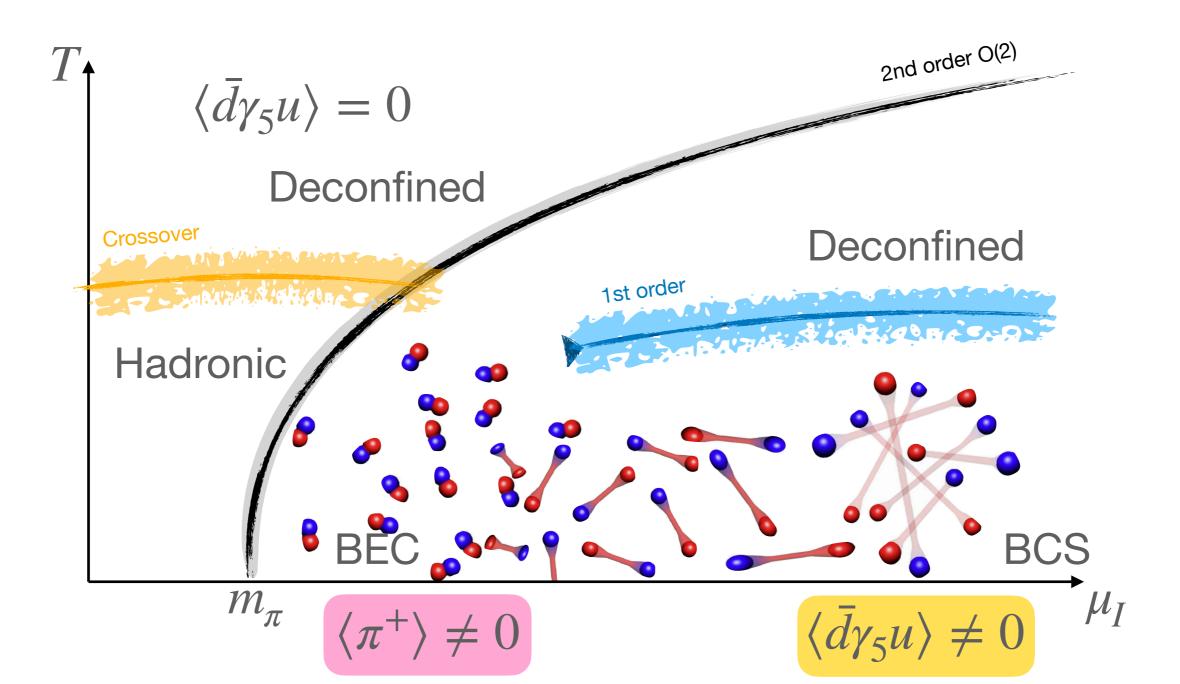
QCD at nonzero isospin chemical potential 6144 pions in a box

Based on 2307.15014 with <u>Ryan Abbott, Fernando Romero-López,</u> Zohreh Davoudi, Marc Illa, Assumpta Parreño, Phiala Shanahan, Mike Wagman [NPLQCD collaboration]

Will Detmold (MIT)

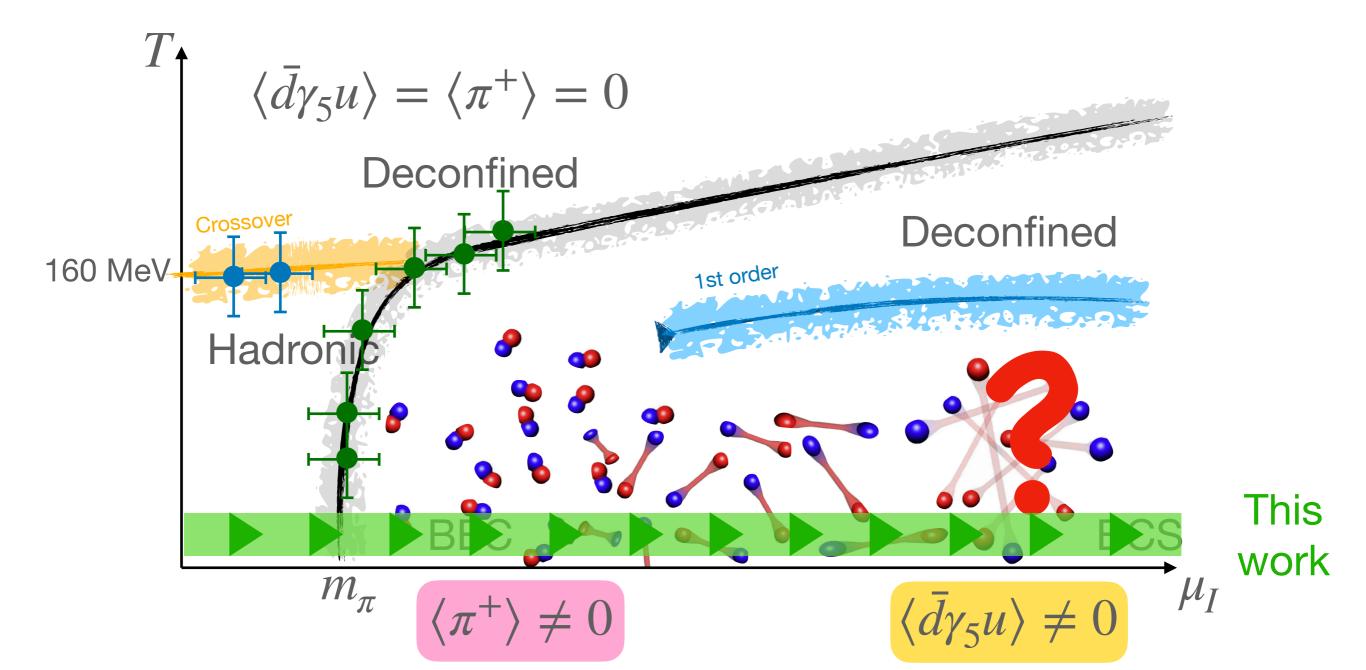
Conjectured phase diagram

• Son & Stephanov PRL 2001



QCD at $\mu_I \neq 0$ Conjectured phase diagram

• Status in 2023 - much recent work from Brandt, Cuteri & Endrodi



(Grand) Canonical approach Isospin chemical potential

• Isospin chemical potential

$$S \longrightarrow S + \mu_I \left[dx \left[\bar{u}(x) \gamma_0 u(x) - \bar{d}(x) \gamma_0 d(x) \right] \right]$$

Canonical approach: thermodynamic relation

$$u_I = \frac{dE}{dn_I}$$

- Study energy of system as isospin charge changes
- Correlation functions with quantum numbers of many charged pions

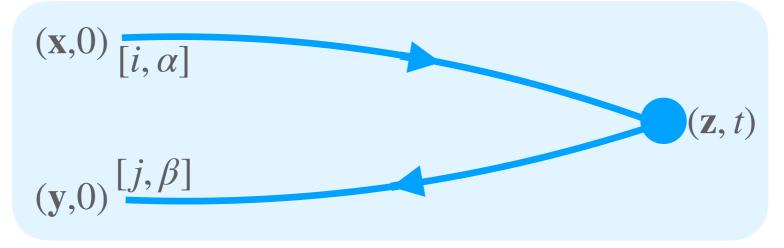
$$C_n(t) = \left\langle \left(\sum_x \pi^-(\mathbf{x}, 0) \right)^n \prod_{i=1}^n \pi^+(\mathbf{y}_i, t) \right\rangle$$

but large number of Wick contractions: ~ $10^{40,000}$ for n = 6144

Many pion correlation functions Pion blocks

- Previous studies used
 - Traces, Recursion relations, Vandermonde matrices & FFTs
 - Limited in *n* by cost (best algorithm $\sim \mathcal{O}(n^4)$) and numerical precision demands
- Made use of zero-momentum pion block ($12L^3 \times 12L^3$ matrix)

$$\Pi_{(i,\alpha)(j,\beta)}(\mathbf{x},\mathbf{y};t) = \sum_{k,\gamma,\mathbf{z}} S_{(i,\alpha)(k,\gamma)}(\mathbf{x},0;\mathbf{z},t) S_{(k,\gamma)(j,\beta)}^{\dagger}(\mathbf{y},0;\mathbf{z},t)$$



Many pion correlation functions Symmetric polynomial algorithm

• New algorithm based on symmetric polynomials over eigenvalues of Π (denoted $\overrightarrow{x}=\{x_1,...x_N\}$ with $N=12L^3$)

$$C_n(t) = n! E_n(\vec{x})$$

where for $1 \le n \le N$

$$E_n(\vec{x}) \equiv E_n(\{x_1, \dots, x_N\}) \equiv \sum_{i_1 < \dots < i_n}^N x_{i_1} \dots x_{i_n}$$

Recurrence relation for

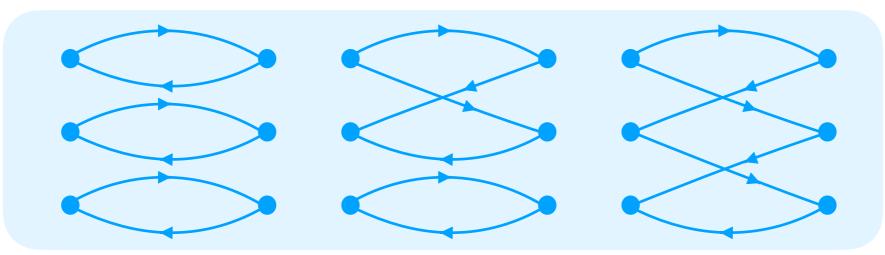
 $E_k(\{x_1, \dots, x_M\}) = x_M E_{k-1}(\{x_1, \dots, x_{M-1}\}) + E_k(\{x_1, \dots, x_{M-1}\}),$ (numerically stable and cost in $\mathcal{O}(N^2)$ for all $n \in \{1, \dots, N\}$)

- Overall cost dominated by finding the eigenvalues: $\mathcal{O}(N^3)$
- See 2307.15014 for proof

Many pion correlation functions Simple example (n=3 for N=4)

• $C_3(t)$ given by

 $C_3 = \text{Tr}(\Pi)^3 - 3\text{Tr}(\Pi^2)\text{Tr}(\Pi) + 2\text{Tr}(\Pi^3)$



• Expand using trace as sum of powers of eigenvalues

$$= (x_1 + x_2 + x_3 + x_4)^3$$

-3(x_1^2 + x_2^2 + x_3^2 + x_4^2)(x_1 + x_2 + x_3 + x_4)
+2(x_1^3 + x_2^3 + x_3^3 + x_4^3)
= 6(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)

Many pion correlat²⁵ **Lattice QCD calculations**

 C_{SW}

В

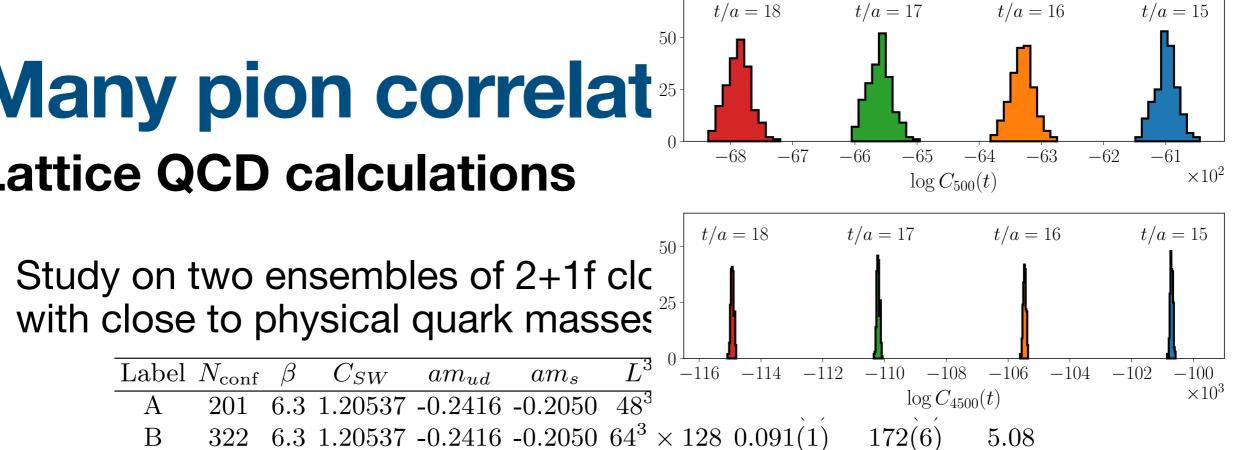
Label $N_{\rm conf}$

201

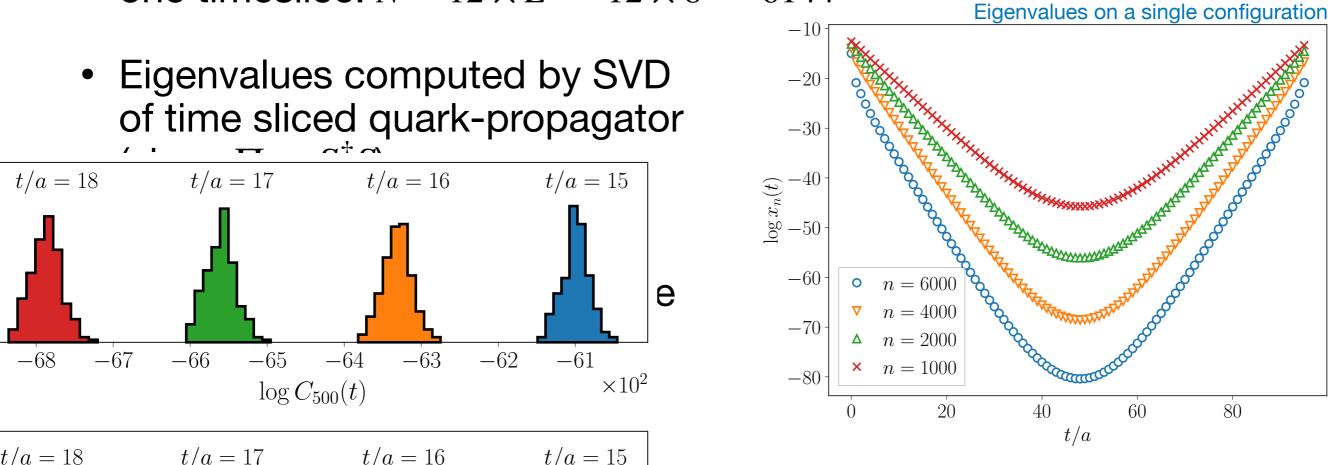
322

А

В

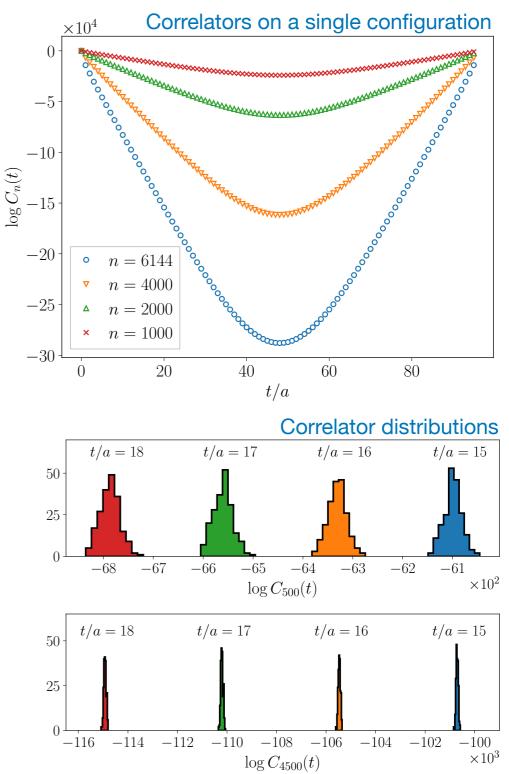


 Sparsened quark propagators computed from grid of 8³ sites on one timeslice: $N = 12 \times L^3 = 12 \times 8^3 = 6144$



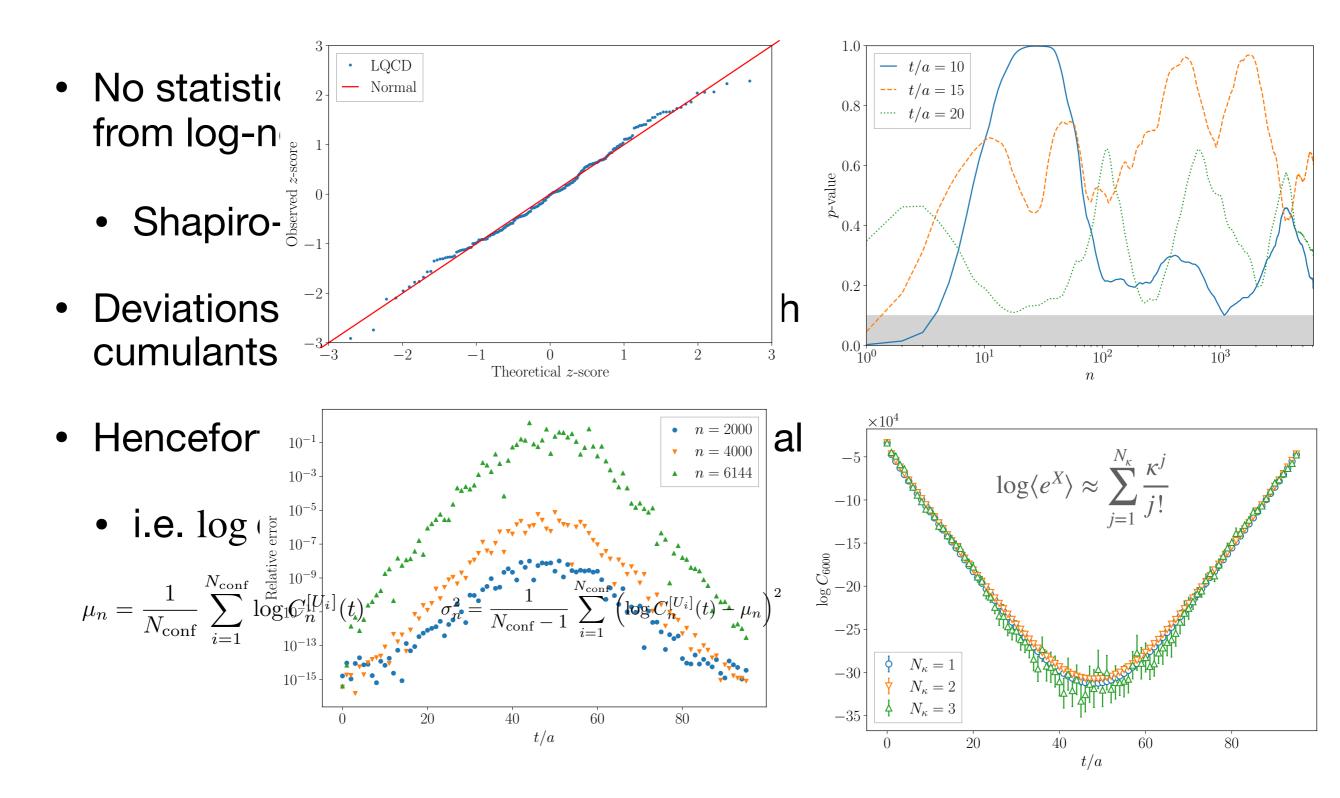
Many pion correlation functions Lattice QCD calculations

- Correlation functions vary rapidly in Euclidean time
 - $C_{6144}(t)$ varies by > 10⁵ orders of magnitude
- Correlation functions vary between samples by many orders of magnitude
 - Central Limit Theorem only valid at unachievable sample size
 - Correlation function distributions are approximately log-normal Get



Many pion correlation functions

Log-normality tests and cumulants

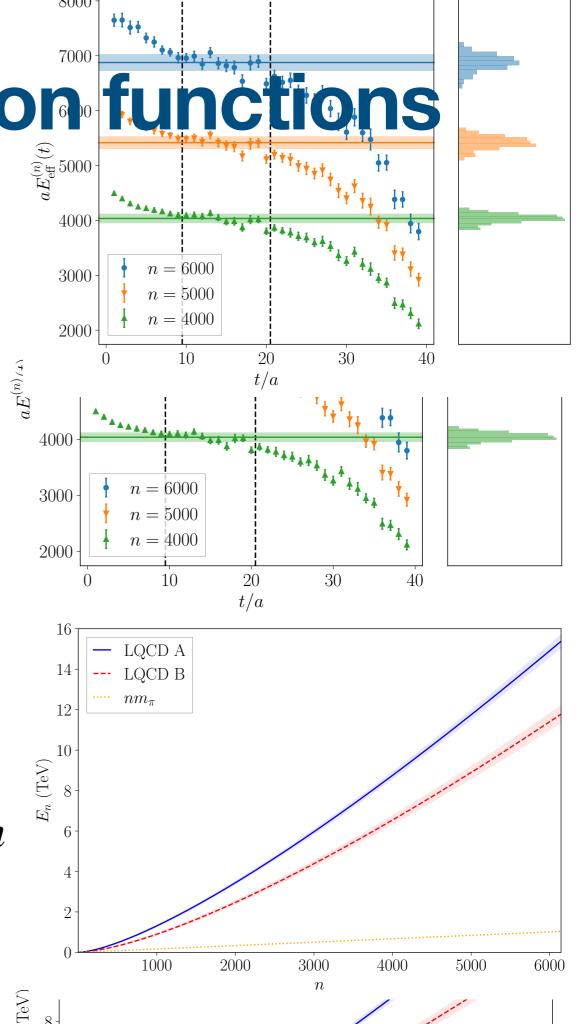


Many pion energies

• Effective energy from log-normality

$$E_{\text{eff}}^{(n)}(t) = \mu_n(t) - \mu_n(t-1) + \frac{\sigma_n^2(t)}{2} - \frac{\sigma_n^2(t-1)}{2}$$

- CLT: χ^2 -fitting makes no sense
- Bootstrap analysis takes value of $E_{\rm eff}^{(n)}$ for random timeslice in plateau region
- Entire bootstrap histogram propagated into subsequent analysis
- Energy significantly larger than that of n free pions

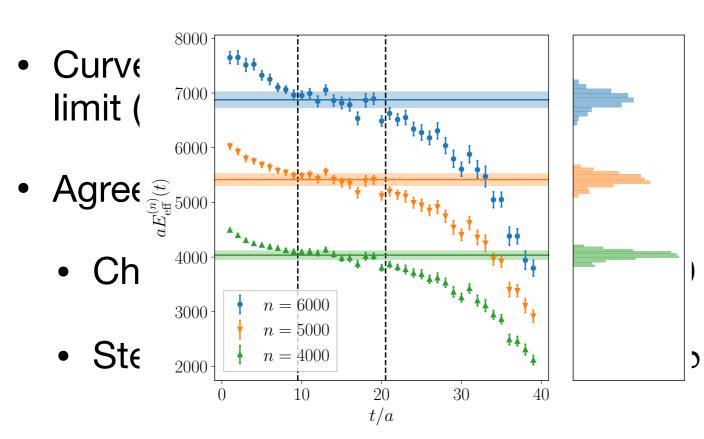


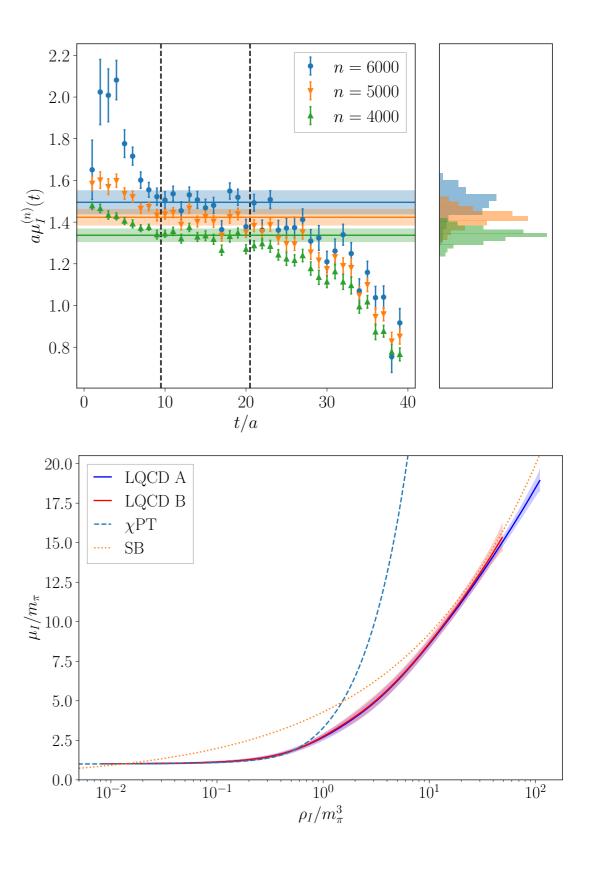
Isospin chemical potential

Isospin chemical potential

$$\mu_I(n) = \frac{dE_n}{dn} \bigg|_{V \text{ const}} \approx \frac{E_{n+1} - E_{n-1}}{2}$$

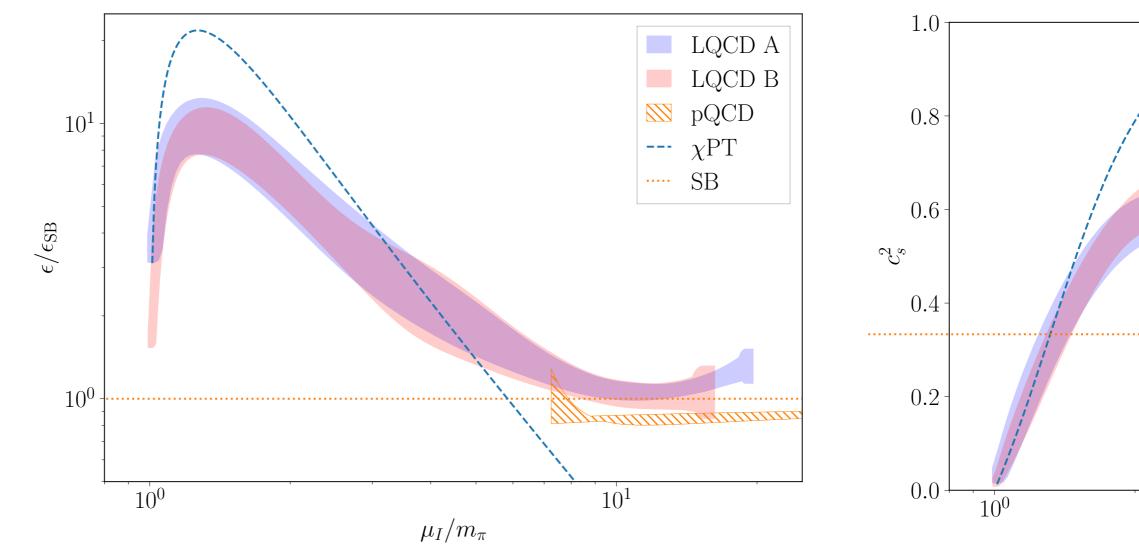
 Two volumes: A=(4.4 fm)³, B=(5.8 fm)³ and two temporal extents: A=(9 fm), B=(12 fm)





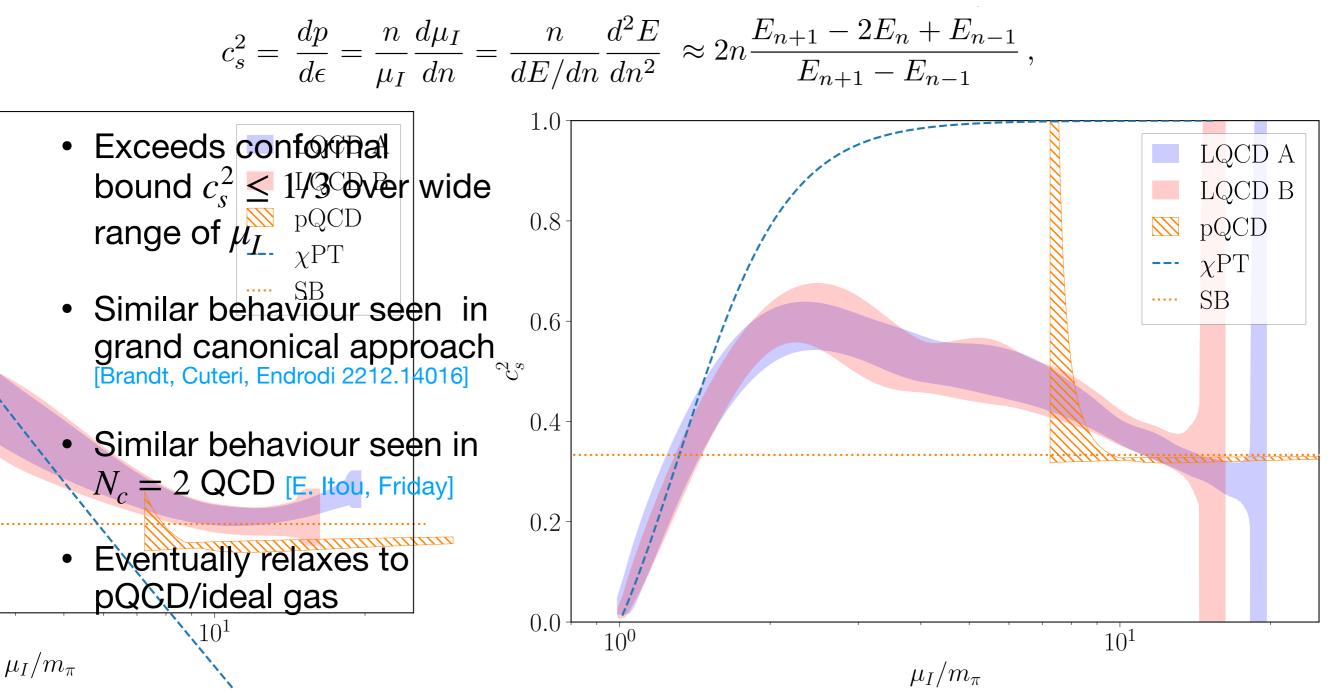
Energy density

- Energy density ratio to SB expectation
 - Peak signals onset of pion BEC (in agreement with χ PT)
 - Eventual approach to pQCD/ideal gas limit



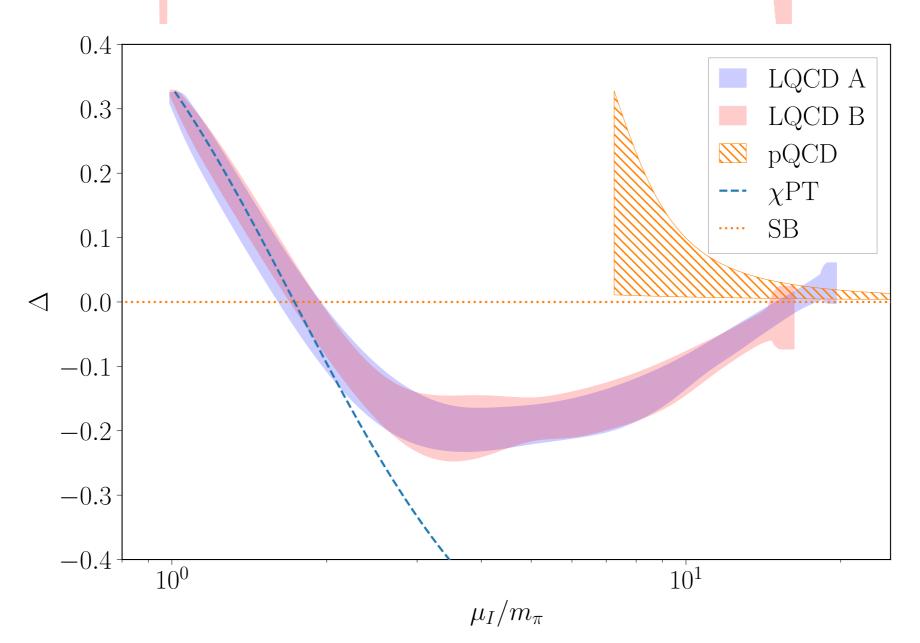
Speed of sound

- Since temperature is $0 \sim T \leq 20$ MeV, is entropic speed-of-sound can be determined



QCD at $\mu_I \neq 0$ Trace anomaly

- Trace anomaly $\Delta = 1/3 p/\epsilon$ provides a measure of interactions
 - Also shows large chemical potential needed to reach pQCD

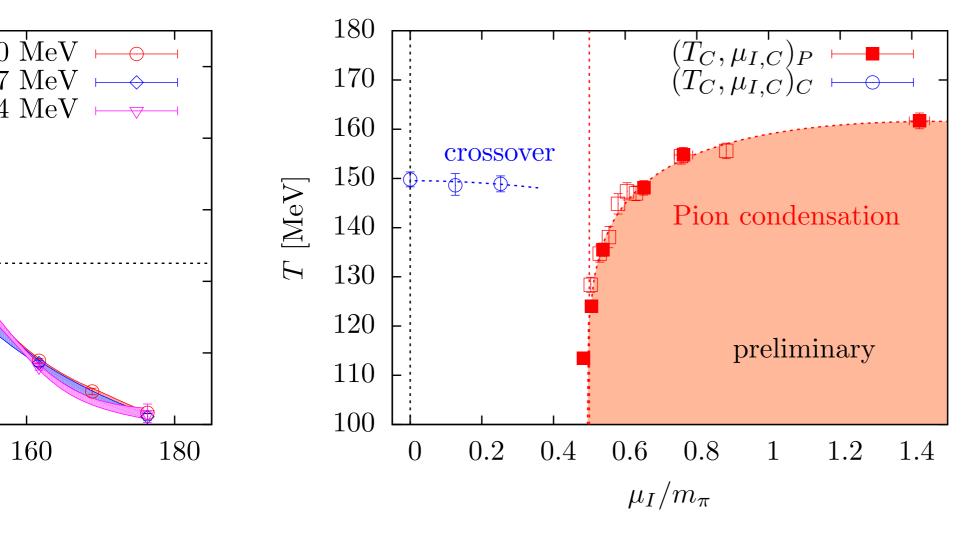


QCD at $\mu_I \neq 0$ A fascinating playground

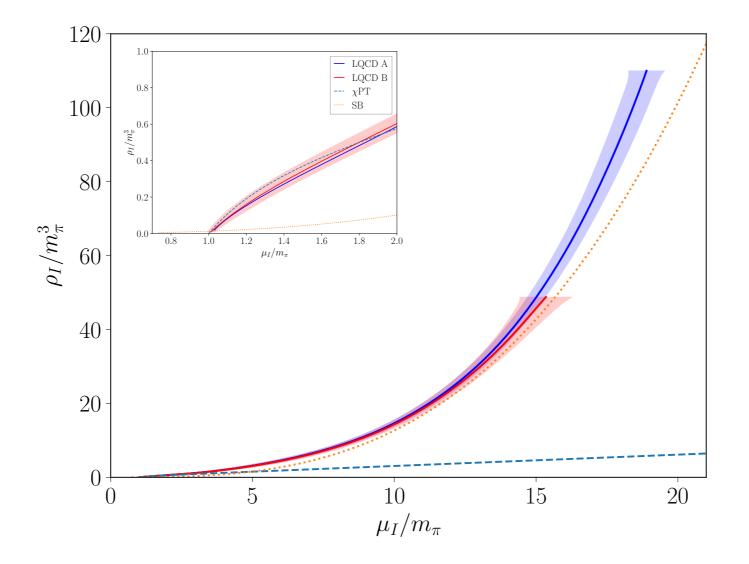
- Symmetric polynomial algorithm allows extension of canonical approach to large μ_{I}
- Enormous scale variation breaks the central limit theorem
 - Analysis based around empirically observed log-normality
- Clear signal for transition to pion BEC and eventually to BCS superconducting state predicted by pQCD
 - Large $\mu_I \sim 15 m_{\pi} \sim 2$ GeV needed to reach pQCD
 - What about at baryon chemical potential?
- Conformal bounds from holographic models clearly exceeded as in $N_c = 2$ QCD analogue would have interesting consequences for neutron star equation of state

QCD at $\mu_I \neq 0$ Previous studies

• Brandt & Endrodi 1611.06758



QCD at $\mu_I \neq 0$ density vs chemical potential



QCD at $\mu_I \neq 0$ Log-normality test

