QCD at nonzero isospin chemical potential 6144 pions in a box

Will Detmold (MIT)
Based on 2307.15014 with
Ryan Abbott, Fernando Romero-López,
Zohreh Davoudi, Marc Illa, Assumpta Parreño, Phiala Shanahan, Mike Wagman
[NPLQCD collaboration]

QCD at $\mu_{I} \neq 0$

Conjectured phase diagram

- Son \& Stephanov PRL 2001

QCD at $\mu_{I} \neq 0$

Conjectured phase diagram

- Status in 2023 - much recent work from Brandt, Cuteri \& Endrodi

(Grand) Canonical approach

 Isospin chemical potential- Isospin chemical potential

$$
S \longrightarrow S+\mu_{I} \int d x\left[\bar{u}(x) \gamma_{0} u(x)-\bar{d}(x) \gamma_{0} d(x)\right]
$$

- Canonical approach: thermodynamic relation

$$
\mu_{I}=\frac{d E}{d n_{I}}
$$

- Study energy of system as isospin charge changes
- Correlation functions with quantum numbers of many charged pions

$$
C_{n}(t)=\left\langle\left(\sum_{x} \pi^{-}(\mathbf{x}, 0)\right)^{n} \prod_{i=1}^{n} \pi^{+}\left(\mathbf{y}_{i}, t\right)\right\rangle
$$

but large number of Wick contractions: $\sim 10^{40,000}$ for $n=6144$

Many pion correlation functions

 Pion blocks- Previous studies used
- Traces, Recursion relations, Vandermonde matrices \& FFTs
- Limited in n by cost (best algorithm $\sim \mathcal{O}\left(n^{4}\right)$) and numerical precision demands
- Made use of zero-momentum pion block $\left(12 L^{3} \times 12 L^{3}\right.$ matrix $)$

$$
\Pi_{(i, \alpha)(j, \beta)}(\mathbf{x}, \mathbf{y} ; t)=\sum_{k, \gamma, \mathbf{z}} S_{(i, \alpha)(k, \gamma)}(\mathbf{x}, 0 ; \mathbf{z}, t) S_{(k, \gamma)(j, \beta)}^{\dagger}(\mathbf{y}, 0 ; \mathbf{z}, t)
$$

Many pion correlation functions

Symmetric polynomial algorithm

- New algorithm based on symmetric polynomials over eigenvalues of Π (denoted $\vec{x}=\left\{x_{1}, \ldots x_{N}\right\}$ with $N=12 L^{3}$)

$$
C_{n}(t)=n!E_{n}(\vec{x})
$$

where for $1 \leq n \leq N$

$$
E_{n}(\vec{x}) \equiv E_{n}\left(\left\{x_{1}, \ldots, x_{N}\right\}\right) \equiv \sum_{i_{1}<\cdots<i_{n}}^{N} x_{i_{1}} \ldots x_{i_{n}}
$$

- Recurrence relation for

$$
E_{k}\left(\left\{x_{1}, \ldots, x_{M}\right\}\right)=x_{M} E_{k-1}\left(\left\{x_{1}, \ldots x_{M-1}\right\}\right)+E_{k}\left(\left\{x_{1}, \ldots, x_{M-1}\right\}\right),
$$

(numerically stable and cost in $\mathcal{O}\left(N^{2}\right)$ for all $n \in\{1, \ldots, N\}$)

- Overall cost dominated by finding the eigenvalues: $\mathcal{O}\left(N^{3}\right)$
- See 2307.15014 for proof

Many pion correlation functions Simple example ($\mathrm{n}=3$ for $\mathrm{N}=4$)

- $C_{3}(t)$ given by

$$
C_{3}=\operatorname{Tr}(\Pi)^{3}-3 \operatorname{Tr}\left(\Pi^{2}\right) \operatorname{Tr}(\Pi)+2 \operatorname{Tr}\left(\Pi^{3}\right)
$$

- Expand using trace as sum of powers of eigenvalues

$$
\begin{aligned}
= & \left(x_{1}+x_{2}+x_{3}+x_{4}\right)^{3} \\
& -3\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& +2\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}\right) \\
= & 6\left(x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}\right)
\end{aligned}
$$

Many pion correlation functions

Lattice QCD calculations

- Study on two ensembles of $2+1$ f clover gauge configurations with close to physical quark masses

Label	$N_{\text {conf }}$	β	$C_{S W}$	$a m_{u d}$	$a m_{s}$	$L^{3} \times T$	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	$M_{\pi} L$
A	201	6.3	1.20537	-0.2416	-0.2050	$48^{3} \times 96$	$0.091(1)$	$166(2)$	3.7
B	322	6.3	1.20537	-0.2416	-0.2050	$64^{3} \times 128$	$0.091(1)$	$172(6)$	5.08

- Sparsened quark propagators computed from grid of 8^{3} sites on one timeslice: $N=12 \times L^{3}=12 \times 8^{3}=6144$

Eigenvalues on a single configuration

- Eigenvalues computed by SVD of time sliced quark-propagator (since $\Pi=S^{\dagger} S$)
- Calculations performed in double, 2-double and 3-double

Many pion correlation functions

Lattice QCD calculations

- Correlation functions vary rapidly in Euclidean time
- $C_{6144}(t)$ varies by $>10^{5}$ orders of magnitude
- Correlation functions vary between samples by many orders of magnitude

- Correlation function distributions are approximately log-normal

Many pion correlation functions
 Log-normality tests and cumulants

- No statistically significant deviations from log-normal for $n>4$
- Shapiro-Wilk test $p>0.1$
- Deviations can be incorporated through cumulants but only contribute noise

- Henceforth assume data are log-normal
- i.e. $\log C_{n}(t)^{[U]} \sim \mathcal{N}\left(\mu_{n}(t), \sigma_{n}(t)\right)$ where $\mu_{n}=\frac{1}{N_{\text {conf }}} \sum_{i=1}^{N_{\text {conf }}} \log C_{n}^{\left[U_{i}\right]}(t) \quad \sigma_{n}^{2}=\frac{1}{N_{\text {conf }}-1} \sum_{i=1}^{N_{\text {conf }}}\left(\log C_{n}^{\left[U_{i j}\right]}(t)-\mu_{n}\right)^{2}$

Many pion correlation functions

 Many pion energies- Effective energy from log-normality

$$
E_{\mathrm{eff}}^{(n)}(t)=\mu_{n}(t)-\mu_{n}(t-1)+\frac{\sigma_{n}^{2}(t)}{2}-\frac{\sigma_{n}^{2}(t-1)}{2}
$$

- GLT: χ^{2}-fitting makes no sense
- Bootstrap analysis takes value of $E_{\text {eff }}^{(n)}$
 for random timeslice in plateau region
- Entire bootstrap histogram propagated into subsequent analysis
- Energy significantly larger than that of n free pions

QCD at $\mu_{I} \neq 0$

Isospin chemical potential

- Isospin chemical potential

$$
\mu_{l}(n)=\left.\frac{d E_{n}}{d n}\right|_{V \text { const }} \approx \frac{E_{n+1}-E_{n-1}}{2}
$$

- Two volumes: $\mathrm{A}=(4.4 \mathrm{fm})^{3}, \mathrm{~B}=(5.8 \mathrm{fm})^{3}$ and two temporal extents: $A=(9 \mathrm{fm})$, $B=(12 \mathrm{fm})$
- Curve collapse \Longrightarrow thermodynamic limit ($T \sim 20 \mathrm{MeV}$)
- Agreement with
- Chiral perturbation theory for $\mu_{I} \rightarrow 0$
- Stefan-Boltzmann/pQCD for $\mu_{I} \rightarrow \infty$

QCD at $\mu_{I} \neq 0$

Energy density

- Energy density ratio to SB expectation
- Peak signals onset of pion BEC (in agreement with $\chi \mathrm{PT}$)
- Eventual approach to pQCD/ideal gas limit

μ_{I} / m_{π}

QCD at $\mu_{I} \neq 0$

Speed of sound

- Since temperature is $0 \sim T \leq 20 \mathrm{MeV}$, isentropic speed-of-sound can be determined

$$
c_{s}^{2}=\frac{d p}{d \epsilon}=\frac{n}{\mu_{I}} \frac{d \mu_{I}}{d n}=\frac{n}{d E / d n} \frac{d^{2} E}{d n^{2}} \approx 2 n \frac{E_{n+1}-2 E_{n}+E_{n-1}}{E_{n+1}-E_{n-1}},
$$

- Exceeds conformal bound $c_{s}^{2} \leq 1 / 3$ over wide range of μ_{I}
- Similar behaviour seen in grand canonical approach [Brandt, Cuteri, Endrodi 2212.14016]
- Similar behaviour seen in $N_{c}=2$ QCD [E. Itou, Friday]
- Eventually relaxes to pQCD/ideal gas

QCD at $\mu_{I} \neq 0$

Trace anomaly

- Trace anomaly $\Delta=1 / 3-p / \epsilon$ provides a measure of interactions
- Also shows large chemical potential needed to reach pQCD

QCD at $\mu_{I} \neq 0$

A fascinating playground

- Symmetric polynomial algorithm allows extension of canonical approach to large μ_{I}
- Enormous scale variation breaks the central limit theorem
- Analysis based around empirically observed log-normality
- Clear signal for transition to pion BEC and eventually to BCS superconducting state predicted by pQCD
- Large $\mu_{I} \sim 15 m_{\pi} \sim 2 \mathrm{GeV}$ needed to reach pQCD
- What about at baryon chemical potential?
- Conformal bounds from holographic models clearly exceeded as in $N_{c}=2$ QCD - analogue would have interesting consequences for neutron star equation of state

QCD at $\mu_{I} \neq 0$

Previous studies

- Brandt \& Endrodi 1611.06758

QCD at $\mu_{I} \neq 0$
 density vs chemical potential

QCD at $\mu_{I} \neq 0$

Log-normality test

