

Gauge redundancy as approximate error correction codes for quantum simulations

Wanqiang Liu (UChicago) 03/ Aug, Lattice 2023 Work in progress, with M. Carena (Fermilab, UChicago), H. Lamm(Fermilab), Y.-Y. Li (USTC)

Should quantum simulations keep the gauge redundancy?

	Keep the redundancy	Fix the gauge
Pros	 In arbitrary dimensions and groups: Hamiltonian is easy to derive Local Hamiltonian 	Saves qubits by $\sim (1 - 1/d)$ No symmetry breaking errors
Cons	 Redundant qubits Errors can break symmetry States are highly entangled 	In d>2 or non-Abelian groups Hamiltonian is hard to derive Non-local Hamiltonian

Grabowska's Plenary talk

When errors exist, Redundancy becomes Resources

Use gauge redundancy as QEC:

This work: when is it worthwhile?

Existing works

- For error mitigations (Quantum Zeno effect): Lamm et.al. 2020, Halimeh et.al. 2020, 2022, etc.
- For error corrections: Stryker 2019, Rajput et.al. 2023, Bao et.al. 2023
- Closely related to topological QEC

CHICAGO

Gauge redundancy in the Hilbert space of LGT

d-dimension spatial lattice, N_L links, N_V vertices

$$\mathscr{H}_{\text{gauge}} = \text{span}\{ |U\rangle, U \in G\}^{\otimes N_L}$$

Impose Gauss's Law:

 N_T links in a maximal tree can be solved from the rest

$$N_T = N_V - 1$$

$$\mathscr{H}_{inv} \approx \operatorname{span}\{ | U \rangle, U \in G \}^{\otimes (N_L - N_T)}$$

The circuits: encoding, detection and recovery

What errors are correctable?

Gauss's law measurement and recovery

Correctable $\hat{\Gamma}_{\sigma}$ -type errors on more than one link

Minimal effort decoding condition: "Isolated flux pairs"

KL condition (necessary and sufficient)

CHICAGO

Fermilab

"≤ 1 error / plaquette" Knill & Laflamme (1997)

When does redundancy create more errors than it can correct?

• Γ_{σ} -type (correctable type) error rate $\epsilon_c \leq \epsilon$.

• Q_n : # of ways to put n Γ_{σ} -type errors, s.t. they are still correctable.

Fermilab

CHICAGO

Summary

$$\mathcal{H}_{code} \mathcal{H}_{full}$$

- When $\epsilon_c/\epsilon > 1/d$, there is a threshold total error rate, below which $F_{\text{restored}} \ge F_{\text{fixed}}$.
- Encoding and decoding methods in the paper to appear.
- Future works:
 - Different digitization
 - Error models.
 - Concatenation with other QEC.
 - Post-selection

Correctable errors with gauge redundancy

»
$$\{\hat{L}_{g}\hat{\Gamma}_{\sigma}, g \in G, \sigma \in \hat{G}\}$$
 – a complete basis for operators in $\mathcal{H}_{G} = \operatorname{span}\{ |U\rangle, U \in G\}$

Туре	Definition (group element basis)	Qubitcounterpart $G = Z_2$	Gauge symmetry at x, x+i	Correctability with gauge symmetry
Group multiplication	$\hat{L}_g = \sum_{U \in G} gU\rangle \langle U $	X	Both preserved for g in the Abelian center; Otherwise broken only at x	No
Representation matrix element	$\hat{\Gamma}_{\sigma,m,n} = \sum_{U \in G} \sqrt{d_{\sigma}} \Gamma_{mn}^{(\sigma)}(U)^* U \rangle \langle U $	Z	Both broken $\mathbf{X} = \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$	Yes $\hat{P}_{inv}\hat{\Gamma}_{\sigma}^{\dagger}\hat{\Gamma}_{\sigma'}\hat{P}_{inv} = \delta_{\sigma,\sigma'}\hat{P}_{inv}$

