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This report presents a basic overview of the crossover from the Bardeen–Cooper–Schrieffer (BCS)
state of weakly-correlated pairs of fermions to the Bose–Einstein condensation (BEC) of diatomic
molecules in the atomic Fermi gas. We discuss how this crossover (called the BEC-BCS Crossover)
is achieved without any phase transition by tuning the interaction strength via Feshbach resonances.
This is supplemented by a discussion on boundstates and the contingencies of their appearence in
an atomic gas.

I. INTRODUCTION

The BEC paradigm, first developed for non-interacting
bosons and later generalized to take into account repul-
sive interactions, describes bosonic fluids like 4He or ul-
tracold Bose gases like 87Rb. The condensate is a macro-
scopic occupation of a single quantum state that oc-
curs below a transition temperature Tc, which, even in
strongly interacting Bose systems like 4He, is of the same
order of magnitude as the quantum degeneracy temper-
ature at [1] which the inter-particle spacing becomes of
the order of the thermal de-Broglie wavelength.

Even though the BCS theory became successfully and
widely applicable to many phenomena, it is basically
a weak attraction theory. A generalization of the BCS
theory has been developed to include the strong attrac-
tion regime in which fermion pairs become tightly bound
diatomic Bose molecules and undergo Bose–Einstein
condensation. The BEC state is on the the strong
attraction side of the phase space, and is formed by the
condensation of bound fermions in real space. There
is now a clear recognition that the BCS and BEC
paradigms are not as distinct as they were once thought

FIG. 1: BEC-BCS crossover. By tuning the interaction
strength between the two fermionic spin states, one can
smoothly cross over from a regime of tightly bound molecules
to a regime of long-range Cooper pairs, whose characteristic
size is much larger than the inter-particle spacing. In between
these two extremes, one encounters an intermediate regime
where the pair size is comparable to the inter-particle spacing
[2]

FIG. 2: Simultaneous cooling of a bosonic and fermionic quan-
tum gas of 7Li and 6Li to quantum degeneracy. In the case
of the Fermi gas, the Fermi pressure prohibits the atom cloud
to shrink in space as quantum degeneracy is approached. [3]

to be, but rather are the two extrema of a continuum.
The difference between the pairs and the molecules is
that the molecules are localized in the real (position)
space, whereas the BCS pairs are made of two particles
with opposite momenta. Thus, the BCS pairs are large
(much larger than the inter-particle spacing), whereas
the BEC molecules are small (Figure 1).

This report goes over a basic description of the
BEC-BCS crossover, and discusses its realization in
terms of a simple account of Feshbach resonances
which are used to tune the interaction between the
system’s constituents. We also present a discussion on
bound-state formation in quantum systems, and how
results from the same describe Cooper Pairing.

II. THEORY

A. Bound States

In contrast to bosons, the non-interacting Fermi gas does
not show any phase transition down to zero temperature
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h

la
rg

er
th

an
th

e
in

te
r-

pa
rt
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le

sp
ac

in
g.

In
be

tw
ee

n

th
es

e
tw

o
ex

tr
em

es
,
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e

en
co

un
te

rs
an

in
te

rm
ed

ia
te

re
gi

m
e

w
he

re
th

e
pa

ir
siz

e
is

co
m

pa
ra

bl
e

to
th

e
in

te
r-

pa
rt

ic
le

sp
ac

in
g
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g
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so
ni
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7 Li
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6 Li
to
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an

tu
m

de
ge

ne
ra

cy
.

In
th

e
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se

of
th

e
Fe

rm
i g

as
, t

he
Fe

rm
i p
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ur
e

pr
oh

ib
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th
e

at
om

cl
ou

d

to
sh

rin
k

in
sp

ac
e
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qu

an
tu

m
de

ge
ne

ra
cy
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ap

pr
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ed

.
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.
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re
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.

T
hi

s
re

po
rt

go
es

ov
er

a
ba

sic
de

sc
rip

tio
n

of
th

e

B
EC

-B
C

S
cr

os
so

ve
r,

an
d

di
sc

us
se

s
its

re
al

iz
at

io
n

in

te
rm

s
of

a
sim

pl
e

ac
co

un
t

of
Fe

sh
ba

ch
re

so
na

nc
es

w
hi

ch
ar

e
us

ed
to

tu
ne

th
e

in
te

ra
ct

io
n

be
tw

ee
n

th
e

sy
st

em
’s

co
ns

tit
ue

nt
s.

W
e

al
so

pr
es

en
t

a
di

sc
us

sio
n

on

bo
un

d-
st

at
e

fo
rm

at
io

n
in

qu
an

tu
m

sy
st

em
s,

an
d

ho
w

re
su

lts
fro

m
th

e
sa

m
e

de
sc

rib
e

C
oo

pe
r

Pa
iri

ng
.

II
.

T
H

E
O

R
Y

A
.

B
ou

nd
St

at
es

In
co

nt
ra

st
to
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g
Fe
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e
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Boun
dsta

tes
and

the
BEC-BCS Cross

over

Sud
hang

Varsh
ney

Unive
rsity

of Britis
h Colum

bia,
BC V6T

(Dated
: Decem

ber
14, 2021

)

This repo
rt pres

ents
a basi

c over
view

of the
cros

sove
r from

the
Barde

en–C
oope

r–Sc
hrie

ffer
(BCS)

stat
e of weakl

y-co
rrela

ted
pair

s of ferm
ions

to the
Bose–

Einste
in cond

ensa
tion

(BEC) of diat
omic

molec
ules

in the
atom

ic Ferm
i gas.

We disc
uss

how
this

cros
sove

r (call
ed the

BEC-BCS Cross
over

)

is achi
eved

witho
ut any

phas
e tran

sitio
n by tuni

ng the
inte

ract
ion stre

ngth
via Fesh

bach
reso

nanc
es.

This is supp
lemente

d by a disc
ussi

on on bou
ndst

ates
and

the
cont

inge
ncie

s of thei
r app

eare
nce

in

an atom
ic gas.

I.
INTRODUCTION

The BEC para
digm

, first
deve

lope
d for non-

inter
actin

g

boso
ns and

later
gene

raliz
ed to take

into
acco

unt
repu

l-

sive
inter

actio
ns, desc

ribe
s boso

nic fluid
s like

4 He or ul-

trac
old Bose gase

s like
87 Rb. The cond

ensa
te is a macro

-

scop
ic occu

pati
on of a sing

le quan
tum

stat
e that

oc-

curs
belo

w a tran
sitio

n tem
pera

ture
T c, which

, even
in

stro
ngly

inter
actin

g Bose syst
ems like

4 He, is
of th

e sam
e

orde
r of magni

tude
as the

quan
tum

dege
nera

cy tem
per-

atur
e at [1] which

the
inter

-par
ticle

spac
ing

beco
mes of

the
orde

r of the
ther

mal de-B
rogl

ie wavel
engt

h.

Even
thou

gh the
BCS theo

ry beca
me succ

essfu
lly and

widely
appl

icab
le to many

phen
omena,

it is basi
cally

a weak
attr

actio
n theo

ry.
A gene

raliz
atio

n of the
BCS

theo
ry has

been
deve

lope
d to inclu

de the
stro

ng attr
ac-

tion
regim

e in which
ferm

ion pair
s beco

me tigh
tly boun

d

diat
omic Bose

molec
ules

and
und

ergo
Bose–

Einste
in

cond
ensa

tion
. The BEC stat

e is on the
the

stro
ng

attr
actio

n side
of the

phas
e spac

e, and
is form

ed by the

cond
ensa

tion
of boun

d ferm
ions

in real
spac

e.
There

is now
a clea

r reco
gnit

ion
that

the
BCS and

BEC

para
digm

s are
not

as disti
nct

as they
were once

thou
ght

FIG. 1:
BEC-BCS cros

sove
r.

By tuni
ng

the
inte

ract
ion

stre
ngth

betw
een

the
two ferm

ionic
spin

stat
es,

one
can

smooth
ly cros

s over
from

a regim
e of tigh

tly bou
nd molec

ules

to a regim
e of long

-ran
ge Coope

r pair
s, whose

char
acte

risti
c

size
is much

larg
er than

the
inte

r-pa
rticl

e spac
ing.

In betw
een

thes
e two extr

emes, one
enco

unte
rs an inte

rmedia
te regim

e

where
the

pair
size

is com
para

ble to the
inte

r-pa
rticl

e spac
ing

[2]

FIG. 2:
Sim

ulta
neou

s cool
ing of a

boso
nic and

ferm
ionic

quan
-

tum
gas

of
7 Li and

6 Li to quan
tum

dege
nera

cy.
In the

case

of the
Ferm

i gas
, the

Ferm
i pre

ssur
e proh

ibits
the

atom
clou

d

to shrin
k in spac

e as quan
tum

dege
nera

cy is appr
oach

ed.
[3]

to be,
but

rath
er are

the
two extr

ema of a cont
inuu

m.

The diffe
renc

e betw
een

the
pair

s and
the

molec
ules

is

that
the

molec
ules

are
loca

lized
in the

real
(pos

ition
)

spac
e, where

as the
BCS pair

s are
made

of two part
icles

with oppo
site

momenta
. Thus,

the
BCS pair

s are
larg

e

(much
larg

er than
the

inter
-par

ticle
spac

ing)
, where

as

the
BEC molec

ules
are

small (Figur
e 1).

This
repo

rt goes
over

a basi
c desc

ripti
on

of the

BEC-BCS cros
sove

r, and
disc

usse
s its

reali
zatio

n in

term
s of a simple

acco
unt

of Fesh
bach

reso
nanc

es

which
are

used
to tune

the
inter

actio
n betw

een
the

syst
em’s cons

titue
nts.

We also
pres

ent
a disc

ussio
n on

boun
d-st

ate
form

atio
n in quan

tum
syst

ems, and
how

resu
lts from

the
sam

e desc
ribe

Coope
r Pairin

g.

II.
THEORY

A. Boun
d Sta

tes

In cont
rast

to boso
ns, t

he non-
inter

actin
g Ferm

i gas
does

not
show
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e tran
sitio
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n to zero

tem
pera

ture

Bo
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sa
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the
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De
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ber

14,
202
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EC
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ig

as.
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cie

so
fth

eir
app

ear
enc

ei
n

an
ato

mi
cg

as.

I.
IN

TR
OD

UC
TI

ON

Th
eB

EC
par

adi
gm

,fi
rst

dev
elo

ped
for

non
-in

ter
act

ing

bos
ons

and
lat

er
gen

era
lize

dt
ot

ake
int

oa
cco

unt
rep

ul-

siv
ein

ter
act

ion
s,d

esc
rib

es
bos

oni
cfl

uid
sli

ke
4 He

or
ul-

tra
col

dB
ose

gas
es

like
87

Rb
.T

he
con

den
sat

eis
am

acr
o-

sco
pic

occ
upa

tio
no

fa
sin

gle
qua

ntu
m

sta
te

tha
to

c-

cur
sb

elo
w

at
ran

siti
on

tem
per

atu
re

T c
,w

hic
h,

eve
ni

n

str
ong

lyi
nte

rac
tin

gB
ose

sys
tem

sli
ke

4 He
,is

oft
he

sam
e

ord
er

of
ma

gni
tud

ea
st

he
qua

ntu
m

deg
ene

rac
yt

em
per

-

atu
re

at
[1]

wh
ich

the
int

er-
par

ticl
es

pac
ing

bec
om

es
of

the
ord

er
of

the
the

rm
ald

e-B
rog

lie
wa

vel
eng

th.

Ev
en

tho
ugh

the
BC

St
heo

ry
bec

am
es

ucc
ess

ful
ly

and

wid
ely

app
lica

ble
to

ma
ny

phe
nom

ena
,i

ti
sb

asi
cal

ly

aw
eak

att
rac

tio
nt

heo
ry.

A
gen

era
liza

tio
no

fth
eB

CS

the
ory

has
bee

nd
eve

lop
ed

to
inc

lud
et

he
str

ong
att

rac
-

tio
nr

egi
me

in
wh

ich
fer

mio
np

air
sb

eco
me

tig
htl

yb
oun

d

dia
tom

ic
Bo

se
mo

lec
ule

sa
nd

und
erg

o
Bo

se–
Ein

ste
in

con
den

sat
ion

.
Th

eB
EC

sta
te

is
on

the
the

str
ong

att
rac

tio
ns

ide
of

the
pha

se
spa

ce,
and

isf
orm

ed
by

the

con
den

sat
ion

of
bou

nd
fer

mio
ns

in
rea

ls
pac

e.
Th

ere

is
now

a
cle

ar
rec

ogn
itio

n
tha

tt
he

BC
S

and
BE

C

par
adi

gm
sa

re
not

as
dis

tin
ct

as
the

yw
ere

onc
et

hou
ght

FIG
.1

:
BE

C-B
CS

cro
sso

ver
.

By
tun

ing
the

int
era

cti
on

str
eng

th
bet

we
en

the
two

fer
mi

oni
cs

pin
sta

tes
,o

ne
can

sm
oot

hly
cro

sso
ver

fro
m

ar
egi

me
of

tig
htl

yb
oun

dm
ole

cul
es

to
ar

egi
me

of
lon

g-r
ang

eC
oop

er
pai

rs,
wh

ose
cha

rac
ter

isti
c

siz
eis

mu
ch

lar
ger

tha
nt

he
int

er-
par

tic
les

pac
ing

.In
bet

we
en

the
se

two
ext

rem
es,

one
enc

oun
ter

sa
ni

nte
rm

edi
ate

reg
im

e

wh
ere

the
pai

rsi
ze

isc
om

par
abl

et
ot

he
int

er-
par

tic
les

pac
ing

[2]

FIG
.2:

Sim
ult

ane
ous

coo
lin

go
fa

bo
son

ica
nd

fer
mi

oni
cq

uan
-

tum
gas

of
7 Li

and
6 Li

to
qu

ant
um

deg
ene

rac
y.

In
the

cas
e

of
the

Fer
mi

gas
,th

eF
erm

ip
res

sur
ep

roh
ibi

tst
he

ato
m

clo
ud

to
shr

ink
in

spa
ce

as
qu

ant
um

deg
ene

rac
yi

sa
pp

roa
che

d.
[3]

to
be,

but
rat

her
are

the
two

ext
rem

ao
fa

con
tin

uum
.

Th
ed

iffe
ren

ce
bet

we
en

the
pai

rs
and

the
mo

lec
ule

si
s

tha
tt

he
mo

lec
ule

sa
re

loc
aliz

ed
in

the
rea

l(
pos

itio
n)

spa
ce,

wh
ere

as
the

BC
Sp

air
sa

re
ma

de
of

two
par

ticl
es

wit
ho

pp
osi

te
mo

me
nta

.T
hus

,th
eB

CS
pai

rs
are

lar
ge

(m
uch

lar
ger

tha
nt

he
int

er-
par

ticl
es

pac
ing

),
wh

ere
as

the
BE

Cm
ole

cul
es

are
sm

all
(Fi

gur
e1

).

Th
is

rep
ort

goe
s

ove
r

a
bas

ic
des

cri
pti

on
of

the

BE
C-B

CS
cro

sso
ver

,a
nd

dis
cus

ses
its

rea
liza

tio
n

in

ter
ms

of
a

sim
ple

acc
oun

t
of

Fes
hba

ch
res

ona
nce

s

wh
ich

are
use

d
to

tun
et

he
int

era
ctio

n
bet

we
en

the

sys
tem

’sc
ons

titu
ent

s.
We

als
op

res
ent

ad
isc

uss
ion

on

bou
nd-

sta
te

for
ma

tio
n

in
qua

ntu
m

sys
tem

s,
and

how

res
ult

sfr
om

the
sam

ed
esc

rib
eC

oop
er

Pa
irin
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non
-in

ter
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ing
Fer

mi
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doe
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not
sho
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se

tra
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tio
nd

ow
nt
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ero

tem
per

atu
re

B
ou

nd
st
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d
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D
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r
14
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T
hi

s r
ep

or
t p

re
se

nt
s a

ba
sic

ov
er

vi
ew

of
th

e
cr

os
so

ve
r f

ro
m

th
e

B
ar

de
en

–C
oo

pe
r–

Sc
hr
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ffe
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B
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st
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e
of

w
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ed
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ns

to
th
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B
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EC
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di

at
om
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m
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Fe

rm
i g

as
.

W
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e
B
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ed
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ith
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e
tr
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tu
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ng
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e
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te

ra
ct
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st
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ng
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vi
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Fe
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a
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sio
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un
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s
an

d
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e
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nt
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th
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r
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IN

T
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D

U
C

T
IO

N

T
he

B
EC

pa
ra

di
gm

,
fir

st
de

ve
lo

pe
d

fo
r

no
n-

in
te

ra
ct

in
g

bo
so

ns
an

d
la

te
r

ge
ne

ra
liz

ed
to

ta
ke

in
to

ac
co

un
t

re
pu

l-

siv
e

in
te

ra
ct

io
ns

, d
es

cr
ib

es
bo

so
ni

c
flu

id
s

lik
e

4 H
e

or
ul

-

tr
ac

ol
d

B
os

e
ga

se
s l

ik
e

8
7 R

b.
T

he
co

nd
en

sa
te

is
a

m
ac

ro
-

sc
op

ic
oc

cu
pa

tio
n

of
a

sin
gl

e
qu

an
tu

m
st

at
e

th
at

oc
-

cu
rs

be
lo

w
a

tr
an

sit
io

n
te

m
pe

ra
tu

re
T c

,
w

hi
ch

,
ev

en
in

st
ro

ng
ly

in
te

ra
ct

in
g

B
os

e
sy

st
em

s l
ik

e
4 H

e,
is

of
th

e
sa

m
e

or
de

r
of

m
ag

ni
tu

de
as

th
e

qu
an

tu
m

de
ge

ne
ra

cy
te

m
pe

r-

at
ur

e
at

[1
] w

hi
ch

th
e

in
te

r-
pa

rt
ic

le
sp

ac
in

g
be

co
m

es
of

th
e
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• Status in 2023 - much recent work from Brandt, Cuteri & Endrodi

Conjectured phase diagram
QCD at μI ≠ 0
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This report presents a basic overview of the crossover from the Bardeen–Cooper–Schrieffer (BCS)
state of weakly-correlated pairs of fermions to the Bose–Einstein condensation (BEC) of diatomic
molecules in the atomic Fermi gas. We discuss how this crossover (called the BEC-BCS Crossover)
is achieved without any phase transition by tuning the interaction strength via Feshbach resonances.
This is supplemented by a discussion on boundstates and the contingencies of their appearence in
an atomic gas.

I. INTRODUCTION

The BEC paradigm, first developed for non-interacting
bosons and later generalized to take into account repul-
sive interactions, describes bosonic fluids like 4He or ul-
tracold Bose gases like 87Rb. The condensate is a macro-
scopic occupation of a single quantum state that oc-
curs below a transition temperature Tc, which, even in
strongly interacting Bose systems like 4He, is of the same
order of magnitude as the quantum degeneracy temper-
ature at [1] which the inter-particle spacing becomes of
the order of the thermal de-Broglie wavelength.

Even though the BCS theory became successfully and
widely applicable to many phenomena, it is basically
a weak attraction theory. A generalization of the BCS
theory has been developed to include the strong attrac-
tion regime in which fermion pairs become tightly bound
diatomic Bose molecules and undergo Bose–Einstein
condensation. The BEC state is on the the strong
attraction side of the phase space, and is formed by the
condensation of bound fermions in real space. There
is now a clear recognition that the BCS and BEC
paradigms are not as distinct as they were once thought

FIG. 1: BEC-BCS crossover. By tuning the interaction
strength between the two fermionic spin states, one can
smoothly cross over from a regime of tightly bound molecules
to a regime of long-range Cooper pairs, whose characteristic
size is much larger than the inter-particle spacing. In between
these two extremes, one encounters an intermediate regime
where the pair size is comparable to the inter-particle spacing
[2]

FIG. 2: Simultaneous cooling of a bosonic and fermionic quan-
tum gas of 7Li and 6Li to quantum degeneracy. In the case
of the Fermi gas, the Fermi pressure prohibits the atom cloud
to shrink in space as quantum degeneracy is approached. [3]

to be, but rather are the two extrema of a continuum.
The difference between the pairs and the molecules is
that the molecules are localized in the real (position)
space, whereas the BCS pairs are made of two particles
with opposite momenta. Thus, the BCS pairs are large
(much larger than the inter-particle spacing), whereas
the BEC molecules are small (Figure 1).

This report goes over a basic description of the
BEC-BCS crossover, and discusses its realization in
terms of a simple account of Feshbach resonances
which are used to tune the interaction between the
system’s constituents. We also present a discussion on
bound-state formation in quantum systems, and how
results from the same describe Cooper Pairing.

II. THEORY

A. Bound States

In contrast to bosons, the non-interacting Fermi gas does
not show any phase transition down to zero temperature
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size is much larger than the inter-particle spacing. In between
these two extremes, one encounters an intermediate regime
where the pair size is comparable to the inter-particle spacing
[2]

FIG. 2: Simultaneous cooling of a bosonic and fermionic quan-
tum gas of 7Li and 6Li to quantum degeneracy. In the case
of the Fermi gas, the Fermi pressure prohibits the atom cloud
to shrink in space as quantum degeneracy is approached. [3]

to be, but rather are the two extrema of a continuum.
The difference between the pairs and the molecules is
that the molecules are localized in the real (position)
space, whereas the BCS pairs are made of two particles
with opposite momenta. Thus, the BCS pairs are large
(much larger than the inter-particle spacing), whereas
the BEC molecules are small (Figure 1).

This report goes over a basic description of the
BEC-BCS crossover, and discusses its realization in
terms of a simple account of Feshbach resonances
which are used to tune the interaction between the
system’s constituents. We also present a discussion on
bound-state formation in quantum systems, and how
results from the same describe Cooper Pairing.

II. THEORY

A. Bound States

In contrast to bosons, the non-interacting Fermi gas does
not show any phase transition down to zero temperature
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Thisreportpresentsabasicoverview
ofthecrossoverfrom

theBardeen–Cooper–Schrieffer(BCS)

stateofweakly-correlated
pairsoffermionstotheBose–Einstein

condensation
(BEC)ofdiatomic

moleculesintheatomicFermigas.W
ediscusshow

thiscrossover(calledtheBEC-BCSCrossover)

isachievedwithoutanyphasetransitionbytuningtheinteractionstrengthviaFeshbachresonances.

Thisissupplemented
by

adiscussion
on

boundstatesand
thecontingenciesoftheirappearencein

an
atomicgas.

I.
IN

TRODUCTION
TheBEC

paradigm,firstdeveloped
fornon-interacting

bosonsand
latergeneralized

totakeintoaccountrepul-

siveinteractions,describesbosonicfluidslike
4Heorul-

tracoldBosegaseslike
87Rb.Thecondensateisamacro-

scopic
occupation

ofa
single

quantum
state

that
oc-

cursbelow
a

transition
temperature

T
c ,which,even

in

stronglyinteractingBosesystemslike
4He,isofthesame

orderofmagnitudeasthequantum
degeneracytemper-

atureat[1]which
theinter-particlespacingbecomesof

theorderofthethermalde-Brogliewavelength.
Even

though
the

BCS
theory

became
successfully

and

widely
applicable

to
many

phenomena,it
is

basically

a
weak

attraction
theory.

A
generalization

oftheBCS

theoryhasbeen
developed

toincludethestrongattrac-

tionregimeinwhichfermionpairsbecometightlybound

diatomic
Bose

molecules
and

undergo
Bose–Einstein

condensation.
The

BEC
state

is
on

the
the

strong

attraction
sideofthephasespace,and

isformed
bythe

condensation
ofbound

fermionsin
realspace.

There

is
now

a
clear

recognition
that

the
BCS

and
BEC

paradigmsarenotasdistinctastheywereoncethought

FIG.1:
BEC-BCS

crossover.
By

tuning
the

interaction

strength
between

the
two

fermionic
spin

states,
one

can

smoothlycrossoverfrom
aregimeoftightlyboundmolecules

toaregimeoflong-rangeCooperpairs,whosecharacteristic

sizeismuchlargerthantheinter-particlespacing.Inbetween

thesetwo
extremes,oneencountersan

intermediateregime

wherethepairsizeiscomparabletotheinter-particlespacing

[2]

FIG.2:Simultaneouscoolingofabosonicandfermionicquan-

tum
gasof

7Liand
6Litoquantum

degeneracy.In
thecase

oftheFermigas,theFermipressureprohibitstheatom
cloud

toshrinkin
spaceasquantum

degeneracyisapproached.[3]
to

be,butratherarethetwo
extrema

ofa
continuum.

The
difference

between
the

pairsand
the

moleculesis

thatthe
moleculesare

localized
in

the
real(position)

space,whereastheBCS
pairsaremadeoftwoparticles

with
oppositemomenta.Thus,theBCS

pairsarelarge

(much
largerthan

the
inter-particle

spacing),whereas

theBEC
moleculesaresmall(Figure1).

This
report

goes
over

a
basic

description
of

the

BEC-BCS
crossover,

and
discusses

its
realization

in

terms
of

a
simple

account
of

Feshbach
resonances

which
are

used
to

tune
the

interaction
between

the

system’sconstituents.
W

ealso
presenta

discussion
on

bound-state
formation

in
quantum

systems,and
how

resultsfrom
thesamedescribeCooperPairing.
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Incontrasttobosons,thenon-interactingFermigasdoes

notshow
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This repo
rt pres

ents
a basi

c over
view

of the
cros

sove
r from

the
Barde

en–C
oope

r–Sc
hrie

ffer
(BCS)

stat
e of weakl

y-co
rrela

ted
pair

s of ferm
ions

to the
Bose–

Einste
in cond

ensa
tion

(BEC) of diat
omic

molec
ules

in the
atom

ic Ferm
i gas.

We disc
uss

how
this

cros
sove

r (call
ed the

BEC-BCS Cross
over

)

is achi
eved

witho
ut any

phas
e tran

sitio
n by tuni

ng the
inte

ract
ion stre

ngth
via Fesh

bach
reso

nanc
es.

This is supp
lemente

d by a disc
ussi

on on bou
ndst

ates
and

the
cont

inge
ncie

s of thei
r app

eare
nce

in

an atom
ic gas.

I.
INTRODUCTION

The BEC para
digm

, first
deve

lope
d for non-

inter
actin

g

boso
ns and

later
gene

raliz
ed to take

into
acco

unt
repu

l-

sive
inter

actio
ns, desc

ribe
s boso

nic fluid
s like

4 He or ul-

trac
old Bose gase

s like
87 Rb. The cond

ensa
te is a macro

-

scop
ic occu

pati
on of a sing

le quan
tum

stat
e that

oc-

curs
belo

w a tran
sitio

n tem
pera

ture
T c, which

, even
in

stro
ngly

inter
actin

g Bose syst
ems like

4 He, is
of th

e sam
e

orde
r of magni

tude
as the

quan
tum

dege
nera

cy tem
per-

atur
e at [1] which

the
inter

-par
ticle

spac
ing

beco
mes of

the
orde

r of the
ther

mal de-B
rogl

ie wavel
engt

h.

Even
thou

gh the
BCS theo

ry beca
me succ

essfu
lly and

widely
appl

icab
le to many

phen
omena,

it is basi
cally

a weak
attr

actio
n theo

ry.
A gene

raliz
atio

n of the
BCS

theo
ry has

been
deve

lope
d to inclu

de the
stro

ng attr
ac-

tion
regim

e in which
ferm

ion pair
s beco

me tigh
tly boun

d

diat
omic Bose

molec
ules

and
und

ergo
Bose–

Einste
in

cond
ensa

tion
. The BEC stat

e is on the
the

stro
ng

attr
actio

n side
of the

phas
e spac

e, and
is form

ed by the

cond
ensa

tion
of boun

d ferm
ions

in real
spac

e.
There

is now
a clea

r reco
gnit

ion
that

the
BCS and

BEC

para
digm

s are
not

as disti
nct

as they
were once

thou
ght

FIG. 1:
BEC-BCS cros

sove
r.

By tuni
ng

the
inte

ract
ion

stre
ngth

betw
een

the
two ferm

ionic
spin

stat
es,

one
can

smooth
ly cros

s over
from

a regim
e of tigh

tly bou
nd molec

ules

to a regim
e of long

-ran
ge Coope

r pair
s, whose

char
acte

risti
c

size
is much

larg
er than

the
inte

r-pa
rticl
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ing.

In betw
een
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emes, one
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unte
rs an inte

rmedia
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where
the
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size

is com
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ble to the
inte
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[2]

FIG. 2:
Sim

ulta
neou

s cool
ing of a

boso
nic and

ferm
ionic

quan
-

tum
gas

of
7 Li and

6 Li to quan
tum

dege
nera

cy.
In the

case

of the
Ferm

i gas
, the

Ferm
i pre
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e proh

ibits
the

atom
clou

d
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k in spac

e as quan
tum

dege
nera

cy is appr
oach

ed.
[3]

to be,
but

rath
er are

the
two extr

ema of a cont
inuu

m.

The diffe
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een

the
pair

s and
the
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ules

is

that
the
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ules

are
loca

lized
in the

real
(pos

ition
)

spac
e, where

as the
BCS pair

s are
made

of two part
icles

with oppo
site

momenta
. Thus,

the
BCS pair

s are
larg

e

(much
larg

er than
the

inter
-par

ticle
spac

ing)
, where

as

the
BEC molec

ules
are

small (Figur
e 1).
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m
es

of

th
e
or

de
r
of

th
e
th

er
m

al
de

-B
ro

gl
ie

w
av

el
en

gt
h.

E
ve

n
th

ou
gh

th
e

B
C
S

th
eo

ry
be

ca
m

e
su

cc
es

sf
ul

ly
an

d

w
id

el
y

ap
pl

ic
ab

le
to

m
an

y
ph

en
om

en
a,

it
is

ba
si
ca

lly

a
w
ea

k
at

tr
ac

ti
on

th
eo

ry
.

A
ge

ne
ra

liz
at

io
n

of
th

e
B
C
S

th
eo

ry
ha

s
be

en
de

ve
lo
pe

d
to

in
cl
ud

e
th

e
st
ro

ng
at

tr
ac

-

ti
on

re
gi
m

e
in

w
hi

ch
fe
rm

io
n

pa
ir
s
be

co
m

e
ti
gh

tl
y

bo
un

d

di
at

om
ic

B
os

e
m

ol
ec

ul
es

an
d

un
de

rg
o

B
os

e–
E
in

st
ei
n

co
nd

en
sa

ti
on

.
T
he

B
E
C

st
at

e
is

on
th

e
th

e
st
ro

ng

at
tr
ac

ti
on

si
de

of
th

e
ph

as
e

sp
ac

e,
an

d
is

fo
rm

ed
by

th
e

co
nd

en
sa

ti
on

of
bo

un
d

fe
rm

io
ns

in
re

al
sp

ac
e.

T
he

re

is
no

w
a

cl
ea

r
re

co
gn

it
io
n

th
at

th
e

B
C
S

an
d

B
E
C

pa
ra

di
gm

s
ar

e
no

t
as

di
st
in

ct
as

th
ey

w
er

e
on

ce
th

ou
gh

t

F
IG

.
1:

B
E
C
-B

C
S

cr
os

so
ve

r.
B
y

tu
ni

ng
th

e
in

te
ra

ct
io
n

st
re

ng
th

be
tw

ee
n

th
e

tw
o

fe
rm

io
ni

c
sp

in
st
at

es
,

on
e

ca
n

sm
oo

th
ly

cr
os

s
ov

er
fr
om

a
re

gi
m

e
of

ti
gh

tl
y

bo
un

d
m

ol
ec

ul
es

to
a

re
gi
m

e
of

lo
ng

-r
an

ge
C
oo

pe
r
pa

ir
s,

w
ho

se
ch

ar
ac

te
ri
st
ic

si
ze

is
m

uc
h

la
rg

er
th

an
th

e
in

te
r-
pa

rt
ic
le

sp
ac

in
g.

In
be

tw
ee

n

th
es

e
tw

o
ex

tr
em

es
,
on

e
en

co
un

te
rs

an
in

te
rm

ed
ia
te

re
gi
m

e

w
he

re
th

e
pa

ir
si
ze

is
co

m
pa

ra
bl

e
to

th
e
in

te
r-
pa

rt
ic
le

sp
ac

in
g

[2
]

F
IG

. 2
:
Si

m
ul

ta
ne

ou
s co

ol
in

g
of

a
bo

so
ni

c
an

d
fe
rm

io
ni

c
qu

an
-

tu
m

ga
s
of

7 Li
an

d
6 Li

to
qu

an
tu

m
de

ge
ne

ra
cy

.
In

th
e

ca
se

of
th

e
Fe

rm
i g

as
, t

he
Fe

rm
i p

re
ss
ur

e
pr

oh
ib

it
s
th

e
at

om
cl
ou

d

to
sh

ri
nk

in
sp

ac
e
as

qu
an

tu
m

de
ge

ne
ra

cy
is

ap
pr

oa
ch

ed
.
[3
]

to
be

,
bu

t
ra

th
er

ar
e

th
e

tw
o

ex
tr
em

a
of

a
co

nt
in

uu
m

.

T
he

di
ffe

re
nc

e
be

tw
ee

n
th

e
pa

ir
s

an
d

th
e

m
ol
ec

ul
es

is

th
at

th
e

m
ol
ec

ul
es

ar
e

lo
ca

liz
ed

in
th

e
re

al
(p

os
it
io
n)

sp
ac

e,
w
he

re
as

th
e

B
C
S

pa
ir
s
ar

e
m

ad
e

of
tw

o
pa

rt
ic
le
s

w
it
h

op
po

si
te

m
om

en
ta

.
T
hu

s,
th

e
B
C
S

pa
ir
s
ar

e
la
rg

e

(m
uc

h
la
rg

er
th

an
th

e
in

te
r-
pa

rt
ic
le

sp
ac

in
g)

,
w
he

re
as

th
e
B
E
C

m
ol
ec

ul
es

ar
e
sm

al
l (F

ig
ur

e
1)

.

T
hi

s
re

po
rt

go
es

ov
er

a
ba

si
c

de
sc

ri
pt

io
n

of
th

e

B
E
C
-B

C
S

cr
os

so
ve

r,
an

d
di

sc
us

se
s

it
s

re
al
iz
at

io
n

in

te
rm

s
of

a
si
m

pl
e

ac
co

un
t

of
Fe

sh
ba

ch
re

so
na

nc
es

w
hi

ch
ar

e
us

ed
to

tu
ne

th
e

in
te

ra
ct

io
n

be
tw

ee
n

th
e

sy
st
em

’s
co

ns
ti
tu

en
ts
.

W
e

al
so

pr
es

en
t

a
di

sc
us

si
on

on

bo
un

d-
st
at

e
fo

rm
at

io
n

in
qu

an
tu

m
sy

st
em

s,
an

d
ho

w

re
su

lt
s
fr
om

th
e
sa

m
e
de

sc
ri
be

C
oo

pe
r
P
ai
ri
ng

.

II
.

T
H
E
O
R
Y

A
.

B
ou

nd
St

at
es

In
co

nt
ra

st
to

bo
so

ns
, t

he
no

n-
in

te
ra

ct
in

g
Fe

rm
i g

as
do

es

no
t
sh

ow
an

y
ph

as
e
tr
an

si
ti
on

do
w
n

to
ze

ro
te

m
pe

ra
tu

re

B
o
u
n
d
s
t
a
t
e
s
a
n
d

t
h
e

B
E
C
-B

C
S

C
r
o
s
s
o
v
e
r

S
u
d
h
a
n
g

V
a
r
s
h
n
e
y

U
n
iv
e
r
s
ity

o
f

B
r
itis

h
C
o
lu
m

b
ia

,
B
C

V
6
T

(
D

a
t
e
d
:
D

e
c
e
m

b
e
r
1
4
,
2
0
2
1
)

T
h
is

r
e
p
o
r
t
p
r
e
s
e
n
t
s
a

b
a
s
ic

o
v
e
r
v
ie
w

o
f
t
h
e
c
r
o
s
s
o
v
e
r
fr
o
m

t
h
e
B
a
r
d
e
e
n
–
C
o
o
p
e
r
–
S
c
h
r
ie
ff
e
r
(
B
C
S
)

s
t
a
t
e

o
f
w
e
a
k
ly

-c
o
r
r
e
la

t
e
d

p
a
ir
s

o
f
fe

r
m

io
n
s

t
o

t
h
e

B
o
s
e
–
E
in

s
t
e
in

c
o
n
d
e
n
s
a
t
io

n
(
B
E
C
)

o
f
d
ia

t
o
m

ic

m
o
le
c
u
le
s
in

t
h
e

a
t
o
m

ic
F
e
r
m

i
g
a
s
.
W

e
d
is
c
u
s
s
h
o
w

t
h
is

c
r
o
s
s
o
v
e
r
(
c
a
lle

d
t
h
e

B
E
C
-B

C
S

C
r
o
s
s
o
v
e
r
)

is
a
c
h
ie
v
e
d

w
it
h
o
u
t
a
n
y

p
h
a
s
e
t
r
a
n
s
it
io

n
b
y

t
u
n
in

g
t
h
e
in

t
e
r
a
c
t
io

n
s
t
r
e
n
g
t
h

v
ia

F
e
s
h
b
a
c
h

r
e
s
o
n
a
n
c
e
s
.

T
h
is

is
s
u
p
p
le
m

e
n
t
e
d

b
y

a
d
is
c
u
s
s
io

n
o
n

b
o
u
n
d
s
t
a
t
e
s

a
n
d

t
h
e

c
o
n
t
in

g
e
n
c
ie
s

o
f
t
h
e
ir

a
p
p
e
a
r
e
n
c
e

in

a
n

a
t
o
m

ic
g
a
s
.

I
.

I
N

T
R
O

D
U

C
T
I
O

N

T
h
e

B
E
C

p
a
r
a
d
ig

m
,
fi
r
s
t

d
e
v
e
lo

p
e
d

fo
r

n
o
n
-in

te
r
a
c
tin

g

b
o
s
o
n
s

a
n
d

la
te

r
g
e
n
e
r
a
liz

e
d

to
ta

k
e

in
to

a
c
c
o
u
n
t

r
e
p
u
l-

s
iv

e
in

te
r
a
c
tio

n
s
,
d
e
s
c
r
ib

e
s

b
o
s
o
n
ic

fl
u
id

s
lik

e
4H

e
o
r

u
l-

tr
a
c
o
ld

B
o
s
e
g
a
s
e
s
lik

e
8
7R

b
.
T
h
e
c
o
n
d
e
n
s
a
te

is
a

m
a
c
r
o
-

s
c
o
p
ic

o
c
c
u
p
a
tio

n
o
f

a
s
in

g
le

q
u
a
n
tu

m
s
ta

te
th

a
t

o
c
-

c
u
r
s

b
e
lo

w
a

tr
a
n
s
itio

n
te

m
p
e
r
a
tu

r
e
T
c
,
w
h
ic
h
,
e
v
e
n

in

s
tr

o
n
g
ly

in
te

r
a
c
tin

g
B
o
s
e
s
y
s
te

m
s
lik

e
4H

e
,
is

o
f
th

e
s
a
m

e

o
r
d
e
r

o
f
m

a
g
n
itu

d
e

a
s

th
e

q
u
a
n
tu

m
d
e
g
e
n
e
r
a
c
y

te
m

p
e
r
-

a
tu

r
e

a
t

[1
]
w
h
ic
h

th
e

in
te

r
-p

a
r
tic

le
s
p
a
c
in

g
b
e
c
o
m

e
s

o
f

th
e

o
r
d
e
r
o
f
th

e
th

e
r
m

a
l
d
e
-B

r
o
g
lie

w
a
v
e
le
n
g
th

.

E
v
e
n

th
o
u
g
h

th
e

B
C
S

th
e
o
r
y

b
e
c
a
m

e
s
u
c
c
e
s
s
fu

lly
a
n
d

w
id

e
ly

a
p
p
lic

a
b
le

to
m

a
n
y

p
h
e
n
o
m

e
n
a
,

it
is

b
a
s
ic
a
lly

a
w
e
a
k

a
ttr

a
c
tio

n
th

e
o
r
y
.

A
g
e
n
e
r
a
liz

a
tio

n
o
f
th

e
B
C
S

th
e
o
r
y

h
a
s

b
e
e
n

d
e
v
e
lo

p
e
d

to
in

c
lu

d
e

th
e

s
tr

o
n
g

a
ttr

a
c
-

tio
n

r
e
g
im

e
in

w
h
ic
h

fe
r
m

io
n

p
a
ir
s
b
e
c
o
m

e
tig

h
tly

b
o
u
n
d

d
ia

to
m

ic
B
o
s
e

m
o
le
c
u
le
s

a
n
d

u
n
d
e
r
g
o

B
o
s
e
–
E
in

s
te

in

c
o
n
d
e
n
s
a
tio

n
.

T
h
e

B
E
C

s
ta

te
is

o
n

th
e

th
e

s
tr

o
n
g

a
ttr

a
c
tio

n
s
id

e
o
f
th

e
p
h
a
s
e

s
p
a
c
e
,
a
n
d

is
fo

r
m

e
d

b
y

th
e

c
o
n
d
e
n
s
a
tio

n
o
f

b
o
u
n
d

fe
r
m

io
n
s

in
r
e
a
l

s
p
a
c
e
.

T
h
e
r
e

is
n
o
w

a
c
le
a
r

r
e
c
o
g
n
itio

n
th

a
t

th
e

B
C
S

a
n
d

B
E
C

p
a
r
a
d
ig

m
s
a
r
e

n
o
t
a
s
d
is
tin

c
t
a
s
th

e
y

w
e
r
e

o
n
c
e

th
o
u
g
h
t

F
IG

.
1
:

B
E
C
-B

C
S

c
r
o
s
s
o
v
e
r
.

B
y

t
u
n
in

g
t
h
e

in
t
e
r
a
c
t
io

n

s
t
r
e
n
g
t
h

b
e
tw

e
e
n

t
h
e

tw
o

fe
r
m

io
n
ic

s
p
in

s
t
a
t
e
s
,

o
n
e

c
a
n

s
m

o
o
t
h
ly

c
r
o
s
s
o
v
e
r
fr
o
m

a
r
e
g
im

e
o
f
t
ig

h
t
ly

b
o
u
n
d

m
o
le
c
u
le
s

t
o

a
r
e
g
im

e
o
f
lo

n
g
-r
a
n
g
e

C
o
o
p
e
r

p
a
ir
s
,
w
h
o
s
e

c
h
a
r
a
c
t
e
r
is
t
ic

s
iz
e
is

m
u
c
h

la
r
g
e
r
t
h
a
n

t
h
e
in

t
e
r
-p

a
r
t
ic
le

s
p
a
c
in

g
.
In

b
e
tw

e
e
n

t
h
e
s
e

tw
o

e
x
t
r
e
m

e
s
,

o
n
e

e
n
c
o
u
n
t
e
r
s

a
n

in
t
e
r
m

e
d
ia

t
e

r
e
g
im

e

w
h
e
r
e
t
h
e
p
a
ir

s
iz
e
is

c
o
m

p
a
r
a
b
le

t
o

t
h
e
in

t
e
r
-p

a
r
t
ic
le

s
p
a
c
in

g

[2
]

F
IG

.
2
:
S
im

u
lt
a
n
e
o
u
s
c
o
o
lin

g
o
f
a
b
o
s
o
n
ic

a
n
d

fe
r
m

io
n
ic

q
u
a
n
-

t
u
m

g
a
s

o
f

7L
i
a
n
d

6L
i
t
o

q
u
a
n
t
u
m

d
e
g
e
n
e
r
a
c
y
.

In
t
h
e

c
a
s
e

o
f
t
h
e
F
e
r
m

i
g
a
s
,
t
h
e
F
e
r
m

i
p
r
e
s
s
u
r
e
p
r
o
h
ib

it
s
t
h
e
a
t
o
m

c
lo

u
d

t
o

s
h
r
in

k
in

s
p
a
c
e

a
s
q
u
a
n
t
u
m

d
e
g
e
n
e
r
a
c
y

is
a
p
p
r
o
a
c
h
e
d
.
[3

]

to
b
e
,
b
u
t

r
a
th

e
r

a
r
e

th
e

tw
o

e
x
tr

e
m

a
o
f
a

c
o
n
tin

u
u
m

.

T
h
e

d
iff

e
r
e
n
c
e

b
e
tw

e
e
n

th
e

p
a
ir
s

a
n
d

th
e

m
o
le
c
u
le
s

is

th
a
t

th
e

m
o
le
c
u
le
s

a
r
e

lo
c
a
liz

e
d

in
th

e
r
e
a
l

(p
o
s
itio

n
)

s
p
a
c
e
,
w
h
e
r
e
a
s

th
e

B
C
S

p
a
ir
s

a
r
e

m
a
d
e

o
f
tw

o
p
a
r
tic

le
s

w
ith

o
p
p
o
s
ite

m
o
m

e
n
ta

.
T
h
u
s
,
th

e
B
C
S

p
a
ir
s

a
r
e

la
r
g
e

(m
u
c
h

la
r
g
e
r

th
a
n

th
e

in
te

r
-p

a
r
tic

le
s
p
a
c
in

g
),

w
h
e
r
e
a
s

th
e

B
E
C

m
o
le
c
u
le
s
a
r
e

s
m

a
ll

(F
ig

u
r
e

1
).

T
h
is

r
e
p
o
r
t

g
o
e
s

o
v
e
r

a
b
a
s
ic

d
e
s
c
r
ip

tio
n

o
f

th
e

B
E
C
-B

C
S

c
r
o
s
s
o
v
e
r
,

a
n
d

d
is
c
u
s
s
e
s

its
r
e
a
liz

a
tio

n
in

te
r
m

s
o
f

a
s
im

p
le

a
c
c
o
u
n
t

o
f

F
e
s
h
b
a
c
h

r
e
s
o
n
a
n
c
e
s

w
h
ic
h

a
r
e

u
s
e
d

to
tu

n
e

th
e

in
te

r
a
c
tio

n
b
e
tw

e
e
n

th
e

s
y
s
te

m
’s

c
o
n
s
titu

e
n
ts

.
W

e
a
ls
o

p
r
e
s
e
n
t

a
d
is
c
u
s
s
io

n
o
n

b
o
u
n
d
-s
ta

te
fo

r
m

a
tio

n
in

q
u
a
n
tu

m
s
y
s
te

m
s
,

a
n
d

h
o
w

r
e
s
u
lts

fr
o
m

th
e

s
a
m

e
d
e
s
c
r
ib

e
C
o
o
p
e
r
P
a
ir
in

g
.

I
I
.

T
H

E
O

R
Y

A
.

B
o
u
n
d

S
t
a
t
e
s

In
c
o
n
tr

a
s
t
to

b
o
s
o
n
s
,
th

e
n
o
n
-in

te
r
a
c
tin

g
F
e
r
m

i
g
a
s
d
o
e
s

n
o
t
s
h
o
w

a
n
y

p
h
a
s
e

tr
a
n
s
itio

n
d
o
w
n

to
z
e
r
o

te
m

p
e
r
a
tu

r
e

T

μImπ

⟨d̄γ5u⟩ = ⟨π+⟩ = 0

Deconfined

Hadronic

Deconfined

BEC BCS

160 MeV

?
⟨π+⟩ ≠ 0 ⟨d̄γ5u⟩ ≠ 0

This 

work

Crossover

1st order



• Isospin chemical potential 


• Canonical approach: thermodynamic relation
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ature as µI increases: a first-order phase transition at
|µI | = m⇡ from a weakly-interacting pion gas to a Bose-
Einstein condensate (BEC) phase, and a crossover at
larger µI from the BEC phase to a deconfined super-
conducting Bardeen-Cooper-Schrie↵er (BCS) phase [15];
see Ref. [16] for a review. Previous work on QCD at non-
zero isospin chemical potential using both approaches has
found evidence for the BEC transition, but did not defini-
tively probe the BCS phase or the onset of pQCD.

In this work, we study systems with the quantum num-
bers of n identical charged pions with zero total three-
momentum. Such systems have been investigated in pre-
vious work [11–13, 17–20] for n  72 [13]. In order to
extend those calculations, we develop an algorithm that
allows e�cient computation of correlation functions for
larger n and numerically investigate n  6144 systems.
The algorithm is built upon properties of the symmetric
group and importantly can be implemented without the
extreme numerical-precision requirements of existing ap-
proaches. While the algorithm is specific to the highly
symmetric systems that are considered, symmetry-group-
based generalizations may be appropriate for e�ciently
performing the Wick contractions for other multi-hadron
systems such as nuclei.

The LQCD two-point correlation functions used to ac-
cess these n-pion systems rapidly decay as the separation
of the points increases. This presents numerical chal-
lenges in the calculation and analysis of the correlation
functions investigated in this work. The correlation func-
tions not only vary by many orders of magnitude across
the lattice extent, but even at the same site they fluctuate
by orders of magnitude between configurations. Conse-
quently, any attainable statistical sample of a many-pion
correlation function will be far from the realm of valid-
ity of the Central Limit Theorem (CLT), and the statis-
tical estimators used in most LQCD calculations, such
as the sample mean and standard deviation, will not be
meaningful. The distributions of many-particle correla-
tion functions that are positive-definite on all field con-
figurations in a range of contexts have been found to
be approximately log-normal [21–24] and that behavior
is also found for the many-pion systems studied here.
Therefore, to extract physical quantities from the LQCD
calculations, we perform an analysis that is based on
the empirically-motivated assumption of log-normality.
LQCD investigations of nuclei and other many-body sys-
tems encounter similar, but not identical, statistical chal-
lenges [25–31] and some of the techniques explored here
may have more general applicability.

Given these techniques and improvements, this work
provides new insights into properties of matter at sig-
nificantly larger isospin densities than previously stud-
ied. In particular, we find that the isentropic speed of
sound, cs, exceeds the conformal limit of c2s  1/3 over a
wide range of isospin chemical potential. The results also
demonstrate the regime of validity of pQCD in describ-
ing isospin-chemical-potential matter is bounded below
by µI ⇠ 15m⇡.

The structure of this paper is as follows. In Sec. II, a
new algorithm for computing many-pion correlation func-
tions that forms the basis of this work is introduced.
In Sec. III, the details of the LQCD calculations that
are performed and the basic properties of the resulting
correlation functions are presented. Section IV presents
an analysis of the statistical properties of these correla-
tion functions and introduces the tools with which their
distributions are analysed under the assumption of log-
normality to extract physical information about these
systems. The physical quantities that are determined
from these correlation functions relate to large isospin
chemical potential and are discussed in Sec. V. A brief
summary is given in Sec. VI. Additional details of nu-
merical tests of the algorithms and data presentations
used herein, and investigations of the inclusion of higher
cumulants in the analysis, are presented in the Appen-
dices.

II. MANY-PION CORRELATION FUNCTIONS

In order to extract physics from LQCD calculations,
suitable correlation functions must be constructed and
evaluated. In the context of this work, the correlation
functions of interest are those that access states with a
large z-component of isospin, Iz, with vanishing total
three-momentum. Specifically, we consider correlation
functions of the form

Cn(t) =

* 
X

x

⇡
�(x, 0)

!n nY

i=1

⇡
+(yi, t)

+
, (1)

where n = Iz labels the minimum number of charged
pions required to form the state, and yi are (possibly
distinct) spatial lattice sites (the dependence of Cn(t)
on these coordinates is suppressed since it does not af-
fect the spectrum of states that propagate over a Eu-
clidean time-separation, t). Here, ⇡�(x, t) = ⇡

+(x, t)† =
�d(x, t)�5u(x, t), so the sink interpolating field at t = 0
projects the system to zero total three-momentum by
forcing each du pair to zero three-momentum.
For large n, the correlation functions in Eq. (1) in-

volve many quark fields, and, after integration over the
fermion degrees of freedom, produce a factorially large
set of Wick contractions that must be evaluated and av-
eraged over an ensemble of gluon field configurations. For
example, for the largest isospin-charge that we consider
in this work, the required number of Wick contractions
is (6144!)2 ⇠ O(1040000). A naive approach to the evalu-
ation of Eq. (1) is therefore impractical for all but small
n, and more e�cient methods are required. As Eq. (1)
provides a prototypical (and particularly simple) exam-
ple of a many-body system, significant e↵ort has been
devoted to developing such algorithms. In Refs. [11, 17],
a method based on the expansion of determinants was in-
troduced and used to study n  12 pion systems. A more
powerful recursive algorithm was introduced in Ref. [18]
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and further developed in Ref. [13], allowing n  72 pion
systems to be studied. While these methods were signifi-
cant steps forward in the study of many-hadron systems
in LQCD, they su↵er from numerical instabilities when n

becomes large and their scaling with n makes it imprac-
tical to study still larger values of n.

Here, we introduce a new algorithm based on the rep-
resentation theory of the symmetric group and formalize
a relation introduced in Ref. [20]. In this section, we
show the algorithm is numerically stable and more e�-
cient than previous algorithms and consider some gener-
alizations of the approach. The improved e�ciency and
stability make it possible to increase the isospin charge
that is studied by multiple orders of magnitude over pre-
vious work.

A. Symmetric polynomial algorithm

As in Refs. [11, 17], a zero-momentum pion block can
be defined as

⇧(i,↵)(j,�)(x,y; t)

=
X

k,�,z

S(i,↵)(k,�)(x, 0; z, t)S
†
(k,�)(j,�)(y, 0; z, t) , (2)

where S(x; y) is a quark propagator from x = (x, tx) to
y = (y, ty). Here, {↵,�, �} and {i, j, k} indicate spin and
color indices respectively, while x,y, and z 2 ⇤3 indicate
spatial positions selected from a set of lattice sites ⇤3

which can be the entire spatial lattice geometry or some
subset.2 This object is a matrix in its Ns spin, Nc color,
and N⇤ = dim(⇤3) spatial indices

By combining spin, color, and spatial index labels, the
pion block can be recast as a time-dependent N ⇥ N

matrix, ⇧(t), where N = NcNsN⇤. Since the manipu-
lations below will be independent of the temporal coor-
dinate, the time-dependence of ⇧(t) will be suppressed.
Let ~x = {x1, . . . , xN} denote the set of eigenvalues of ⇧.
As we will show in Sec. II E, the correlation function in
Eq. (1) can be written for 1  n  N as

Cn(t) = n!En(~x), (3)

where En(~x) is a homogeneous, degree-n, symmetric
polynomial over the eigenvalues:

En(~x) ⌘ En({x1, . . . , xN}) ⌘

NX

i1<···<in

xi1 . . . xin , (4)

where the indices ik range from 1 to N . For example,
E2({x1, x2, x3}) = x1x2 + x1x3 + x2x3 and the spe-

cial cases E1({x1, . . . , xN}) =
PN

i=1 xi = Tr(⇧) and

2
Note that the summed spatial location z in Eq. (2) can in prin-

ciple range over a di↵erent set of spatial sites than the external

sites x and y.

EN ({x1, . . . , xN}) =
QN

i=1 xi = Det(⇧) reduce to known
results.
Although Eq. (3) is conceptually simple (and was writ-

ten down in Ref. [20]), directly computing the
�N
n

�
terms

in the sum in Eq. (4) is computationally intractable for
even moderate N and n. However, En(x1, . . . xN ) can be
computed using the following recursive relation3:

Ek({x1, . . . , xM}) = xMEk�1({x1, . . . xM�1})

+ Ek({x1, . . . , xM�1}),
(5)

where Ek(x1, . . . xM ) = 0 if M < k. By either recur-
sively computing En and caching the result, or building a
lookup table, the computational e↵ort needed to compute
the correlation function from the eigenvalues is reduced
to O(N2). In practice, this computation is e↵ectively of
negligible cost since obtaining the eigendecomposition of
⇧ is an O(N3) operation that dominates the cost of ob-
taining the correlation function from a given set of quark
propagators.

B. Generalizations

Although the method as described is particular to sys-
tems of positively (or negatively) charged pions, it can
be readily generalized to any type of meson correlation
function whose contractions do not admit disconnected
diagrams by changing the construction of the pion block,
Eq. (2). For instance, in order to compute a maximal
isospin many-kaon correlation function, the pion block ⇧
would be replaced by the kaon block defined by

(i,↵)(j,�)(x,y, t)

=
X

k,�,z

Su;(i,↵)(k,�)(x, 0; z, t)S
†
s;(k,�)(j,�)(y, 0; z, t), (6)

where Su refers to the light quark propagator and Ss

refers to the strange quark propagator. Additionally,
the methods in Ref. [12] can be used to evaluate multi-
species correlation functions, such as mixed systems of
pions and kaons or systems of pions wherein some pions
have nonzero momentum. Similarly, the method can also
be applied to baryons in Nc = 2 QCD [33, 34].

C. Calculation of eigenvalues

Since the pion block ⇧(t) = SS
† in Eq. (2) is explic-

itly Hermitian and positive-definite, its eigenvalues are
equal to its singular values and can be computed using a

3
This recursive relation can be seen directly from Eq. (4) or as a

specific case of the more general methods in Ref. [32] for com-

puting Schur polynomials.
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and further developed in Ref. [13], allowing n  72 pion
systems to be studied. While these methods were signifi-
cant steps forward in the study of many-hadron systems
in LQCD, they su↵er from numerical instabilities when n

becomes large and their scaling with n makes it imprac-
tical to study still larger values of n.

Here, we introduce a new algorithm based on the rep-
resentation theory of the symmetric group and formalize
a relation introduced in Ref. [20]. In this section, we
show the algorithm is numerically stable and more e�-
cient than previous algorithms and consider some gener-
alizations of the approach. The improved e�ciency and
stability make it possible to increase the isospin charge
that is studied by multiple orders of magnitude over pre-
vious work.

A. Symmetric polynomial algorithm

As in Refs. [11, 17], a zero-momentum pion block can
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where S(x; y) is a quark propagator from x = (x, tx) to
y = (y, ty). Here, {↵,�, �} and {i, j, k} indicate spin and
color indices respectively, while x,y, and z 2 ⇤3 indicate
spatial positions selected from a set of lattice sites ⇤3

which can be the entire spatial lattice geometry or some
subset.2 This object is a matrix in its Ns spin, Nc color,
and N⇤ = dim(⇤3) spatial indices

By combining spin, color, and spatial index labels, the
pion block can be recast as a time-dependent N ⇥ N

matrix, ⇧(t), where N = NcNsN⇤. Since the manipu-
lations below will be independent of the temporal coor-
dinate, the time-dependence of ⇧(t) will be suppressed.
Let ~x = {x1, . . . , xN} denote the set of eigenvalues of ⇧.
As we will show in Sec. II E, the correlation function in
Eq. (1) can be written for 1  n  N as

Cn(t) = n!En(~x), (3)

where En(~x) is a homogeneous, degree-n, symmetric
polynomial over the eigenvalues:
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NX

i1<···<in

xi1 . . . xin , (4)

where the indices ik range from 1 to N . For example,
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i=1 xi = Tr(⇧) and
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(5)

where Ek(x1, . . . xM ) = 0 if M < k. By either recur-
sively computing En and caching the result, or building a
lookup table, the computational e↵ort needed to compute
the correlation function from the eigenvalues is reduced
to O(N2). In practice, this computation is e↵ectively of
negligible cost since obtaining the eigendecomposition of
⇧ is an O(N3) operation that dominates the cost of ob-
taining the correlation function from a given set of quark
propagators.

B. Generalizations

Although the method as described is particular to sys-
tems of positively (or negatively) charged pions, it can
be readily generalized to any type of meson correlation
function whose contractions do not admit disconnected
diagrams by changing the construction of the pion block,
Eq. (2). For instance, in order to compute a maximal
isospin many-kaon correlation function, the pion block ⇧
would be replaced by the kaon block defined by

(i,↵)(j,�)(x,y, t)

=
X

k,�,z

Su;(i,↵)(k,�)(x, 0; z, t)S
†
s;(k,�)(j,�)(y, 0; z, t), (6)

where Su refers to the light quark propagator and Ss

refers to the strange quark propagator. Additionally,
the methods in Ref. [12] can be used to evaluate multi-
species correlation functions, such as mixed systems of
pions and kaons or systems of pions wherein some pions
have nonzero momentum. Similarly, the method can also
be applied to baryons in Nc = 2 QCD [33, 34].

C. Calculation of eigenvalues

Since the pion block ⇧(t) = SS
† in Eq. (2) is explic-

itly Hermitian and positive-definite, its eigenvalues are
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a relation introduced in Ref. [20]. In this section, we
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cient than previous algorithms and consider some gener-
alizations of the approach. The improved e�ciency and
stability make it possible to increase the isospin charge
that is studied by multiple orders of magnitude over pre-
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As in Refs. [11, 17], a zero-momentum pion block can
be defined as

⇧(i,↵)(j,�)(x,y; t)

=
X

k,�,z

S(i,↵)(k,�)(x, 0; z, t)S
†
(k,�)(j,�)(y, 0; z, t) , (2)

where S(x; y) is a quark propagator from x = (x, tx) to
y = (y, ty). Here, {↵,�, �} and {i, j, k} indicate spin and
color indices respectively, while x,y, and z 2 ⇤3 indicate
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tems of positively (or negatively) charged pions, it can
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function whose contractions do not admit disconnected
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3
This recursive relation can be seen directly from Eq. (4) or as a

specific case of the more general methods in Ref. [32] for com-

puting Schur polynomials.
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and further developed in Ref. [13], allowing n  72 pion
systems to be studied. While these methods were signifi-
cant steps forward in the study of many-hadron systems
in LQCD, they su↵er from numerical instabilities when n

becomes large and their scaling with n makes it imprac-
tical to study still larger values of n.

Here, we introduce a new algorithm based on the rep-
resentation theory of the symmetric group and formalize
a relation introduced in Ref. [20]. In this section, we
show the algorithm is numerically stable and more e�-
cient than previous algorithms and consider some gener-
alizations of the approach. The improved e�ciency and
stability make it possible to increase the isospin charge
that is studied by multiple orders of magnitude over pre-
vious work.

A. Symmetric polynomial algorithm

As in Refs. [11, 17], a zero-momentum pion block can
be defined as

⇧(i,↵)(j,�)(x,y; t)

=
X

k,�,z

S(i,↵)(k,�)(x, 0; z, t)S
†
(k,�)(j,�)(y, 0; z, t) , (2)

where S(x; y) is a quark propagator from x = (x, tx) to
y = (y, ty). Here, {↵,�, �} and {i, j, k} indicate spin and
color indices respectively, while x,y, and z 2 ⇤3 indicate
spatial positions selected from a set of lattice sites ⇤3

which can be the entire spatial lattice geometry or some
subset.2 This object is a matrix in its Ns spin, Nc color,
and N⇤ = dim(⇤3) spatial indices

By combining spin, color, and spatial index labels, the
pion block can be recast as a time-dependent N ⇥ N

matrix, ⇧(t), where N = NcNsN⇤. Since the manipu-
lations below will be independent of the temporal coor-
dinate, the time-dependence of ⇧(t) will be suppressed.
Let ~x = {x1, . . . , xN} denote the set of eigenvalues of ⇧.
As we will show in Sec. II E, the correlation function in
Eq. (1) can be written for 1  n  N as

Cn(t) = n!En(~x), (3)

where En(~x) is a homogeneous, degree-n, symmetric
polynomial over the eigenvalues:

En(~x) ⌘ En({x1, . . . , xN}) ⌘

NX

i1<···<in

xi1 . . . xin , (4)

where the indices ik range from 1 to N . For example,
E2({x1, x2, x3}) = x1x2 + x1x3 + x2x3 and the spe-

cial cases E1({x1, . . . , xN}) =
PN

i=1 xi = Tr(⇧) and

2
Note that the summed spatial location z in Eq. (2) can in prin-

ciple range over a di↵erent set of spatial sites than the external

sites x and y.

EN ({x1, . . . , xN}) =
QN

i=1 xi = Det(⇧) reduce to known
results.
Although Eq. (3) is conceptually simple (and was writ-

ten down in Ref. [20]), directly computing the
�N
n

�
terms

in the sum in Eq. (4) is computationally intractable for
even moderate N and n. However, En(x1, . . . xN ) can be
computed using the following recursive relation3:

Ek({x1, . . . , xM}) = xMEk�1({x1, . . . xM�1})

+ Ek({x1, . . . , xM�1}),
(5)

where Ek(x1, . . . xM ) = 0 if M < k. By either recur-
sively computing En and caching the result, or building a
lookup table, the computational e↵ort needed to compute
the correlation function from the eigenvalues is reduced
to O(N2). In practice, this computation is e↵ectively of
negligible cost since obtaining the eigendecomposition of
⇧ is an O(N3) operation that dominates the cost of ob-
taining the correlation function from a given set of quark
propagators.

B. Generalizations

Although the method as described is particular to sys-
tems of positively (or negatively) charged pions, it can
be readily generalized to any type of meson correlation
function whose contractions do not admit disconnected
diagrams by changing the construction of the pion block,
Eq. (2). For instance, in order to compute a maximal
isospin many-kaon correlation function, the pion block ⇧
would be replaced by the kaon block defined by

(i,↵)(j,�)(x,y, t)

=
X

k,�,z

Su;(i,↵)(k,�)(x, 0; z, t)S
†
s;(k,�)(j,�)(y, 0; z, t), (6)

where Su refers to the light quark propagator and Ss

refers to the strange quark propagator. Additionally,
the methods in Ref. [12] can be used to evaluate multi-
species correlation functions, such as mixed systems of
pions and kaons or systems of pions wherein some pions
have nonzero momentum. Similarly, the method can also
be applied to baryons in Nc = 2 QCD [33, 34].

C. Calculation of eigenvalues
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Label Nconf � CSW amud ams L3 ⇥ T a (fm) M⇡ (MeV) M⇡L
A 201 6.3 1.20537 -0.2416 -0.2050 483 ⇥ 96 0.091(1) 166(2) 3.7
B 322 6.3 1.20537 -0.2416 -0.2050 643 ⇥ 128 0.091(1) 172(6) 5.08

TABLE I. Parameters of the gauge-field configurations used in this work. The first column lists the label used to refer to the
ensemble, Nconf is the number of configurations, and � and CSW refer to the gauge coupling and clover coe�cient, respectively.
The lattice spacing a is determined in Ref. [37], while the lattice geometries are defined by the the spatial and temporal extents,
L and T , respectively. The bare light (mud) and strange (ms) quark masses are given in lattice units and M⇡ is the pion mass
determined in Ref. [37].
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FIG. 2. Histograms of the logarithms of correlation functions
for n 2 {500, 4500} at t/a 2 {15, 16, 17, 18} computed on the
A ensemble.

0 20 40 60 80
t/a

�80

�70

�60

�50

�40

�30

�20

�10

lo
g
x

n
(t

)

n = 6000

n = 4000

n = 2000

n = 1000

FIG. 3. Logarithms of eigenvalues xn for n 2
{1000, 2000, 4000, 6000} as a function of timeslice on a single
configuration from the A ensemble. Eigenvalues were com-
puted using double-double precision.

Values of xn for various choices of n on a single configu-
ration of the A ensemble over the full temporal extent of
the lattice geometry are shown in Fig. 3 (the B ensemble
shows similar behavior). Interestingly, the behaviour of

each of the eigenvalues appears quite similar to that of an
(ensemble-averaged) correlation function, exhibiting an
exponential decay for moderate t. This behaviour is not
physical as the eigenvalues are single-configuration quan-
tities, however the exponential decay of the eigenvalues
does have physical implications. In particular, suppose
that the exponential behaviour in Fig. 3 were exact, so
the k

th eigenvalue xk has the time dependence

xk(t) = Ak

h
e
�↵kt + e

�↵k(T�t)
i
, (16)

where Ak and ↵k are constants. Then, combining these
eigenvalues into a function C̃n(t) via Eq. (3), and taking
the limit T ! 1 for simplicity, yields

C̃n(t) = n!
X

k1<···<kn

Ak1 . . . Akne
�(↵k1+···+↵kn )t

. (17)

In this representation, C̃n(t) naturally behaves as a sum
of exponentials, from which we can read o↵ the energies

Ẽk1,...,kn = ↵k1 + · · · + ↵kn ; {ki} distinct. (18)

This formula also describes the possible energies of an n-
particle system of non-interacting fermions with single-
particle energies {↵k}. In an imprecise way, the rate of
exponential decay for the eigenvalue xk(t) can be inter-
preted as corresponding to the k

th-lowest single-particle
energy for a pion in a volume (aL)3. Note that this corre-
spondence is not exact – the quantity xk(t) is computed
only on a single configuration, and the validity of Eq. (16)
for describing xk(t) is empirical with no theoretical jus-
tification.

IV. ANALYZING MANY-PION SYSTEMS

A. Central limit theorem-based methods

Typical methods for analysing correlation functions in

LQCD begin by collecting Nconf samples, C
[Ui]
n (t), on

independent6 gauge-field configurations, U1, . . . , UNconf ,

6
Throughout this work, we assume that the samples are su�-

ciently decorrelated to be e↵ectively independent. Autocorrela-

tions are seen to be small for the pion mass.
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FIG. 1. Correlation functions for n 2 {1000, 2000, 4000,
6144} on a single configuration from the A ensemble.

where ��0(C�) is the character for the irreducible repre-
sentation of the symmetric group associated to the parti-
tion �

0 applied to the conjugacy class C� of the partition
�.

Three additional facts from representation theory are
needed to complete the proof; firstly that S(1,...,1)(~x) =
En(~x); secondly, that the character of the n-partition
(1, . . . , 1) is the sign function, �(1,...,1) = ✏; and finally,
that the orthogonality relation for characters

1

n!

X

�2Sn

��(�)��0(�) = ��,�0 (14)

holds (here the bar indicates complex conjugation) [35,
36].

Using these facts, Eq. (3) follows through a straight-
forward computation:

Cn =
X

�2Sn

✏(�)P�(�)(~x)

=
X

�2Sn

X

�0

✏(�)��0(�)S�0(~x)

=
X

�0

S�0(~x)
X

�2Sn

�(1,...,1)(�)��0(�)

= n!S(1,...,1)(~x)

= n!En(~x) . (15)

III. NUMERICAL RESULTS

A. Lattice Details

All of the calculations in this work were performed
on two ensembles, referred to as ensemble A and en-
semble B, of gauge field configurations generated with

Wilson-clover fermions and a tree-level tadpole-improved
Symanzik gauge action, the parameters of which are sum-
marized in Table I. On both ensembles, measurements
were separated by 10 hybrid Monte-Carlo trajectories;
further details regarding these configurations are given
in Ref. [37]. Using these ensembles, we computed sets of
smeared-source, smeared-sink propagators from a regular
sparse grid on a single timeslice, ⇤3 = {x | xi mod s =
0 8i} with s = 6 on ensemble A and s = 8 on ensemble
B, both corresponding to N⇤ = 512. The source and sink
smearings were gauge-covariant Gaussian smearing with
35 steps with width parameter 3.0 [38]. These propaga-
tors are sparsened [39] in that the output was only stored
on a sparse sub-lattice of the original lattice geometry. In
this case, the same sparsening factors were used as in the
choice of source locations. Due to the sparsening, the di-
mensionality of the generalized spin-color-spatial matrix
is N = 4⇥3⇥512 = 6144, enabling correlation functions
up to n = 6144 to be computed.

Except where otherwise stated, all of the calculations
described below were performed at double precision. Cal-
culations in double-double and triple-double precision
show agreement with these to at least 1 part in 105, as
discussed in Appendix A.

B. Single-configuration correlation functions

In order to compute the pion correlation functions on
each configuration, we first assembled the propagators
into the spin-color-spatial matrix S, and then performed
a SVD of S as described in Sec. II C. We then combined
the eigenvalues to form the pion correlation functions
Cn for n 2 {1, . . . , 6144} using the method described
in Sec. II A. Examples of the resulting correlation func-
tions on a single configuration from the A ensemble are
shown in Fig. 1. Notable here is the large variation in the
scale of the correlation functions. For example, C6144(t)
shown in Fig. 1 ranges over more than 105 orders of mag-
nitude. Even on an individual timeslice, the correlation
functions corresponding to a given number of pions evalu-
ated on di↵erent configurations can vary by many orders
of magnitude. This can be seen in Fig. 2, where we show
histograms of the logarithms of correlation functions for
a few adjacent timeslices for all 201 configurations of the
A ensemble for n 2 {500, 4500}. Although the intra-
timeslice variation seen in Fig. 2 is small compared the
inter-timeslice variation, it is still large enough to require
special techniques to be used in analysing the correlation
functions, as we will discuss in Sec. IV. Similar distribu-
tions are seen on the B ensemble.

C. Distribution of eigenvalues

While the eigenvalues of the pion block, ~x, are not
themselves physical, they are still of interest since they
directly determine the correlation functions via Eq. (3).
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C̃n(t) = n!
X

k1<···<kn

Ak1 . . . Akne
�(↵k1+···+↵kn )t

. (17)

In this representation, C̃n(t) naturally behaves as a sum
of exponentials, from which we can read o↵ the energies

Ẽk1,...,kn = ↵k1 + · · · + ↵kn ; {ki} distinct. (18)

This formula also describes the possible energies of an n-
particle system of non-interacting fermions with single-
particle energies {↵k}. In an imprecise way, the rate of
exponential decay for the eigenvalue xk(t) can be inter-
preted as corresponding to the k

th-lowest single-particle
energy for a pion in a volume (aL)3. Note that this corre-
spondence is not exact – the quantity xk(t) is computed
only on a single configuration, and the validity of Eq. (16)
for describing xk(t) is empirical with no theoretical jus-
tification.

IV. ANALYZING MANY-PION SYSTEMS

A. Central limit theorem-based methods

Typical methods for analysing correlation functions in

LQCD begin by collecting Nconf samples, C
[Ui]
n (t), on

independent6 gauge-field configurations, U1, . . . , UNconf ,

6
Throughout this work, we assume that the samples are su�-

ciently decorrelated to be e↵ectively independent. Autocorrela-

tions are seen to be small for the pion mass.

Correlators on a single configuration

Correlator distributions
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n > 4

p > 0.1

log Cn(t)[U] ∼ 𝒩(μn(t), σn(t))
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mean) of logC [Ui]
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ing quantile of a normal distribution. The red line indicates
the theoretical expectation for a normal distribution.

assumption of log-normality is likely subdominant to the
statistical uncertainties of our estimates. This is not en-
tirely unexpected – log normal random variables often
appear when taking products of many non-negative ran-
dom variables (particular projections of propagators in
this case), and it has been previously hypothesized that
log-normality may play a role in QCD correlation func-
tions [21–24].

Under the assumption that correlation functions are

drawn from a log-normal distribution, i.e., logC [U ]
n ⇠

N (µn,�
2
n), we can obtain a lower-variance estimator by

determining the parameters µn and �
2
n via Eqs. (23) and

(24) and then using the analytic form for hCni given
in Eq. (21) to estimate the original correlation function.
Should violations of log-normality be observed at higher
statistical precision, it would be possible to systemati-
cally improve this method through the inclusion of higher
cumulants, as discussed in Appendix B.

C. Log-normal Analysis

In order to extract energies from the computed cor-
relation functions, we first produce a set of 200 boot-
strap samples [41], and then compute the mean µn(t)

and standard deviation �n(t) of logC
[U ]
n (t) on each boot-

strap sample. We then combine these quantities to form
bootstrap estimates of

Cn(t) = exp

✓
µn(t) +

�n(t)2

2

◆
, (25)
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FIG. 6. The Shapiro-Wilk test p-values as a function of n at
timeslices t/a 2 {10, 15, 20} for the A ensemble. A value of
p . 0.1 (gray band) indicates a violation of log-normality of
the correlation-function distribution across configurations.

and the e↵ective energy defined by

E
(n)
e↵ (t) = log

Cn(t)

Cn(t � 1)

= µn(t) � µn(t � 1) +
�
2
n(t)

2
�

�
2
n(t � 1)

2
,

(26)

which asymptotes to the ground-state energy for asymp-
totic t and lattice temporal extent. Examples of the
e↵ective energies are shown in Fig. 7. The uncertain-
ties are quantified using the the standard deviation over
bootstrap samples. All uncertainties on LQCD quanti-
ties shown below indicate the standard deviation over the
bootstrap samples.
As can be seen from the e↵ective energy functions, the

correlation functions are contaminated by both excited
states at early times and by thermal e↵ects near the
middle of the lattice temporal extent. Determining the
ground-state energy for each n from these signals is chal-
lenging because the excited-state and thermal e↵ects are
not small and there are significant statistical fluctuations
within the time range in which the signal is consistent
with a constant. In order to take a conservative approach
to energy extraction, on each bootstrap sample, we take
the e↵ective mass from a single timeslice drawn from the
uniform distribution over t/a 2 [10, 20] [ [76, 86]. This
encompasses a variety of di↵erent fitting choices and en-
sures that the energy uncertainty represents an envelope
over di↵erent fit procedures as well as statistical fluctu-
ations. Figure 7 shows the resulting fitted values and
uncertainties for three di↵erent values of n for the A en-
semble. We find that the uncertainty band on the fitted
energy is compatible with the distribution of the e↵ec-
tive energies within the region of the fit.8 The correlation

8
Here we refer to a set of data points xi with associated uncer-
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where n are the cumulants, or connected correlation
functions, of X, with the first few given by

1 = µ = hXi , (B2)

2 = h(X � µ)2i , (B3)

3 = h(X � µ)3i , (B4)

4 = h(X � µ)4i � 3 h(X � µ)2i
2
. (B5)

Applying this method to the problem at hand, the cor-
relation function Cn can be estimated by first estimating
the first N cumulants 1, . . . ,N of logCn, and then
combining these estimates using Eq. (B1) to obtain an
estimate of Cn. For the case of N = 2, this reduces ex-
actly to the assumption of log-normality as discussed in
Sec. IVB, but for higher N, the use of cumulants pro-
vides a systematically-improvable method for estimating
the correlation functions.
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FIG. 17. Cumulant corrected correlation function for
n = 6000 and for three di↵erent cumulant truncations on the
A ensemble.

A qualitative picture of the e↵ects of truncating the cu-
mulant expansion can be seen in Fig. 17, where we show
the value of the correlation function obtained after trun-
cating at the first, second, and third order. The e↵ect
of the second-order cumulant (i.e., the variance) is small,
but significant; meanwhile the third-order truncation is
consistent with the second-order truncation but with sig-
nificantly larger statistical uncertainties. The results are
shown for the A ensemble, but similar behavior is seen on
the B ensemble. As has been noted in Ref. [23], the cu-
mulant expansion exhibits a bias-variance trade-o↵, with
higher-order expansions being less biased but more noisy.
In practice this means that higher-order cumulants do
not improve the analysis at the current level of statistics,
which is also consistent with the fact that we have been
unable to detect statistical violations of log-normality.

Appendix C: Details of data presentation

The results shown in Figs. 11, 12, 13, and 14 arise
from O(6000) densely packed points with uncertainties
on both their x and y positions. This presents a chal-
lenge for accurately representing the data; this appendix
contains details of the procedure used to generate these
plots. This procedure applies to any set of ordered
data points (xi, yi) along with associated uncertainties
(dxi, dyi). The algorithm is intended to create an enve-
lope over the associated uncertainty ellipses defined by

xi(✓) = xi + dxi cos ✓, (C1)

yi(✓) = yi + dyi sin ✓, (C2)

where ✓ 2 [0, 2⇡). Note that here the x and y uncer-
tainties are treated as uncorrelated. The envelope of
these ellipses is captured by sampling points along the
ellipses and using linear interpolation to extend between

Many pion correlation functions
Log-normality tests and cumulants

log⟨eX⟩ ≈
Nκ

∑
j=1

κ j

j!

7

and computing the sample mean

C̄n(t) =
1

Nconf

NconfX

i=1

C
[Ui]
n (t), (19)

along with the sample variance

�C
2
n(t) =

1

Nconf � 1

NconfX

i=1

h
C

[Ui]
n (t) � C̄n(t)

i2
. (20)

As Nconf ! 1, the CLT applies and we may treat C̄n

as a Gaussian random variable with standard deviationp
�C2

n/Nconf. Performing correlated fits then allows the
extraction of energies and other physical parameters of
interest. In principle, these methods could be applied to
correlation functions of the many-pion systems consid-
ered here. However, in practice the large range of scales
involved in a many-pion correlation function makes anal-
yses based on the CLT e↵ectively impossible. In particu-
lar, as discussed above, the correlation functions on a par-
ticular timeslice can vary by many orders of magnitude,
typically resulting in a single gauge configuration domi-
nating the sample mean, Eq. (19), far from the regime of
applicability of the CLT.7

This argument can be made more precise. Suppose

that that correlation functions C [U ]
n (t) were log-normally

distributed across gauge configurations, i.e., for a given

choice of n and t, logC [U ]
n (t) ⇠ N (µn,�

2
n) is a normal

distribution for some µn,�n (empirically, we observe that
the sampled correlation functions are consistent with this
assumption, as will be discussed below). Then using
Eq. (19), the expectation values hC̄n(t)i and hC̄

2
n(t)i over

the set of all ensembles can be determined to be

hC̄n(t)i = exp

✓
µn +

�
2
n

2

◆
, (21)

hC̄
2
n(t)i =

1

Nconf
hC̄n(t)i

2
e
�2
n . (22)

In order to satisfy the requirement for the CLT, it is nec-
essary at a minimum that hC̄

2
ni � hC̄ni

2 . hC̄ni
2
, which

implies that Nconf & N
(min)
conf (n) = e

�2
n/2. In Fig. 4, we

show an estimate of N (min)
conf (n) using

µn =
1

Nconf

NconfX

i=1

logC [Ui]
n (t) (23)

and

�
2
n =

1

Nconf � 1

NconfX

i=1

⇣
logC [Ui]

n (t) � µn

⌘2
. (24)

7
In particular, this excludes the standard method of fitting the

correlation function to a linear combination of exponential func-

tions, as that method relies on the validity of the CLT.
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FIG. 4. Estimate of the logarithm of the number of samples
needed for the CLT to apply to correlation function Cn(t) as
a function of n. The uncertainty band indicates the standard
deviation over bootstrap samples (see Sec. IVC).

As can be seen, N (min)
conf (n) grows rapidly and already for

n ⇠ 100 is an unrealistically large number of configura-
tions is needed, e↵ectively ruling out the use of standard
statistical methods for n & 100 pion systems. Note that

the value of N (min)
conf (n) will depend on the choice of quark

masses and physical volume.

B. Log normality

Since CLT-based methods such as the sample mean
are not applicable for many-pion correlation functions at
the statistical precision achieved in this work, we need
to use a di↵erent method of analysis. A path forward is
provided by the data which, from a cursory inspection of
the distributions in Fig. 2, appears to be approximately
log-normal, as mentioned above. This observation can
be also be seen qualitatively in Fig. 5, which shows the

observed quantiles of logC [Ui]
n (t) on the A ensemble for

particular choices of n and t against the expected quan-
tiles for a normal distribution, showing the approximate
log-normality of the samples. Quantile-quantile plots for
other choices of n and t show similar behavior on both
ensembles. To verify this observation of log-normality,
we employ the Shapiro-Wilk test [40], which is designed
to assess whether a given set of samples, in this case the
logarithms of the correlation functions, have a distribu-
tion consistent with a normal distribution. The resulting
p-values for the tests for di↵erent n and t are shown in
Fig. 6 for the A ensemble (similar behavior is seen for
the B ensemble). With the exception of the (n < 5)-pion
systems, none of the correlation function distributions in
this study have a p-value less than 0.1, indicating that
we do not observe violations of log-normality on these
samples. Since we cannot detect statistical violations of
log-normality, we conclude that any bias induced by the
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FIG. 4. Estimate of the logarithm of the number of samples
needed for the CLT to apply to correlation function Cn(t) as
a function of n. The uncertainty band indicates the standard
deviation over bootstrap samples (see Sec. IVC).
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are not applicable for many-pion correlation functions at
the statistical precision achieved in this work, we need
to use a di↵erent method of analysis. A path forward is
provided by the data which, from a cursory inspection of
the distributions in Fig. 2, appears to be approximately
log-normal, as mentioned above. This observation can
be also be seen qualitatively in Fig. 5, which shows the

observed quantiles of logC [Ui]
n (t) on the A ensemble for

particular choices of n and t against the expected quan-
tiles for a normal distribution, showing the approximate
log-normality of the samples. Quantile-quantile plots for
other choices of n and t show similar behavior on both
ensembles. To verify this observation of log-normality,
we employ the Shapiro-Wilk test [40], which is designed
to assess whether a given set of samples, in this case the
logarithms of the correlation functions, have a distribu-
tion consistent with a normal distribution. The resulting
p-values for the tests for di↵erent n and t are shown in
Fig. 6 for the A ensemble (similar behavior is seen for
the B ensemble). With the exception of the (n < 5)-pion
systems, none of the correlation function distributions in
this study have a p-value less than 0.1, indicating that
we do not observe violations of log-normality on these
samples. Since we cannot detect statistical violations of
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FIG. 7. E↵ective energy functions calculated for
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while the histograms in the right panel show the distributions
of the energies across bootstrap samples. The vertical black
dashed lines indicates the timeslices included in the procedure
used to extract the energy, as discussed in the main text.
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represent the uncertainty as calculated from the variance over
the bootstrap results.

functions on ensemble B have a larger temporal extent, so
fits are performed in the interval t/a 2 [10, 25][[103, 118];
the fits to extract the energies display similar behavior
as on ensemble A. The n dependence of the extracted
energies En on both ensembles is shown in Fig. 8. There
are strong correlations between correlation functions for
di↵erent n that will be exploited below.
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FIG. 9. The isospin chemical potential of the many-pion sys-
tems studied in this work as a function of the isospin den-
sity for both ensemble A and ensemble B. Error bands are
obtained from the standard deviation over bootstrap sam-
ples. For comparison, the expectations from �PT and Stefan-
Boltzmann (SB) limit as blue-dashed and orange-dotted lines,
respectively.

V. LARGE ISOSPIN CHEMICAL POTENTIAL

The isospin chemical potential of a system with a z-
component of isospin Iz = n and volume V is defined
as

µI(n) =
dEn

dn

����
V=const

. (27)

Given a set of energies {En} for n-⇡+ systems in a fixed
volume V , the isospin chemical potential µI(⇢n) at den-
sity ⇢I = ⇢n = n/V can be estimated via a finite-
di↵erence approximation9

µI(⇢n) =
En+1 � En�1

2
. (28)

Using the bootstrap values of En determined above, the
resulting isospin chemical potentials on the two ensem-
bles are shown as a function of the isospin density in
Fig. 9.10 The dependence of the extracted chemical po-
tential on the chosen temporal separation is shown in
Fig. 10; the correlations between energies for neighbour-
ing values of n result in the chemical potential being de-
termined orders of magnitude more precisely than the in-
dividual energies. Notably, the results from both ensem-
bles are consistent within uncertainties. Similar agree-
ment is found in all of the observables shown below, in-
dicating that finite-volume and finite-temperature e↵ects

9
Higher-order stencils for the finite di↵erence lead to results that

are indistinguishable within the uncertainties.
10

In Fig. 9 and all further figures, only values up to n = 6000 are

shown due to the large uncertainties for n > 6000.
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• CLT: -fitting makes no sense


• Bootstrap analysis takes value of  
for random timeslice in plateau region


• Entire bootstrap histogram propagated 
into subsequent analysis


• Energy significantly  larger than that of  
free pions
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−
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• Isospin chemical potential 


• Two volumes: A=(4.4 fm)3, B=(5.8 fm)3 
and two temporal extents: A=(9 fm), 
B=(12 fm)


• Curve collapse  thermodynamic 
limit (  MeV)


• Agreement with


• Chiral perturbation theory for 


• Stefan-Boltzmann/pQCD for 

⟹
T ∼ 20

μI → 0

μI → ∞

Isospin chemical potential
QCD at μI ≠ 0
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FIG. 7. E↵ective energy functions calculated for
n 2 {4000, 5000, 6000} on the A ensemble. The vertical ex-
tents of the shaded bands indicate the extracted fit energies,
while the histograms in the right panel show the distributions
of the energies across bootstrap samples. The vertical black
dashed lines indicates the timeslices included in the procedure
used to extract the energy, as discussed in the main text.
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FIG. 8. Energies of the multi-pion systems as a function of n
on both the A (483⇥96) and B (643⇥128) ensembles, labeled
“LQCD A” and “LQCD B”, respectively. The shaded bands
represent the uncertainty as calculated from the variance over
the bootstrap results.

functions on ensemble B have a larger temporal extent, so
fits are performed in the interval t/a 2 [10, 25][[103, 118];
the fits to extract the energies display similar behavior
as on ensemble A. The n dependence of the extracted
energies En on both ensembles is shown in Fig. 8. There
are strong correlations between correlation functions for
di↵erent n that will be exploited below.

tainties �i as compatible with a fit xfit with uncertainty �fit if

the average of (xi � xfit)
2
/(�

2
i + �

2
fit) is . 1.
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FIG. 9. The isospin chemical potential of the many-pion sys-
tems studied in this work as a function of the isospin den-
sity for both ensemble A and ensemble B. Error bands are
obtained from the standard deviation over bootstrap sam-
ples. For comparison, the expectations from �PT and Stefan-
Boltzmann (SB) limit as blue-dashed and orange-dotted lines,
respectively.

V. LARGE ISOSPIN CHEMICAL POTENTIAL

The isospin chemical potential of a system with a z-
component of isospin Iz = n and volume V is defined
as

µI(n) =
dEn

dn

����
V=const

. (27)

Given a set of energies {En} for n-⇡+ systems in a fixed
volume V , the isospin chemical potential µI(⇢n) at den-
sity ⇢I = ⇢n = n/V can be estimated via a finite-
di↵erence approximation9

µI(⇢n) =
En+1 � En�1

2
. (28)

Using the bootstrap values of En determined above, the
resulting isospin chemical potentials on the two ensem-
bles are shown as a function of the isospin density in
Fig. 9.10 The dependence of the extracted chemical po-
tential on the chosen temporal separation is shown in
Fig. 10; the correlations between energies for neighbour-
ing values of n result in the chemical potential being de-
termined orders of magnitude more precisely than the in-
dividual energies. Notably, the results from both ensem-
bles are consistent within uncertainties. Similar agree-
ment is found in all of the observables shown below, in-
dicating that finite-volume and finite-temperature e↵ects

9
Higher-order stencils for the finite di↵erence lead to results that

are indistinguishable within the uncertainties.
10

In Fig. 9 and all further figures, only values up to n = 6000 are

shown due to the large uncertainties for n > 6000.
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FIG. 10. The e↵ective chemical-potential function µ(n)
I (t) =

(E(n+1)
e↵ (t) � E(n�1)

e↵ (t))/2 as a function of the temporal sep-
aration used for n 2 {4000, 5000, 6000} on the A ensemble.
The vertical extent of the shaded bands indicates the uncer-
tainty in the chemical potential, and the histograms in the
right panel show the distributions of the bootstrap samples.
The black dashed vertical lines indicate the temporal extent
included within the procedure used to determine µI , as dis-
cussed in the main text.

are small and both lattice calculations are near the ther-
modynamic limit.

These results are compared with two predictions in
Fig. 9. First, a result derived from leading order chiral
perturbation theory (�PT) [15, 42] is that11

⇢I =
1

2
f
2
⇡µI

✓
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m
4
⇡

µ4
I

◆
. (29)

This relation is expected to be valid for low density sys-
tems in which the pions are weakly interacting but will
break down as the isospin density or chemical potential
becomes large compared to the chiral symmetry breaking
scale. The second model is that of a relativistic fermion
gas in the Stefan-Boltzmann (SB) limit, in which

µI =

✓
48⇡2

⇢I

NfNc

◆1/3

, (30)

where Nc ⇥ Nf degrees of freedom are assumed with
Nf = 2 and Nc = 3. Notably, the Stefan-Boltzmann
prediction does not have any free parameters, so the qual-
itative agreement between the LQCD data and the pre-
diction in Eq. (30) is somewhat remarkable and is quite
suggestive as to the nature of the high-density state.

In Fig. 11, we show the energy density ✏n = En/L
3 as a

function of the corresponding isospin chemical potential,

11
Here, we use the convention in which the pion decay constant is

f⇡ ⇠ 132MeV at the physical values of the quark masses, as in

Ref [11].

normalized to the Stefan-Boltzmann expectation. In this
and subsequent figures, we show an interpolation of the
O(6000) discrete LQCD data points for each ensemble,
using the approach presented in Appendix C to produce
a region that represents the horizontal and vertical un-
certainties in the data. For large µI , the energy density
is expected to match that of a Nf = 2, Nc = 3 flavor
fermion gas, namely

✏SB =
NfNc

4⇡2

⇣
µI

2

⌘4
. (31)

For comparison, we also show predictions from �PT [15,
42] and one-loop perturbative QCD [43]. Notably, these
predictions agree qualitatively with the LQCD results in
their respective regions of validity, namely small µI for
�PT and large µI for perturbative QCD.12 For very large
µI , there is a slight discrepancy between the LQCD re-
sults on ensemble A and the perturbative QCD expec-
tation; however, given that the systematic uncertainties
from discretization e↵ects are not controlled in this study,
it is unclear whether the LQCD results at the largest
µI are reliable. On dimensional grounds, lattice arti-
facts are expected to be suppressed by powers of the
quark chemical potential, µIa/2, which reaches 0.7 for
the largest isospin chemical potential that is considered.
Excited-state contamination is also not well controlled
in the energy fits. Further exploration with calcula-
tions at a smaller lattice spacing, larger temporal ex-
tents, and higher statistical precision is needed to inves-
tigate these e↵ects. Nonetheless, viewed globally, the
LQCD data agree qualitatively with both low- and high-
density expectations, smoothly interpolating between the
two regimes.
From the chemical potential and energy density, ad-

ditional thermodynamic quantities characterizing high-
isospin-density matter can be computed. A particularly
important example is the speed of sound defined as (using
units where the speed of light is c = 1)

c
2
s =

dp

d✏
=

n

µI

dµI

dn
=

n

dE/dn

d
2
E

dn2

⇡ 2n
En+1 � 2En + En�1

En+1 � En�1
,

(32)

where p is the pressure.13 This governs isentropic prop-
agation of sound waves through the medium (the isen-
tropic condition is appropriate since our calculations cor-
respond to a temperature that is close to zero, T ⇠ 23
MeV and 17 MeV for ensembles A and B, respectively).

12
Predictions for thermodynamic quantities at nonzero isospin

chemical potential can also be made in the Nambu–Jona-Lasinio

model [44–46] whose parameters can be tuned in such a way that

its predictions agree with �PT and LQCD in the low µI region,

as shown in Refs. [16, 47–49].
13

The vacuum-subtracted pressure, p, is computed by numerically

integrating the relation
dp
dn =

n
V

dµI
dn .

μI(n) =
dEn

dn
V const

≈
En+1 − En−1

2



• Energy density ratio to SB expectation


• Peak signals onset of pion BEC (in agreement with PT)


• Eventual approach to pQCD/ideal gas limit

χ

Energy density
QCD at μI ≠ 0

11

100 101

µI/m�

100

101

�/
� S

B

LQCD A

LQCD B

pQCD

�PT

SB

FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale ⇤ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/m⇡ is accessible in the current work. In particular,
c
2
s exceeds 1/3 for 1.5 . µI/m⇡ . 14, rising to a maxi-
mum of c2s,max ⇠ 0.6 at µI ⇠ 2m⇡ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

� =
✏

p
c
2
s, (33)

� =
1

3
�

p

✏
, (34)
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FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, �PT and pQCD in each case. As
for cs, the behaviour of � and � is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, � decreases to this value at µI ⇠ 1.5m⇡,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI & 10m⇡ ⇠ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more e�cient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-⇡+ correlation functions for n  6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-



• Since temperature is  MeV, isentropic speed-of-sound 
can be determined

0 ∼ T ≤ 20
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FIG. 11. The ratio of the energy density of the many-pion
systems to the Stefan-Boltzmann prediction, Eq. (31), for the
A and B lattice ensembles. The blue (A) and red (B) shaded
regions represent interpolations of the LQCD results and their
uncertainties as discussed in Appendix C. Also shown are ex-
pectations from chiral perturbation theory (blue dashed line)
and perturbative QCD at next-to-leading order (NLO) [43]
(orange hatched region). The uncertainties on the perturba-
tive QCD result are obtained by varying the renormalization
scale ⇤ between µI/4 and µI .

The speed of sound is shown as a function of the isospin
chemical potential in units of the pion mass in Fig. 12
where it is seen to exceed the ideal gas limit. As for
the energy density, close agreement is seen between the
results from the two lattice ensembles. A similar result
has been found in Ref. [10]; however a larger range of
µI/m⇡ is accessible in the current work. In particular,
c
2
s exceeds 1/3 for 1.5 . µI/m⇡ . 14, rising to a maxi-
mum of c2s,max ⇠ 0.6 at µI ⇠ 2m⇡ before decreasing back
to the ideal-gas limit for large µI . A maximum speed
of sound above the ideal-gas limit at intermediate values
of chemical potential is also seen in two-color QCD [50]
and quarkyonic models [51], but is in contradiction to
the predictions of leading-order chiral perturbation the-
ory in which cs rises monotonically to 1. This behavior
is indicative of additional degrees of freedom other than
in-vacuum pions becoming excited in the medium. From
the numerical results herein, it remains an open ques-
tion as to whether the speed of sound approaches the
free gas limit from below (as expected from perturbation
theory [43]) or from above (as expected from resummed
perturbation theory [52] or from the inclusion of power
corrections [53]).

Two additional quantities that provide information
about the nature of high-isospin-density matter are the
polytropic index [54] and the trace anomaly [55] defined
by

� =
✏

p
c
2
s, (33)

� =
1

3
�

p

✏
, (34)

100 101

µI/m�

0.0

0.2

0.4

0.6

0.8

1.0

c2 s

LQCD A

LQCD B

pQCD

�PT

SB

FIG. 12. The squared speed of sound computed as in Eq. (32)
as a function of the isospin chemical potential on ensemble A
(blue) and ensemble B (red). The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

respectively. The behavior of these two quantities is
shown in Figs. 13 and 14 and compared to the expec-
tations of a free gas, �PT and pQCD in each case. As
for cs, the behaviour of � and � is similar to that seen in
Ref. [10], but the current work extends the range of chem-
ical potential significantly which reveals additional inter-
esting features. In Ref. [54], it is suggested that the point
at which the polytropic index decreases below 1.75 is a
sign of quark degrees of freedom at large baryon chemical
potential, i.e., the BCS state. In the case of isospin chem-
ical potential, � decreases to this value at µI ⇠ 1.5m⇡,
corresponding approximately to the position of the peak
seen in the normalized energy density (Fig. 11). The
trace anomaly is clearly seen to be negative at interme-
diate µI in Fig. 14, as is suggested to be consistent with
neutron star observations in Ref. [55]. As for the quanti-
ties above, the results from the two lattice ensembles are
in agreement for both the trace anomaly and the poly-
tropic index. A robust conclusion from the study of these
transport quantities is that large isospin chemical poten-
tial is needed before the expected asymptotic behavior
sets in. At least for the case of isospin chemical poten-
tial, the use of pQCD to describe the behavior seen in
the LQCD calculations requires µI & 10m⇡ ⇠ 2 GeV at
a minimum.

VI. SUMMARY AND OUTLOOK

In this work, a new, more e�cient method of com-
puting maximal-isospin, multi-pion correlation functions
is presented. Using this method, we have calculated
all n-⇡+ correlation functions for n  6144, extending
such calculations of many-pion systems into regions of
larger isospin chemical potential than have been previ-
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FIG. 10. The e↵ective chemical-potential function µ(n)
I (t) =

(E(n+1)
e↵ (t) � E(n�1)

e↵ (t))/2 as a function of the temporal sep-
aration used for n 2 {4000, 5000, 6000} on the A ensemble.
The vertical extent of the shaded bands indicates the uncer-
tainty in the chemical potential, and the histograms in the
right panel show the distributions of the bootstrap samples.
The black dashed vertical lines indicate the temporal extent
included within the procedure used to determine µI , as dis-
cussed in the main text.

are small and both lattice calculations are near the ther-
modynamic limit.

These results are compared with two predictions in
Fig. 9. First, a result derived from leading order chiral
perturbation theory (�PT) [15, 42] is that11

⇢I =
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2
f
2
⇡µI
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. (29)

This relation is expected to be valid for low density sys-
tems in which the pions are weakly interacting but will
break down as the isospin density or chemical potential
becomes large compared to the chiral symmetry breaking
scale. The second model is that of a relativistic fermion
gas in the Stefan-Boltzmann (SB) limit, in which

µI =

✓
48⇡2

⇢I

NfNc

◆1/3

, (30)

where Nc ⇥ Nf degrees of freedom are assumed with
Nf = 2 and Nc = 3. Notably, the Stefan-Boltzmann
prediction does not have any free parameters, so the qual-
itative agreement between the LQCD data and the pre-
diction in Eq. (30) is somewhat remarkable and is quite
suggestive as to the nature of the high-density state.

In Fig. 11, we show the energy density ✏n = En/L
3 as a

function of the corresponding isospin chemical potential,

11
Here, we use the convention in which the pion decay constant is

f⇡ ⇠ 132MeV at the physical values of the quark masses, as in

Ref [11].

normalized to the Stefan-Boltzmann expectation. In this
and subsequent figures, we show an interpolation of the
O(6000) discrete LQCD data points for each ensemble,
using the approach presented in Appendix C to produce
a region that represents the horizontal and vertical un-
certainties in the data. For large µI , the energy density
is expected to match that of a Nf = 2, Nc = 3 flavor
fermion gas, namely

✏SB =
NfNc

4⇡2

⇣
µI

2

⌘4
. (31)

For comparison, we also show predictions from �PT [15,
42] and one-loop perturbative QCD [43]. Notably, these
predictions agree qualitatively with the LQCD results in
their respective regions of validity, namely small µI for
�PT and large µI for perturbative QCD.12 For very large
µI , there is a slight discrepancy between the LQCD re-
sults on ensemble A and the perturbative QCD expec-
tation; however, given that the systematic uncertainties
from discretization e↵ects are not controlled in this study,
it is unclear whether the LQCD results at the largest
µI are reliable. On dimensional grounds, lattice arti-
facts are expected to be suppressed by powers of the
quark chemical potential, µIa/2, which reaches 0.7 for
the largest isospin chemical potential that is considered.
Excited-state contamination is also not well controlled
in the energy fits. Further exploration with calcula-
tions at a smaller lattice spacing, larger temporal ex-
tents, and higher statistical precision is needed to inves-
tigate these e↵ects. Nonetheless, viewed globally, the
LQCD data agree qualitatively with both low- and high-
density expectations, smoothly interpolating between the
two regimes.
From the chemical potential and energy density, ad-

ditional thermodynamic quantities characterizing high-
isospin-density matter can be computed. A particularly
important example is the speed of sound defined as (using
units where the speed of light is c = 1)

c
2
s =

dp

d✏
=

n

µI

dµI

dn
=

n

dE/dn

d
2
E

dn2

⇡ 2n
En+1 � 2En + En�1

En+1 � En�1
,

(32)

where p is the pressure.13 This governs isentropic prop-
agation of sound waves through the medium (the isen-
tropic condition is appropriate since our calculations cor-
respond to a temperature that is close to zero, T ⇠ 23
MeV and 17 MeV for ensembles A and B, respectively).

12
Predictions for thermodynamic quantities at nonzero isospin

chemical potential can also be made in the Nambu–Jona-Lasinio

model [44–46] whose parameters can be tuned in such a way that

its predictions agree with �PT and LQCD in the low µI region,

as shown in Refs. [16, 47–49].
13

The vacuum-subtracted pressure, p, is computed by numerically

integrating the relation
dp
dn =

n
V

dµI
dn .
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FIG. 10. The e↵ective chemical-potential function µ(n)
I (t) =

(E(n+1)
e↵ (t) � E(n�1)

e↵ (t))/2 as a function of the temporal sep-
aration used for n 2 {4000, 5000, 6000} on the A ensemble.
The vertical extent of the shaded bands indicates the uncer-
tainty in the chemical potential, and the histograms in the
right panel show the distributions of the bootstrap samples.
The black dashed vertical lines indicate the temporal extent
included within the procedure used to determine µI , as dis-
cussed in the main text.

are small and both lattice calculations are near the ther-
modynamic limit.

These results are compared with two predictions in
Fig. 9. First, a result derived from leading order chiral
perturbation theory (�PT) [15, 42] is that11

⇢I =
1

2
f
2
⇡µI

✓
1 �

m
4
⇡

µ4
I

◆
. (29)

This relation is expected to be valid for low density sys-
tems in which the pions are weakly interacting but will
break down as the isospin density or chemical potential
becomes large compared to the chiral symmetry breaking
scale. The second model is that of a relativistic fermion
gas in the Stefan-Boltzmann (SB) limit, in which

µI =
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48⇡2
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NfNc
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, (30)

where Nc ⇥ Nf degrees of freedom are assumed with
Nf = 2 and Nc = 3. Notably, the Stefan-Boltzmann
prediction does not have any free parameters, so the qual-
itative agreement between the LQCD data and the pre-
diction in Eq. (30) is somewhat remarkable and is quite
suggestive as to the nature of the high-density state.

In Fig. 11, we show the energy density ✏n = En/L
3 as a

function of the corresponding isospin chemical potential,

11
Here, we use the convention in which the pion decay constant is

f⇡ ⇠ 132MeV at the physical values of the quark masses, as in

Ref [11].

normalized to the Stefan-Boltzmann expectation. In this
and subsequent figures, we show an interpolation of the
O(6000) discrete LQCD data points for each ensemble,
using the approach presented in Appendix C to produce
a region that represents the horizontal and vertical un-
certainties in the data. For large µI , the energy density
is expected to match that of a Nf = 2, Nc = 3 flavor
fermion gas, namely

✏SB =
NfNc

4⇡2

⇣
µI

2

⌘4
. (31)

For comparison, we also show predictions from �PT [15,
42] and one-loop perturbative QCD [43]. Notably, these
predictions agree qualitatively with the LQCD results in
their respective regions of validity, namely small µI for
�PT and large µI for perturbative QCD.12 For very large
µI , there is a slight discrepancy between the LQCD re-
sults on ensemble A and the perturbative QCD expec-
tation; however, given that the systematic uncertainties
from discretization e↵ects are not controlled in this study,
it is unclear whether the LQCD results at the largest
µI are reliable. On dimensional grounds, lattice arti-
facts are expected to be suppressed by powers of the
quark chemical potential, µIa/2, which reaches 0.7 for
the largest isospin chemical potential that is considered.
Excited-state contamination is also not well controlled
in the energy fits. Further exploration with calcula-
tions at a smaller lattice spacing, larger temporal ex-
tents, and higher statistical precision is needed to inves-
tigate these e↵ects. Nonetheless, viewed globally, the
LQCD data agree qualitatively with both low- and high-
density expectations, smoothly interpolating between the
two regimes.
From the chemical potential and energy density, ad-

ditional thermodynamic quantities characterizing high-
isospin-density matter can be computed. A particularly
important example is the speed of sound defined as (using
units where the speed of light is c = 1)
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=
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d
2
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⇡ 2n
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,

(32)

where p is the pressure.13 This governs isentropic prop-
agation of sound waves through the medium (the isen-
tropic condition is appropriate since our calculations cor-
respond to a temperature that is close to zero, T ⇠ 23
MeV and 17 MeV for ensembles A and B, respectively).

12
Predictions for thermodynamic quantities at nonzero isospin

chemical potential can also be made in the Nambu–Jona-Lasinio

model [44–46] whose parameters can be tuned in such a way that

its predictions agree with �PT and LQCD in the low µI region,

as shown in Refs. [16, 47–49].
13

The vacuum-subtracted pressure, p, is computed by numerically

integrating the relation
dp
dn =

n
V

dµI
dn .
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FIG. 13. The polytropic index, �, as a function of the isospin
chemical potential on the A(B) ensemble is shown as the
blue(red) region. The expectations in perturbative QCD (or-
ange hatched region), chiral perturbation theory (blue dashed
curve) and the Stefan-Boltzmann limit (orange dotted line)
are shown for comparison. In addition, the bound at � = 1.75
below which the medium is expected to correspond to quark
degrees of freedom [54] is indicated as the green horizontal
line.
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FIG. 14. The normalized trace anomaly, �, as a function
of the isospin chemical potential on the A(B) ensemble is
shown as the blue(red) region. This quantity is bounded as
�2/3 < � < 1/3 by causality. The expectations in perturba-
tive QCD (orange hatched region), chiral perturbation theory
(blue dashed curve) and the Stefan-Boltzmann limit (orange
dotted line) are shown for comparison.

ously achieved. Exploring such high-density and high-
energy correlation functions presents its own suite of chal-
lenges owing to the range of numerical scales spanned
by the correlation functions. Even on the same times-
lice, correlation functions can vary by many orders of
magnitude across configurations, leading to an e↵ective
breakdown of the applicability of the Central Limit The-
orem. The analysis presented here overcomes this by
making the empirically-driven assumption that the dis-

tributions of correlation functions across gauge configu-
rations are log-normal, which allows the incorporation of
more information about the LQCD data than just the
sample mean and variance of the correlation functions.
With this assumption, it becomes possible to extract en-
ergies and chemical potentials from the LQCD correla-
tion functions, which smoothly interpolate between the-
oretical predictions from chiral perturbation theory and
perturbative QCD for low- and high-isospin density sys-
tems, respectively. The speed of sound computed in this
medium exceeds the ideal gas limit over a large range
of µI , reaching a maximum of c2s ⇠ 0.6 at µI/m⇡ ⇠ 2.
This result is in agreement with the results of Ref. [10]
but extends over a larger range of chemical potential,
lower temperatures, and to a finer discretization scale.
The isospin chemical potential is implemented through
the grand canonical partition function in Ref. [10] and
therefore the systematic uncertainties in that calculation
are very di↵erent from those in this work, making the
broad agreement seen more significant. The speed of
sound and other properties of the medium indicate that
the asymptotic agreement with perturbative QCD ex-
pectations requires large values of the isospin chemical
potential, µI & 2 GeV.
In this exploratory study, calculations have been per-

formed at only a single set of quark masses and lattice
spacing. The results show qualitative agreement with
expectations, but understanding this system at a more
precise level will require the use of additional ensembles
with multiple lattice spacings, quark masses, and with
other spatial and temporal extents in order to properly
quantify the e↵ects of these parameters on the calcula-
tion. Lattice cuto↵ e↵ects are of particular concern since
the maximum chemical potential reached in the calcula-
tions presented here comes close to the lattice cuto↵ scale
used in this work.
Beyond systems of many pions, the methods devel-

oped here could also be used in applications to other
systems of mesons, including systems of kaons and/or
pions, and systems with non-zero momentum. The con-
cepts of symmetry and representation theory explored
here to construct the algorithm for many-pion contrac-
tions can potentially be applied more broadly to bary-
onic systems. In addition, the success of log-normality
in enabling analysis of many-pion systems points to the
general observation that there is more information in the
distributions of correlation functions than just their cen-
tral values [21–31, 56, 57], and using this information can
allow the extraction of physical results even when the dis-
tributions of correlation functions are far from the regime
of applicability of the Central Limit Theorem.

AUTHOR CONTRIBUTION STATEMENT

RA, WD, and FRL developed the algorithms and soft-
ware for correlation function calculations, performed the
numerical analysis, and prepared the manuscript; ZD,



• Symmetric polynomial algorithm allows extension of canonical approach 
to large 


• Enormous scale variation breaks the central limit theorem


• Analysis based around empirically observed log-normality


• Clear signal for transition to pion BEC and eventually to BCS 
superconducting state predicted by pQCD


• Large  GeV needed to reach pQCD


• What about at baryon chemical potential?


• Conformal bounds from holographic models clearly exceeded as in 
 QCD - analogue would have interesting consequences for neutron 

star equation of state

μI

μI ∼ 15mπ ∼ 2

Nc = 2

A fascinating playground
QCD at μI ≠ 0



• Brandt & Endrodi 1611.06758

Previous studies
QCD at μI ≠ 0

QCD phase diagram with isospin chemical potential

Figure 4: Results for the boundary of the pion condensation phase in the (T,µI) parameter plane. Open
symbols are obtained from scans in the temperature, filled symbols from scans in µI . Besides statistical
errors, the latter are also subject to an intrinsic uncertainty for T originating from the lattice scale.

well-known crossover at the physical point at µI = 0. The main observable associated with the
crossover, i.e., with the restoration of chiral symmetry, is the renormalized chiral condensate of
(Eq. 2.7). The pseudocritical temperature of the crossover can be defined, for instance, by the
inflection point of the condensate, see, e.g., Ref. [15]. Using this definition and the same action as
in our study (for µI = 0), the crossover temperature in the continuum limit was determined to be
Tc(0) = 155(3)(3) [15]. Here we will use a slightly different definition and define the crossover
temperature to be the temperature where the renormalized chiral condensate acquires its continuum
value at Tc(0). Following Ref. [15] the value is given by Sȳy �Tc

≈ −0.550 in our normalization.
This definition for Tc(µI) is adequate as long as we are in the Silver Blaze region (where the T → 0
limit of the condensate is independent of µI) and should be compared to the results from other
definitions eventually.
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Figure 5: Left: Results for Sȳy vs. the temperature for different values of µI . The colored areas are the
results from a cubic spline interpolation and the dashed horizontal line indicates Sȳy �Tc

(see text). Right:
Phase diagram for the 243

× 6 lattice. The red points are the results for the phase boundary to the pion
condensation phase, (Tc,µI,c)P, and the blue points the ones for the crossover line, (Tc,µI,c)C.

In the left panel of Fig. 5 we show the results for the renormalized chiral condensate versus

8
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FIG. 5. Quantile-quantile plot for the distribution of
logC6000(t = 18a) on the A ensemble. Each point represents
a di↵erent configuration Ui, with the vertical position indi-
cating the z-score (number of standard deviations from the

mean) of logC [Ui]
6000(t = 18a), while the horizontal position of

the point indicates the theoretical z-score for the correspond-
ing quantile of a normal distribution. The red line indicates
the theoretical expectation for a normal distribution.

assumption of log-normality is likely subdominant to the
statistical uncertainties of our estimates. This is not en-
tirely unexpected – log normal random variables often
appear when taking products of many non-negative ran-
dom variables (particular projections of propagators in
this case), and it has been previously hypothesized that
log-normality may play a role in QCD correlation func-
tions [21–24].

Under the assumption that correlation functions are

drawn from a log-normal distribution, i.e., logC [U ]
n ⇠

N (µn,�
2
n), we can obtain a lower-variance estimator by

determining the parameters µn and �
2
n via Eqs. (23) and

(24) and then using the analytic form for hCni given
in Eq. (21) to estimate the original correlation function.
Should violations of log-normality be observed at higher
statistical precision, it would be possible to systemati-
cally improve this method through the inclusion of higher
cumulants, as discussed in Appendix B.

C. Log-normal Analysis

In order to extract energies from the computed cor-
relation functions, we first produce a set of 200 boot-
strap samples [41], and then compute the mean µn(t)

and standard deviation �n(t) of logC
[U ]
n (t) on each boot-

strap sample. We then combine these quantities to form
bootstrap estimates of

Cn(t) = exp

✓
µn(t) +

�n(t)2

2

◆
, (25)
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FIG. 6. The Shapiro-Wilk test p-values as a function of n at
timeslices t/a 2 {10, 15, 20} for the A ensemble. A value of
p . 0.1 (gray band) indicates a violation of log-normality of
the correlation-function distribution across configurations.

and the e↵ective energy defined by

E
(n)
e↵ (t) = log

Cn(t)

Cn(t � 1)

= µn(t) � µn(t � 1) +
�
2
n(t)

2
�

�
2
n(t � 1)

2
,

(26)

which asymptotes to the ground-state energy for asymp-
totic t and lattice temporal extent. Examples of the
e↵ective energies are shown in Fig. 7. The uncertain-
ties are quantified using the the standard deviation over
bootstrap samples. All uncertainties on LQCD quanti-
ties shown below indicate the standard deviation over the
bootstrap samples.
As can be seen from the e↵ective energy functions, the

correlation functions are contaminated by both excited
states at early times and by thermal e↵ects near the
middle of the lattice temporal extent. Determining the
ground-state energy for each n from these signals is chal-
lenging because the excited-state and thermal e↵ects are
not small and there are significant statistical fluctuations
within the time range in which the signal is consistent
with a constant. In order to take a conservative approach
to energy extraction, on each bootstrap sample, we take
the e↵ective mass from a single timeslice drawn from the
uniform distribution over t/a 2 [10, 20] [ [76, 86]. This
encompasses a variety of di↵erent fitting choices and en-
sures that the energy uncertainty represents an envelope
over di↵erent fit procedures as well as statistical fluctu-
ations. Figure 7 shows the resulting fitted values and
uncertainties for three di↵erent values of n for the A en-
semble. We find that the uncertainty band on the fitted
energy is compatible with the distribution of the e↵ec-
tive energies within the region of the fit.8 The correlation

8
Here we refer to a set of data points xi with associated uncer-


