

Finite-volume collinear divergences in Finite-volume collinear divergences in

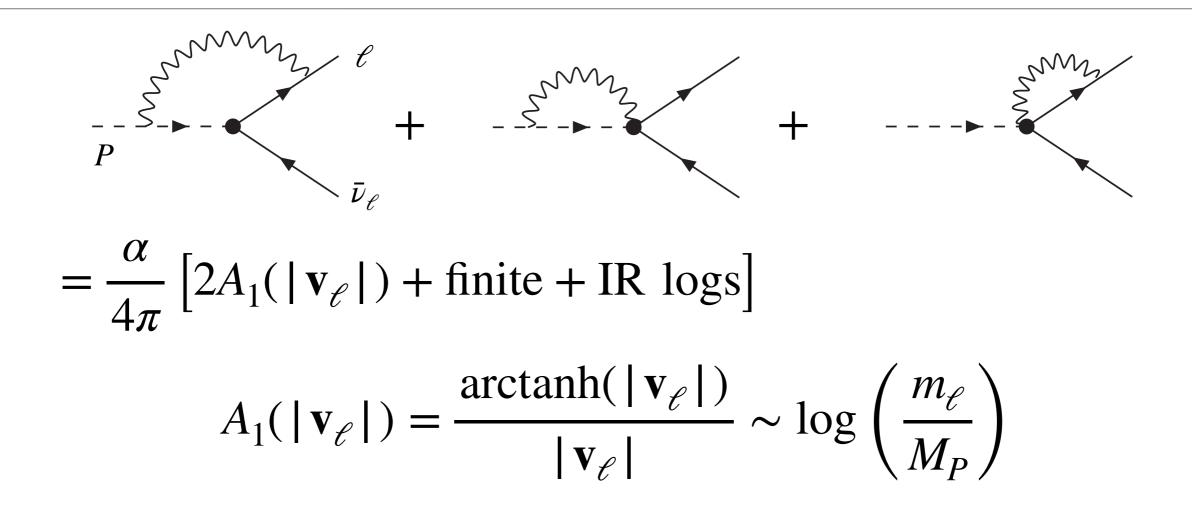
Antonin Portelli — 04/08/2023 Lattice 2023, FermiLab, IL, USA

- Generalities
- Finite-volume collinear divergences
- Mitigation strategies
- Outlook

In collaboration with *M Di Carlo, M T Hansen, and N Hermansson-Truedsson*

Generalities

Hard collinear divergences in leptonic decays



- **Divergent** for $|\mathbf{v}_{\ell}| \to 1$ or equivalently $m_{\ell} \to 0$
- Independent from soft-photon IR divergences

E Boyle, AP, et al. JHEP23 242 (2023)

Hard collinear divergences in leptonic decays

- Not strictly speaking a divergence since $m_{\ell} > 0$
- However $r_{\ell} = m_{\ell}/M_P$ can be **small**
- *e.g.* for **muonic decays**

Р	r_{ℓ}	$ \mathbf{v}_{\ell} $	$ \mathbf{v}_{\ell} = \frac{1 - r_{\ell}^2}{1 + r_{\ell}^2}$
π^+	0.757	0.271	
K^+	0.214	0.912	
D^+	0.057	0.994	-
D_s^+	0.054	0.994	-

Finite-volume collinear divergences

Finite-volume expansion

- In QED_L : expansion in powers and log of L (same for QED_C , QED_r and IR-improved variants)
- Expansion driven by the FV coefficients

$$c_j(\mathbf{v}) = \left(\sum_{\mathbf{n}\neq\mathbf{0}} -\int d^3\mathbf{n}\right) \frac{1}{|\mathbf{n}|^j} \frac{1}{1-\mathbf{v}\cdot\hat{\mathbf{n}}} + \frac{1}{6}\sum_{|\mathbf{n}|=1} \frac{1}{1-\mathbf{v}\cdot\mathbf{n}}$$

- For more details
 - **W** Matteo Di Carlo 03/08 10:00
 - ₩ Nils Hermansson-Truedsson 04/08 09:20

QED_r term

Finite-volume coefficients

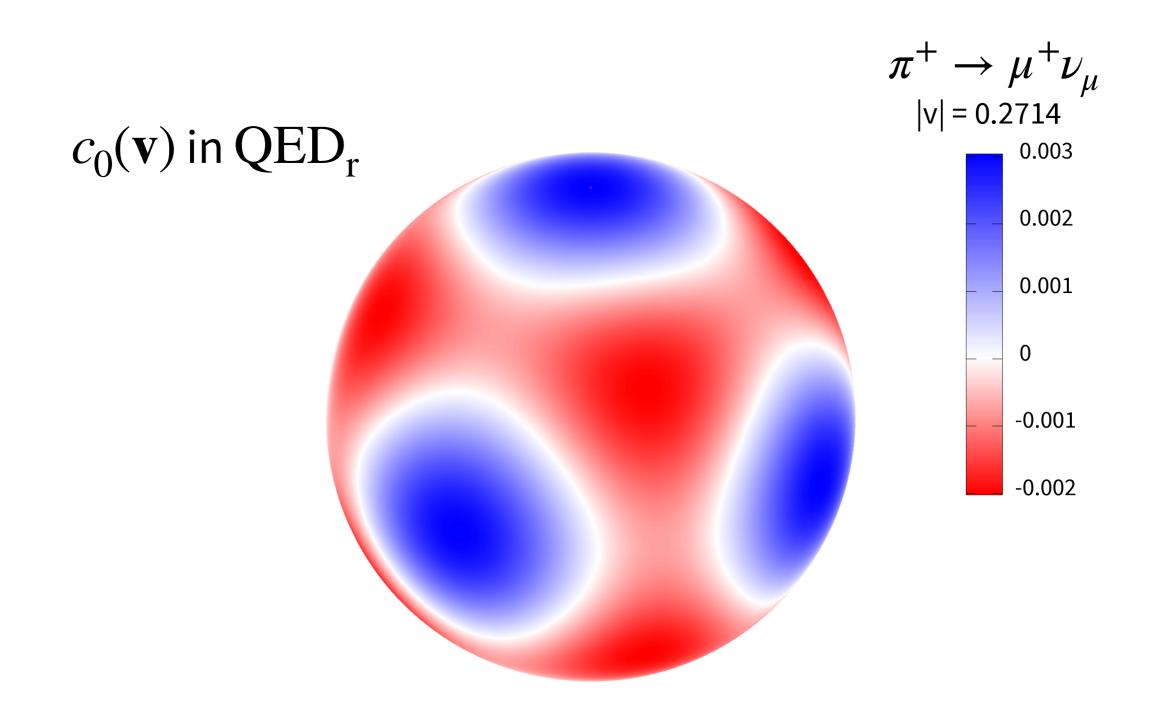
$$c_j(\mathbf{v}) = \left(\sum_{\mathbf{n}\neq\mathbf{0}} -\int d^3\mathbf{n}\right) \frac{1}{|\mathbf{n}|^j} \frac{1}{1-\mathbf{v}\cdot\hat{\mathbf{n}}} + \frac{1}{6}\sum_{|\mathbf{n}|=1} \frac{1}{1-\mathbf{v}\cdot\mathbf{n}}$$

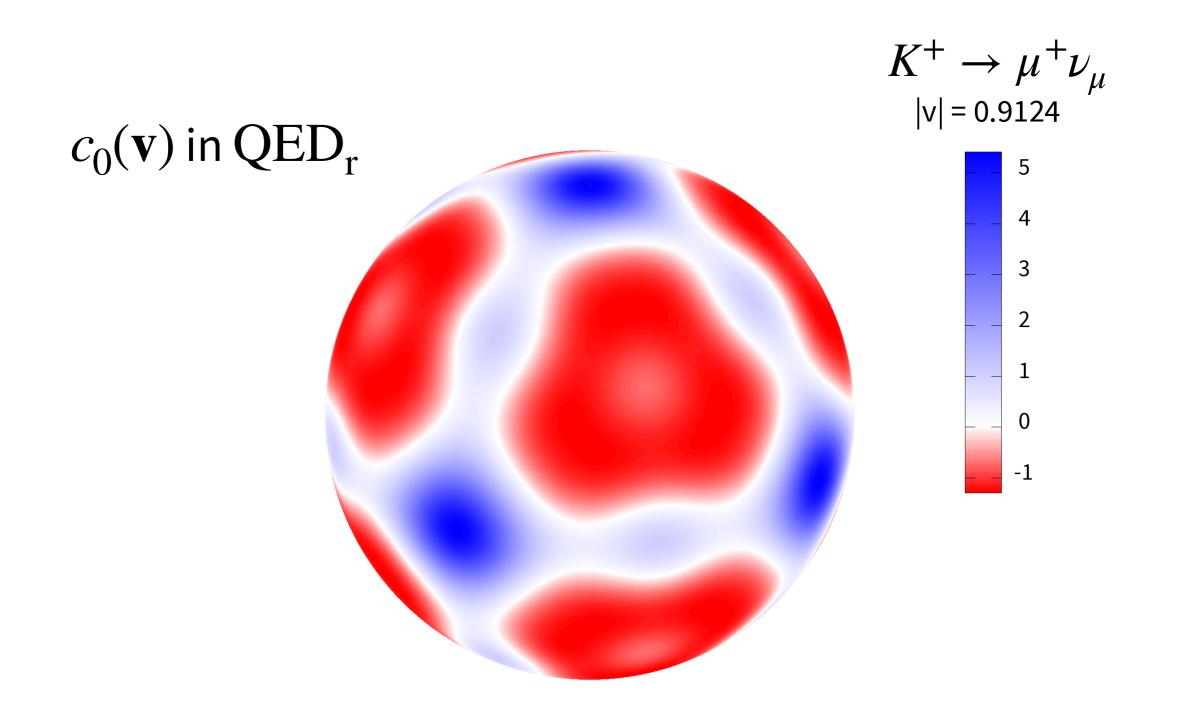
- Contains finite-volume colinear divergences
- At $|\mathbf{v}| = 1$, diverges if a **lattice vector** is collinear with $|\mathbf{v}|$
- Encodes breaking of rotational symmetry
- Related to number-theoretical properties of v

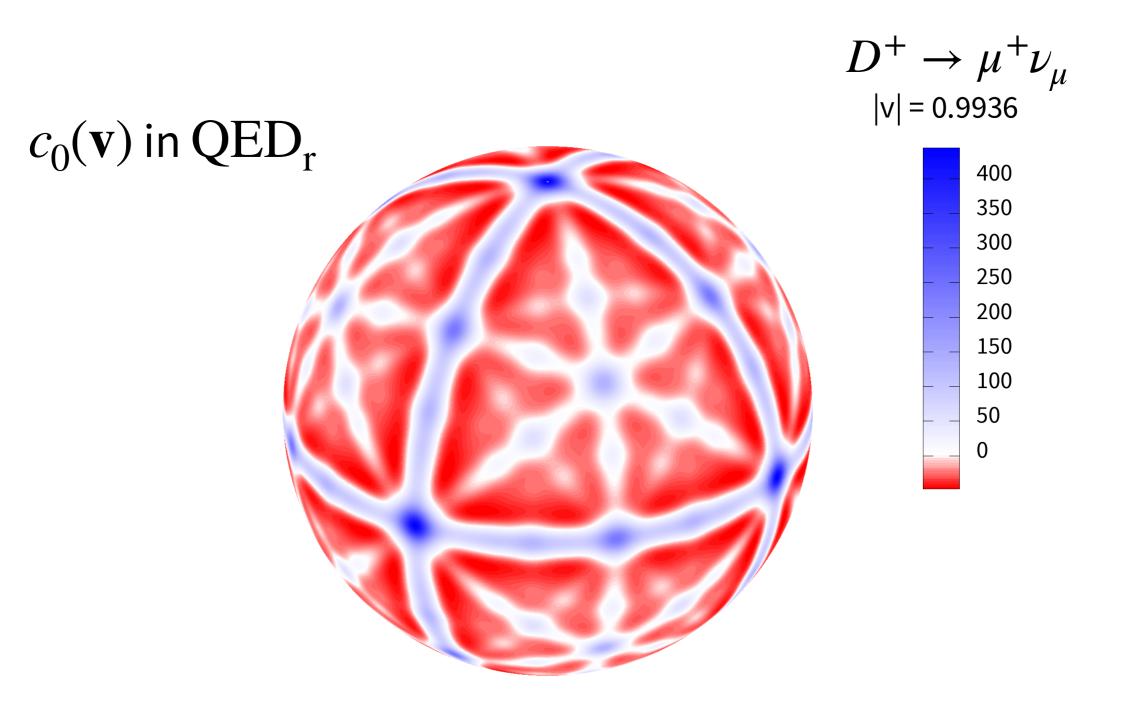
QedFv package

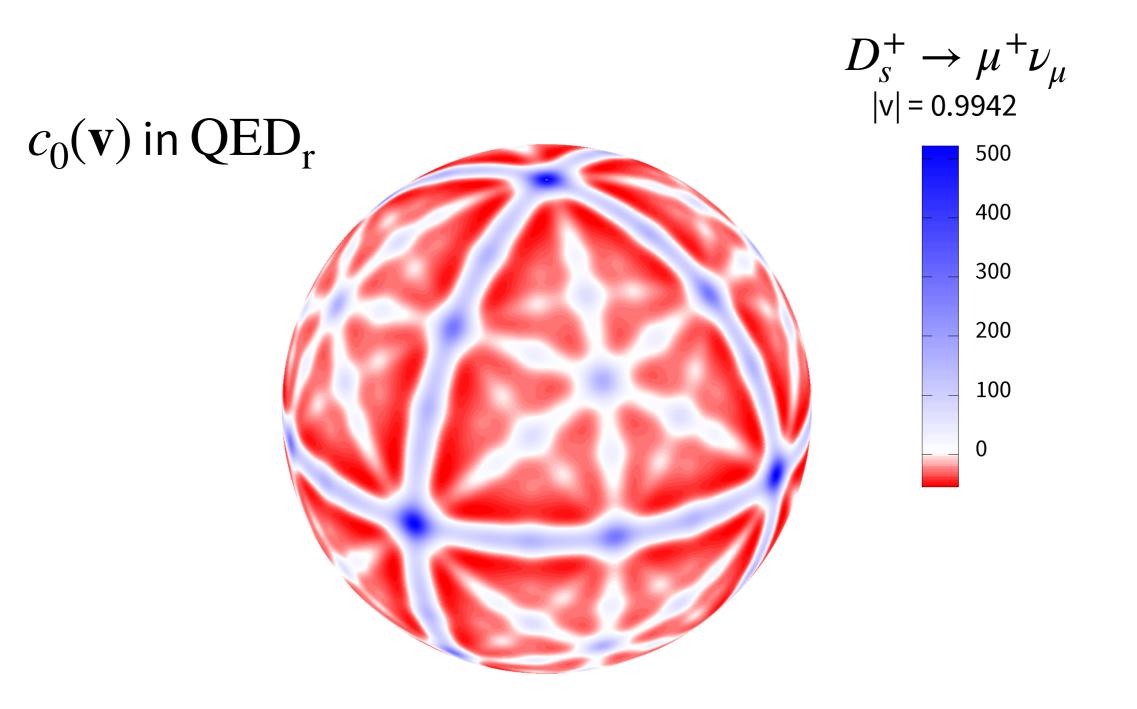
- C++ library for computing FV coefficients using exp-exp sum acceleration
 - Davoudi, AP, et al. PRD99(3), 034510 (2019)
 https://github.com/aportelli/QedFvCoef
- Features
 - Fast multi-threaded sums
 - Auto-tuning
 - Python binding

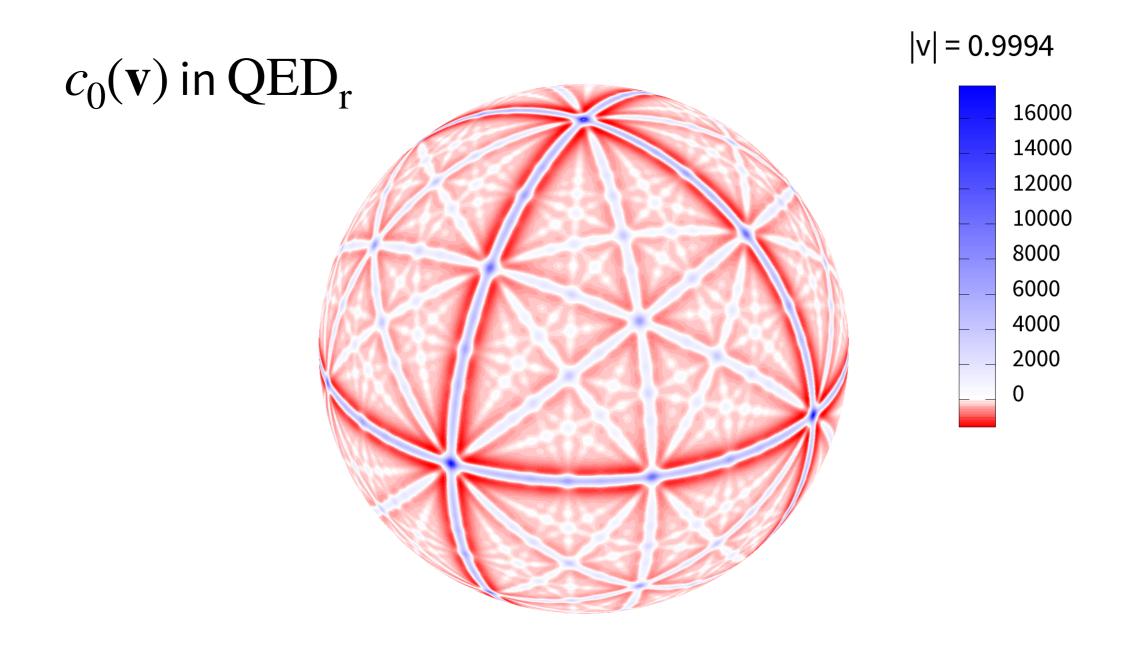
[2]	<pre>cqedl = qedfv.Coef() cqedr = qedfv.Coef(qed=qedfv.Qed.r)</pre>
[3]	<pre>v = [0.2,0.1,0.1] pl = cqedl.tune(2., v) pr = cqedr.tune(2., v) [pl,pr]</pre>
	[{ eta: 0.386924, nmax: 15 }, { eta: 0.386924, nmax: 15 }]
▷ ~ [4]	<pre>[cqedl(2, v, pl), cqedr(2, v, pr)]</pre>
	[-9.099156120172816, -8.07853322454992]











Spherical harmonic expansion

$$c_{j}(\mathbf{v}) = A_{1}(|\mathbf{v}|) c_{j}(\mathbf{0}) + \sum_{l=1}^{+\infty} \sum_{m=-l}^{l} a_{klm}(\mathbf{v}) y_{jlm}$$

- *s*-wave similar to infinite-volume
- $a_{klm}(\mathbf{v})$ is $\mathcal{O}(|\mathbf{v}|^l)$ velocity-suppressed
- *cf.* proof in
 Davoudi, AP, et al. PRD99(3), 034510 (2019)
- Expansion **not very useful** for $|\mathbf{v}| \rightarrow 1$

Finite-volume collinear divergences

• Lattice-aligned vectors:

 $\Gamma = \{ \mathbf{x} \in \mathbb{R}^3 \mid \exists \alpha \in \mathbb{R} \text{ s.t. } \alpha \mathbf{x} \in \mathbb{Z}^3 \}$ $\Gamma \text{ is$ **dense** $in <math>\mathbb{R}^3 \text{ (proof: } \mathbb{Q}^3 \subset \Gamma \text{)}$

• Primitive direction: for $\mathbf{x} \in \Gamma$, $\mathbf{x}^* \in \mathbb{Z}^3$ such that

 $|\mathbf{x}^*| = \min\{|\mathbf{n}| | \mathbf{n} \in \mathbb{Z}^3 \setminus \{\mathbf{0}\}, \alpha > 0 \text{ s.t. } \mathbf{x} = \alpha \mathbf{n}\}$

unique and has co-prime components

$$GCD(\mathbf{x}_1^*, \mathbf{x}_2^*, \mathbf{x}_3^*) = 1$$

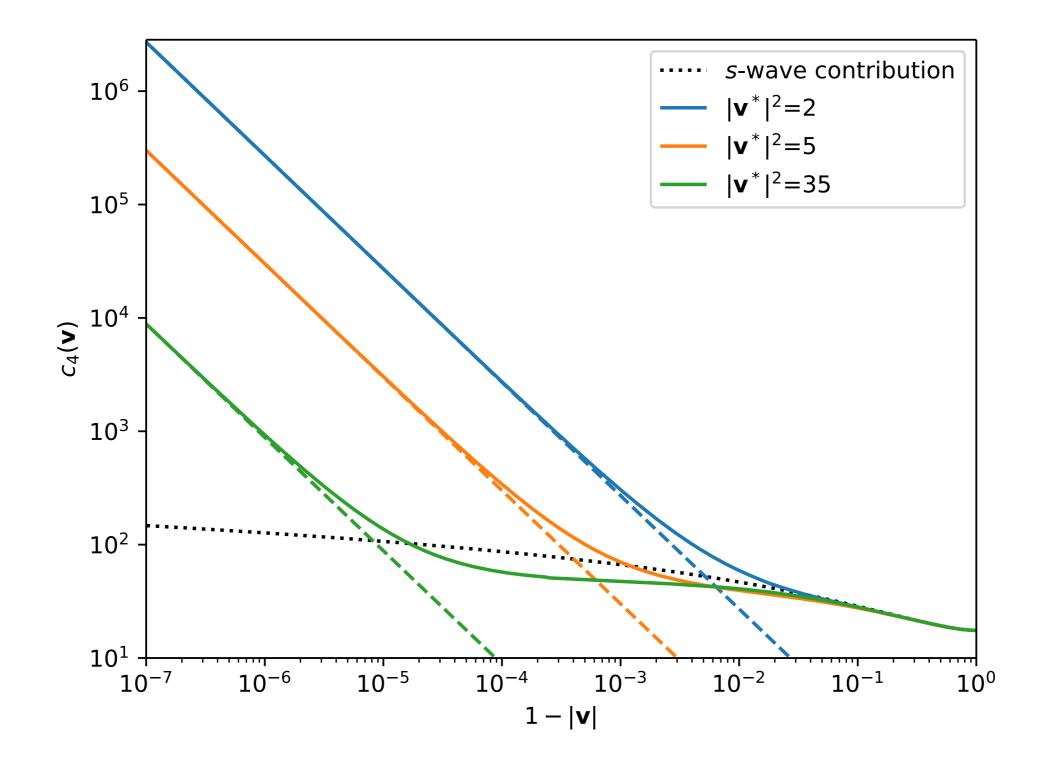
Finite-volume collinear divergences

• Preliminary **new result**, for j > 3 (UV-finite integrands)

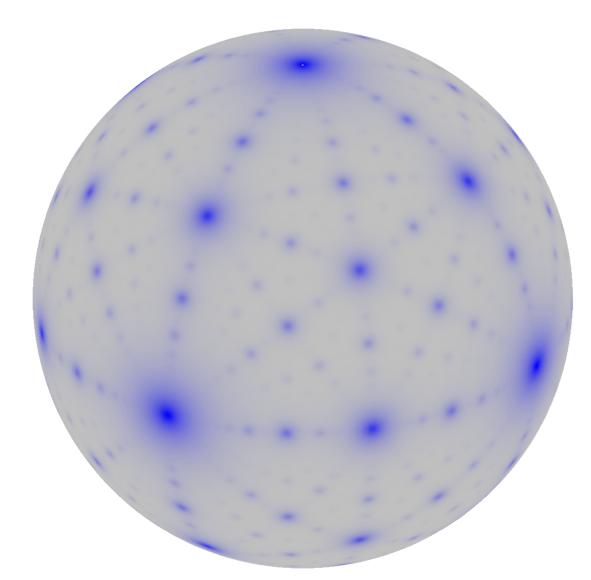
$$c_j(\mathbf{v}) \sim \frac{\zeta(j)}{|\mathbf{v}| \to 1} \frac{1}{|\mathbf{v}^*|^j} \frac{1}{1 - |\mathbf{v}|}$$

- Power divergence vs. log in infinite volume
- Divergence **suppressed by primitive norm**
- Working on **generalising** to j < 3

Numerical comparison



Geometrical structure



 $c_4(\mathbf{v})$ for $|\mathbf{v}| = 0.9999$ colour in log scale directions $\hat{\mathbf{n}}$ for $|\mathbf{n}^*|^2 \le 30$ point size proportional to inverse primitive norm

- "Naive" momentum directions e.g. (1,0,0) are associated with **huge FV collinear enhancement** at high velocity
- Potentially degrading effects on **statistical signal**
 - Very large analytical subtractions of FV effects
 - Variance might suffer from same phenomena

Mitigation strategies

General problem

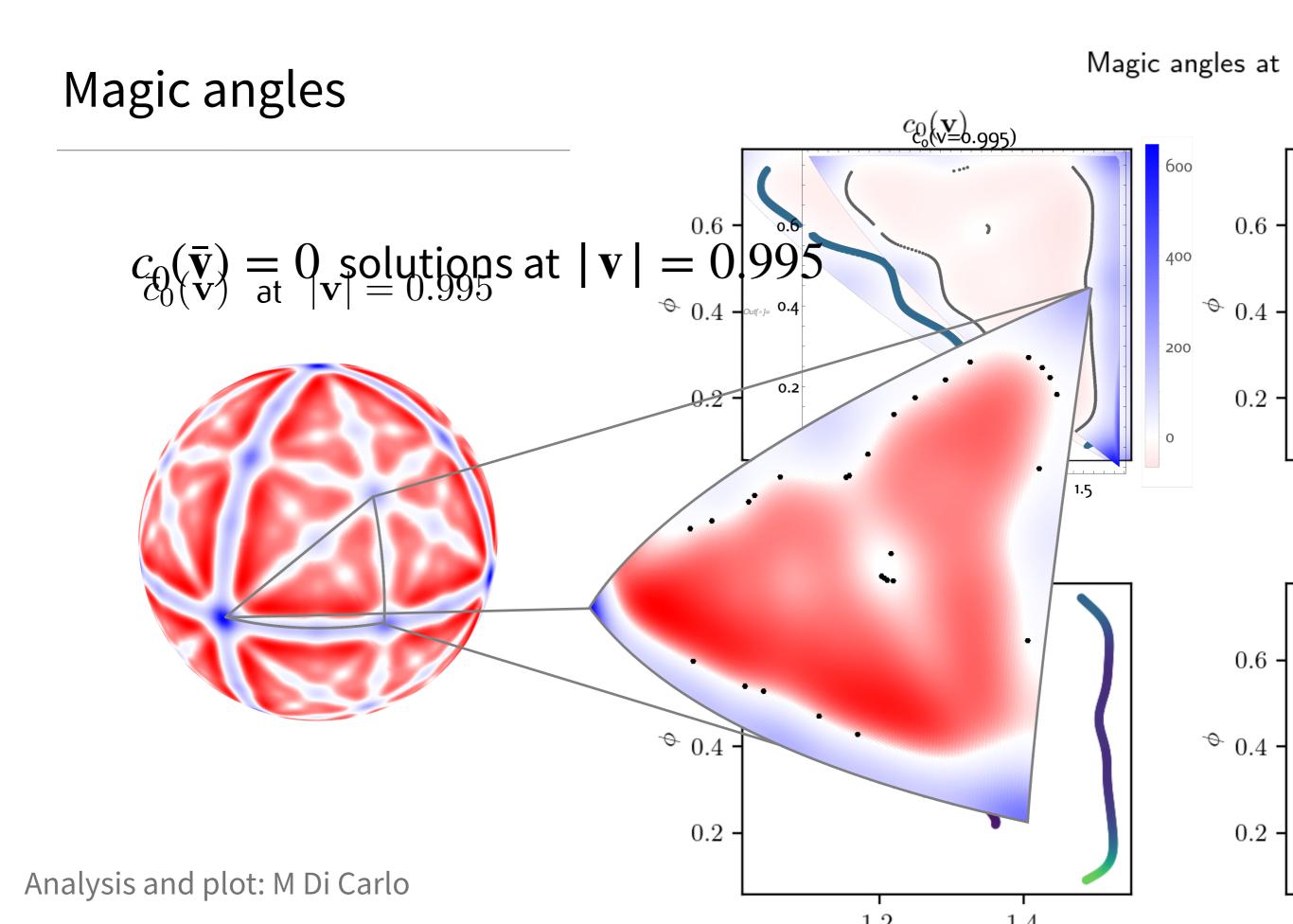
- For weak decays, effects up to $O(1/L^2)$ are well known and **can be subtracted analytically**
- Issues with large subtraction can still arise
- The $\mathcal{O}(1/L^3)$ coefficient is **not well known**, and a linear combination of $c_0(\mathbf{0})$ and $c_0(\mathbf{v})$
 - Matteo Di Carlo 03/08 10:00
 Nils Hermansson-Truedsson 04/08 09:20
 Di Carlo, AP, et al. PRD 105(7), 074509 (2022)
 Boyle, AP, et al. JHEP23 242 (2023)

Magic angles

$$c_0(\mathbf{v}) = A_1(|\mathbf{v}|) c_0(\mathbf{0}) + \sum_{l=1}^{+\infty} \sum_{m=-l}^{l} a_{klm}(\mathbf{v}) y_{0lm}$$

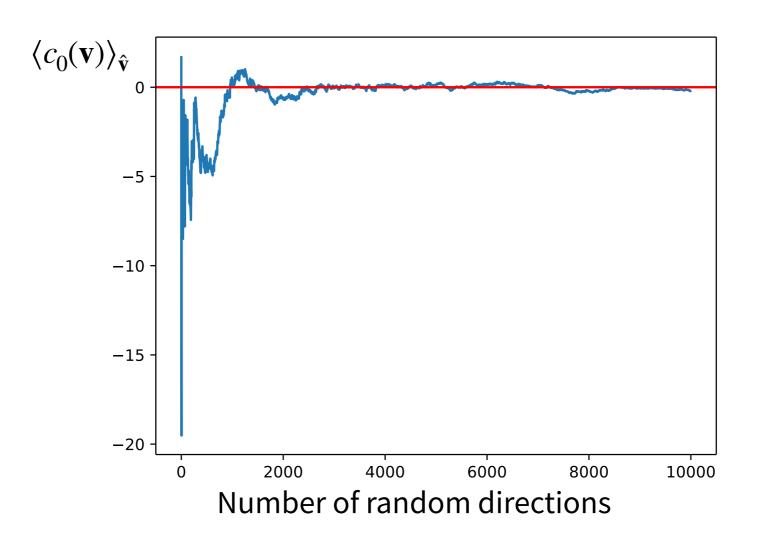
• $c_0(\mathbf{0}) = 0$ in QED_r or local theories, so $\int_{\mathbf{S}^2} d^2 \hat{\mathbf{v}} c_0(\mathbf{v}) = 0$

- It implies there exists $\bar{\mathbf{v}}$ such that $c_0(\bar{\mathbf{v}}) = 0$
- "Magic angles", can be solved numerically



Stochastic direction averaging (SDA)

• Angular dependence can be removed stochastically by drawing the momentum direction randomly for each measurement, i.e. $\langle c_j(\mathbf{v}) \rangle_{\hat{\mathbf{v}}} = A_1(|\mathbf{v}|) c_j(\mathbf{0})$



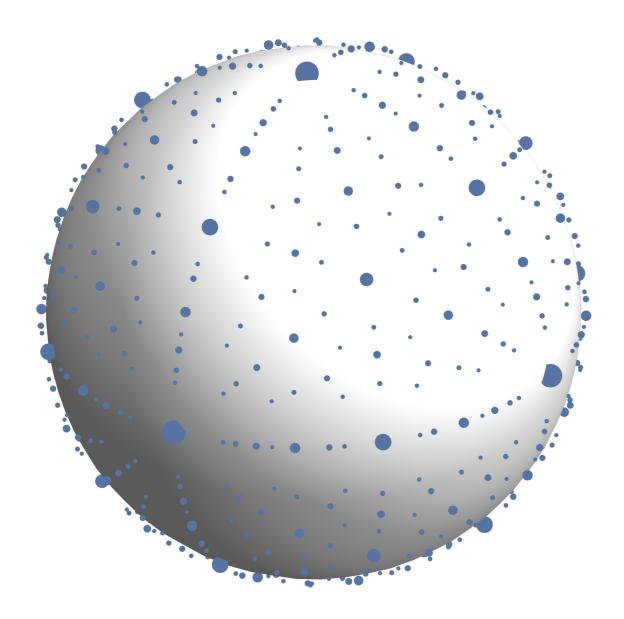
Implications for lattice calculations

- Using QED_r or a local theory + magic angles or SDA, the $\mathcal{O}(1/L^3)$ effect can be removed entirely
- FV effects on weak decay radiative corrections **controlled up to likely negligible** $\mathcal{O}(1/L^4)$ effects
- Both magic angles and SDA currently running with physical point QCD+QED_r for π, K, D, D_s leptonic decays
- We will follow up!

Outlook

Summary

- Collinear divergences in finite-volume are power-like and not logarithmic as in infinite-volume
- The leading divergence coefficient is related to numbertheoretical properties of the momentum direction
- Behaviour understood analytically for j > 3, likely generalises to $j \le 3$
- SDA can help restoring the gentler infinite-volume behaviour in lattice measurements of leptonic decays



$$c_{j}(\mathbf{v}) \sim \frac{\zeta(j)}{|\mathbf{v}| \to 1} \frac{1}{|\mathbf{v}^{*}|^{j}} \frac{1}{1 - |\mathbf{v}|}$$

Thank you!

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreements No 757646 & 813942.