓ is reached when max(γψ̄ψ,IR, γχ̄χ,IR) = 1. Since
γχ̄χ,IR > γψ̄ψ,IR here, this condition reduces to

γχ̄χ,IR = 1

As in the single-rep. theory, the quadratic condition γχ̄χ,IR(2 − γχ̄χ,IR) = 1, if
solved for exactly, gives a double root at γχ̄χ,IR = 1 and hence is equivalent to the
linear condition, but when applied in the context of a series expansion calculated to
finite order, these yield different results.

See figure. The upper line (colored blue) is the upper boundary of the IRZ region and
CW, BIRZ,u = BCW,u. The locations of the lower CW boundary BCW,ℓ from the
quadratic γCC (green) from Kim, Hong, and Lee, PRD 101, 056008 (2020). For
comparison, we have calculated BCW,ℓ from the linear γCC (red). These are



approximately linear. The lower line (dotted) is the solution of b2, the lower boundary
of the IRZ region.

The boundary BCW,ℓ as calculated with κ
(f)
j up to j = 3 order from the linear

condition includes the (Nc, NF , NA2) = (4, 4, 4) theory in the conformal window,

while BCW,ℓ, as calculated with the same j = 3 inputs for the κ
(f)
j coefficients

excludes the (4,4,4) theory from the conformal window.

Of course, these are both finite-order perturbative calculations. The actual
determination of the actual lower CW boundary BCW,ℓ requires a fully nonperturbative
calculation, as provided by the lattice simulations.

Anomalous dimensions were also presented in the (4,4,4) theory by Hasenfratz et al. for

several gauge-singlet composite fermion operators and were found to be <∼ 0.5. The
requisite inputs to compute these with our methods are not yet available, but this could
be of interest for future work.
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Higher-loop Studies of the Beta Functions of |~φ|44 and |~φ|63
Theories

Here we briefly mention some recent results on scalar field theories from RS, PRD 107,
056018 (2023) [2301.01830] and RS, PRD 107, 096009 (2023) [2302.05422]. These
could be of interest to the lattice community.

If the β function of a theory is positive near zero coupling, then this theory is IR-free.
As the momentum scale µ increases from the IR toward the UV, the coupling grows. It
is of interest to investigate whether an IR-free theory might have a UV zero in the β
function, which would be a UV fixed point (UVFP) of the renormalization group.

An example of an IR-free theory with a UVFP is the O(N ) nonlinear σ model in
d = 2 + ǫ dims. From an exact solution of this model in the large-N limit we found

β(λ) =
dλ

d lnµ
= ǫλ

(

1 −
λ

λc

)

, i.e., β(λ̄) =
dλ̄

d lnµ
= ǫλ̄

(

1 −
λ̄

λ̄c

)

where λ is an effective coupling, λ̄ = limN→∞ λN , and λ̄c = 2πǫ with ǫ ≪ 1 (W.
Bardeen, B. W. Lee, and RS, PRD 14, 985 (1976); also Brézin, Zinn-Justin, PRB 14,
3110 (1976)).



QED is also IR-free. In RS, PRD 89, 045019 (2014) we studied the beta function of a
U(1) theory with Nf fermions of charge q up to the 5-loop level, finding evidence
against a UVFP. Hence, in this theory, α(µ) grows as µ increases, eventually
exceeding the regime where perturbative calculations are applicable.

The O(N ) λ|~φ|4 theory in d = 4 is IR-free. There has long been interest in whether
this theory might have a UVFP (some early work: Wilson, 1971; Wilson and Kogut,
1974; Brézin, Le Guillou, Zinn-Justin, 1974; Aizenman, 1982; Freedman, Smolensky,
Weingarten, 1982; Dashen and Neuberger, 1983; Lüscher and Weisz, 1987; Kuti, Lin,
and Shen, 1988; Kleinert and Schulte-Frohlinde, 2001; Zinn-Justin, 2002).

Interaction term: Lint. = −λ
4!

|~φ|4, where ~φ = (φ1, ..., φN). Define
a = λ/(4π)2.

beta function: β = da
d lnµ

= a
∑∞
ℓ=1 bℓ a

ℓ, where here bℓ is the ℓ-loop coefficient.
Denote truncation to n-loop order as βnℓ.

In RS, PRD 94, 125026 (2016); PRD 96, 056010 (2017), using Kompaniets and Panzer
6-loop calculation of β in 1606.09210 (in MS scheme), we investigated whether this
6-loop beta function has a UV zero.



In the range of λ where the perturbative calculation of the beta function is reliable, we
found evidence against a UV zero. We used scheme transformations and Padé
approximants to confirm our conclusions.

In RS, PRD 107, 056018 (2023) [2301.01830] we have carried this search for a UV zero
to 7-loop order, using the calculation of the 7-loop β fn. by Schnetz, PRD 97, 085018
(2021). Again, we used scheme transformations and Padé approximants as checks.

A necessary condition for there to be robust evidence for a zero in the beta function of
a QFT is that the values calculated at successive loop orders should be close to each
other. We find that this condition is not satisfied here. At n = 3, n = 5 and n = 7
loop order, βnℓ has no UV zero. Although β2ℓ has a UV zero, it occurs at too large a
value of λ for the perturbative calculation to be reliable.

See figure for N = 1. color coding: β2ℓ (red, solid); β3ℓ (green, dashed); β4ℓ (blue,
dotted); β5ℓ (black, dot-dashed); β6ℓ (cyan, solid); β7ℓ (brown, solid). Curves from
bottom to top: n = 6, 4, 2, 3, 5, 7.
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Another IR-free scalar theory is the O(N ) |φ|6 theory in d = 3, with Lagrangian

L =
1

2
(∂ν~φ) · (∂ν~φ) −

1

2
m2|~φ|2 −

λ

4N
|~φ|4 −

g

6N 2
|~φ|6 ,

Since the coeffs. of the |~φ|2 and |~φ|4 terms in this d = 3 theory are dimensionful, and
since limµ→∞m2/µ2 = 0 and limµ→∞ λ/µ = 0, they are expected to be a
negligible role in the UV limit.

This theory is known to have a UVFP in the large-N limit (Townsend, 1977; Pisarski,
1982; Appelquist and Heinz, 1982).

An interesting question is: over what range of finite N does this large-N UVFP
persist?

In RS, PRD 107, 096009 (2023) [2302.05422] we investigated this. As before, a
necessary condition for a UVFP is that successive orders in perturbation theory should
yield g

UV FP,nℓ
values that are close to each other.

Using a combination of direct analysis of the the 6-loop beta function from Hager, J.
Phys. A 35, 2703 (2002), Padé approximants, and scheme transformations, we showed

that there is robust evidence for a UVFP for N >
∼ 2 × 103.



Conclusions

• Understanding the UV to IR evolution of an asymptotically free gauge theory and
the nature of the IR behavior is of fundamental field-theoretic interest.

• Our higher-loop perturbative calculations of anomalous dimensions with T. A. Ryttov
give information on properties at an IR fixed point for theories with fermions in a
single representation and also theories with fermions in multiple different
representations.

• Here have compared our higher-order scheme-independent calculations of anomalous
dimensions with recent lattice measurements in an SU(3) gauge theory with
NF = 10 fermions in the fundamental representation and an SU(4) theory with
NF = 4 fermions in the fundamental rep. and NA2 = 4 fermions in the
antisymmetric rank-2 rep., finding agreement for both theories.

• We have also mentioned some results on UV behavior in a |~φ|4 theory in d = 4 and

a |~φ|6 theory in d = 3.

THANK YOU


