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QCD at i; # 0

Conjectured phase diagram

 Son & Stephanov PRL 2001
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QCD at i; # 0

Conjectured phase diagram

e Status in 2023 - much recent work from Brandt, Cuteri & Endrodi
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(Grand) Canonical approach

Isospin chemical potential

* |sospin chemical potential

§— S+ |dx [zft(x);/ou(x) - J(X)Vod(x)]

e Canonical approach: thermodynamic relation
_dE
B dn]

e Study energy of system as isospin charge changes

Hy

e Correlation functions with quantum numbers of many charged
pions

Cot) = <(Z (%, o>> Hw+<yi,t>>

but large number of Wick contractions: ~ 10**%% for n = 6144



Many pion correlation functions

Pion blocks

* Previous studies used

 Traces, Recursion relations, Vandermonde matrices & FFTs

e Limited in 7 by cost (best algorithm ~ ©(n*) ) and numerical
precision demands

« Made use of zero-momentum pion block (12L° x 12173 matrix)
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Many pion correlation functions

Symmetric polynomial algorithm

 New algorithm based on symmetric polynomials over eigenvalues
of I1 (denoted X" = {xq,...xy} with N = 12L°)

O, (t) = n! B, (7)

wherefor]l <n <N
N

E,.(%)=FE,{z1,...,zN}) = Z Ti ... %

] Zl<<zn
e Recurrence relation for

Er({z1,....,2pm}) =2y Er1({x1,...opr D)+ Er({xe, .oy xm—1}),
(numerically stable and cost in O(N?) foralln € {1,...,N})

. Overall cost dominated by finding the eigenvalues: O(N?)

o See 2307.15014 for proof



Many pion correlation functions
Simple example (n=3 for N=4)

« (5(7) given by
C, = Tr(I1)° — 3Tr(I1*)Tr(I1) + 2Tr(I1°)

=

* Expand using trace as sum of powers of eigenvalues

W

— (.xl + .XZ + .X3 + .X4)3
—3(x 4+ x5 + x5+ XD + Xy + X3+ Xy)
+2(x 4+ x5 + x5 + x3)

= O(XxXyX3 + XX, X4 + X X3X4 + X5 X3X,)



Many pion correlation functions

Lattice QCD calculations

e Study on two ensembles of 2+1f clover gauge configurations
with close to physical quark masses

Label Neont 8 Csw amuq ams L°xT a (fm) M, (MeV) M,L
A 201 6.3 1.20537 -0.2416 -0.2050 48° x 96 0.091(1) 166(2) 3.7
B 322 6.3 1.20537 -0.2416 -0.2050 64° x 128 0.091(1) 172(6)  5.08

 Sparsened quark propagators computed from grid of 8> sites on
one timeslice: N=12x L> =12 x 8’ = 6144
—101

» Eigenvalues computed by SVD 0] ¢
of time sliced quark-propagator a0l
(since IT = S7S) o

Eigenvalues on a single configuration

e Calculations performed in
double, 2-double and 3-double -




Many pion correlation functions

Lattice QCD calculations

% 10% Correlators on a single configuration
N
Correlation functions vary rapidly in -]
Euclidean time 10
. 5 \§—15
. C6144(.t) varies by > 10° orders of R Y o
magnitude Y
=251 & 1§ =2000 OOWOO
. . x n = 1000
Correlation functions vary between e
samples by many orders of magnitude e
Correlator distributions
t/a =18 t/a =17 t/a =16 t/a =15
Central Limit Theorem only valid at "
unachievable sample size &5 J;[r[lk
.
. . . . . logC’5OO x10?
Correlation function distributions T
are approximately log-normal & " l l A l
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Many pion correlation functions

Log-normality tests and cumulants

1.0

* No statistically significant deviations
from log-normal forn > 4

0.87

0.6 1
<)

e Shapiro-Wilk test p > 0.1
» Deviations can be incorporated through
cumulants but only contribute noise m i
» Henceforth assume data are log-normal Q%
%
. [U] ~10 %Q%
o i.e.logC ()" ~ N (u (1), 0,(t)) where
1 Ncont Neont 5 § —90- %
= g 2 g0 ey X et )

i=1 =1
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Many pion correlation functions

Many pion energies

8000 1

4 i
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: _ 7000 et and by
» Effective energy from log-normality R TN
| | ¢
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(n) (e — _ _ n __n =& 5000 i i b
E () = p, (1) — p (1 = 1) + > I P 5 . y
4000 e Rl reamn ;
2 N i A: Hu“*h* ¢
« GLE: y~-fitting makes no sense son| om0 iy
oo | 1 =100 M
» Bootstrap analysis takes value of E'? S R R TR

for random timeslice in plateau region

* Entire bootstrap histogram propagated
Into subsequent analysis

E, (TeV)

* Energy significantly larger than that of n
free pions
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QCD at i;; # 0

Isospin chemical potential

Isospin chemical potential
( ) L dEn En+1 o En—l
HY = dn - 2
V const

Two volumes: A=(4.4 fm)3, B=(5.8 fm)3
and two temporal extents: A=(9 fm),
B=(12 fm)

Curve collapse = thermodynamic
limit (T ~ 20 MeV)

Agreement with

» Chiral perturbation theory for y; — 0

» Stefan-Boltzmann/pQCD for y; — o
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QCD at i;; # 0
Energy density

* Energy density ratio to SB expectation

» Peak signals onset of pion BEC (in agreement with yPT)

e Eventual approach to pQCD/ideal gas limit

LQCD A
i . LQCD B
e pQCD
' -~ xPT
SB
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QCD at i;; # 0

Speed of sound

e Since temperature is 0 ~ T < 20 MeV, isentropic speed-of-sound

can be determined

d*E

~ 2n

En—|—1 — 2En - En—l

9
En—l—l - En—l

> dp  ndur n
“T de  u; dn  dE/dn dn?
1.0
* Exceeds conformal
bound ¢? < 1/3 over wide
0.8

range of y;

* Similar behaviour seen in

grand canonical approach
[Brandt, Cuteri, Endrodi 2212.14016] Y’

0.4
e Similar behaviour seen in
NC =2 QCD [E. ltou, Friday]
0.2
* Eventually relaxes to
pQCD/ideal gas o
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QCD at i;; # 0

Trace anomaly

 Trace anomaly A = 1/3 — p/e provides a measure of interactions

* Also shows large chemical potential needed to reach pQCD
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QCD at i;; # 0

A fascinating playground

 Symmetric polynomial algorithm allows extension of canonical approach
to large y;

e Enormous scale variation breaks the central limit theorem
* Analysis based around empirically observed log-normality

* Clear signal for transition to pion BEC and eventually to BCS
superconducting state predicted by pQCD

« Large y; ~ 15m_ ~ 2 GeV needed to reach pQCD
 What about at baryon chemical potential?

e Conformal bounds from holographic models clearly exceeded as in
N. =2 QCD - analogue would have interesting consequences for neutron
star equation of state



QCD at i;; # 0

Previous studies

e Brandt & Endrodi 1611.06758
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QCD at i;; # 0

density vs chemical potential
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QCD at i; # 0

Log-normality test

.+ LQCD

— Normal

Observed z-score
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