Pion Distribution Amplitude from Pseudo-Distributions

Daniel Kovner

(in collaboration with Joe Karpie, Kostas Orginos,

Anatoly Radyushkin, Savvas Zafeiropoulos) & rest of HadStruc

Exclusive QCD

• Distribution Amplitude (DA): momentum distribution of parton inside *intact* hadron $\langle \Omega | \overline{d} (z_{-}/2) \gamma^{5} \gamma^{+} W_{+} \left[-\frac{z_{-}}{2}, \frac{z_{-}}{2} \right] u(z_{-}/2) | \pi^{+}(p) \rangle$ $= i f_{\pi} p_{+} \int_{0}^{1} dx \exp \left[i \left(x - \frac{1}{2} \right) p_{+} z_{-} \right] \phi(x, \mu^{2})$

• pQCD:
$$\phi(x,\mu\to\infty)=6x(1-x)$$

• What is high scale?

$$\begin{split} \nu &= p \cdot z \\ \text{"loffe Time"} & [Radyushkin, Phys. Rev. D] \\ \hline \text{Pseudo-(IT)DistributionS} \\ M^{\alpha}(p,z) &= \langle \Omega | \overline{q}(-z/2) \gamma^5 \gamma^{\alpha} W[-z/2, z/2] q(z/2) | \pi(p)] \\ \bullet z = z_{-}, \alpha = +, \text{ is the LCDA} \end{split}$$

• Take $z = (0, 0_{\perp}, z_3), p = (0, 0_{\perp}, p_3),$

$$M^lpha(p,z)=p^lpha \mathcal{M}(
u,z^2)+z^lpha \mathcal{N}(
u,z^2)$$

• RGI ratio to remove UV-div from WL, Then take LC limit in MSbar:

$$egin{aligned} \mathfrak{M}(
u,z^2) &= rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)} \ &= R(x
u,lpha_s(\mu^2),\lnig(z^2\mu^2ig))\otimes\phi(x,\mu^2) \ &+ ext{corrections} \end{aligned}$$

"Ioffe Time": $\nu = p \cdot z$ Pseudo-(IT)Distributions

 $M^lpha(p,z) = \langle \Omega | \overline{q}(-z/2) \gamma^5 \gamma^lpha W[-z/2,z/2] q(z/2) \, | \pi(p)
angle$

- $z = z_{-}$, $\alpha = +$, is the LCDA
- Take $z = (0, 0_{\perp}, z_3), p = (0, 0_{\perp}, p_3),$

$$M^lpha(p,z) = p^lpha \mathcal{M}(
u,z^2) + z^lpha \mathcal{N}(
u,z^2)$$

• RGI ratio to remove UV-div from WL, Then take LC limit in MSbar:

- Ideal kinematics involves $\gamma^5 \gamma^t$: Finite Mixing with σ^{xy} at 1-loop. [M Constantinou, H. Panagopoulos, 2017] $\Gamma \longleftrightarrow \{\Gamma, \varkappa\}$
- Typically avoided by taking α=z [X. Gao, et al, 2022] and forming.

$$\overline{\mathcal{M}}(
u,z^2)=rac{M^{\,z}(p,z)}{M^{\,z}(p^\prime,z)}=rac{\mathcal{M}(
u,z^2)+rac{z^2}{
u}\mathcal{N}(
u,z^2)}{\mathcal{M}(
u^\prime,z^2)+rac{z^2}{
u^\prime}\mathcal{N}(
u^\prime,z^2)}$$

$$egin{aligned} \mathfrak{M}(
u,z^2) &= rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)} \ &= R(x
u,lpha_s(\mu^2),\lnig(z^2\mu^2ig))\otimes\phi(x,\mu^2) \ &+ ext{corrections} \end{aligned}$$

"loffe Time": $\nu = p \cdot z$ Pseudo-(IT)Distributions $M^{\alpha}(p,z) = \langle \Omega | \overline{q}(-z/2) \gamma^5 \gamma^{\alpha} W[-z/2, z/2] q(z/2) | \pi(p) \rangle$

- $z = z_{-}, \alpha = +$, is the LCDA
- Take $z = (0, 0_{\perp}, z_3), p = (0, 0_{\perp}, p_3),$

$$M^lpha(p,z)=p^lpha \mathcal{M}(
u,z^2)+z^lpha \mathcal{N}(
u,z^2)$$

• RGI ratio to remove UV-div from WL, Then take LC limit in MSbar:

$$egin{aligned} \mathfrak{M}(
u,z^2) &= rac{\mathcal{M}(
u,z^2)}{\mathcal{M}(0,z^2)} \ &= R(x
u,lpha_s(\mu^2),\lnig(z^2\mu^2ig))\otimes\phi(x,\mu^2) \ &+ ext{corrections} \end{aligned}$$

• Ideal kinematics involves $\gamma^5 \gamma^t$: Finite Mixing with σ^{xy} at 1-loop. [M Constantinou, H. Panagopoulos, 2017] $\Gamma \longleftrightarrow \{\Gamma, \swarrow\}$

$$M^lpha(p,z)=p^lpha \mathcal{M}(
u,z^2)+z^lpha \mathcal{N}(
u,z^2)$$

 $M^lpha_{mix}(p,z)=z_eta\,\langle\Omega|\overline{q}(-z/2)\gamma^5\sigma^{lphaeta}Wq(z/2)\,|p
angle$

$$= z_eta [(p^lpha z^eta - z^lpha p^eta) \mathcal{M}_{mix}(
u,z^2)]$$

$$=p^{lpha}(z^2\mathcal{M}_{mix}(
u,z^2))+z^{lpha}(
u\mathcal{M}_{mix}(
u,z^2))$$

Built from [G. Engel, et. al, 2014]

- CLS NF2 Clover-improved Wilson fermions.
- Gaussian smearing (spatial + momentum)

• Interpolators:
$$\gamma \in \{\gamma^5 \gamma^t, \gamma^5\}$$

• Center gauge link at z/2 at the sink (more stats)

 $\Gamma \in \{\gamma^5 \gamma^t, \, {}^*\sigma^{xy}\}$

	$N_s^3 \times N_t$	a (fm)	$m_{\pi} MeV$	N_{efg}	N_{src}	ς
E5	$32^3 \times 64$	0.0652(6)	440(5)	999	128	(0,3,4.5,6)
$\tilde{A}5$	$32^{3} \times 64$	0.0749(8)	441(4)	1906	8*	$(0,2,4)^*$
N5	$48^3 \times 96$	0.0483(4)	443(4)	477	8^{*}	$(0,2,4)^*$
F7	$48^{3} \times 96$	0.0652(6)	268(3)	1202	32	(0,3,4.5,6)
G8	$64^3 \times 128$	0.0652(6)	193(2)	410	OTW	OTW

• Interpolators: $\gamma \in \{\gamma^5 \gamma^t, \gamma^5\}$

$$C_p^{\gamma\gamma}(t) = \sum_n |Z_n|^2 [e^{-E_n(p)t} + e^{-E_n(p)(T-t)}]$$

• DA ops: $\Gamma \in \{\gamma^5\gamma^t,\sigma^{xy}\}$

- Fit with care:
 - Excited-state contamination at early times.
 - Noise for moderate-to-late times.
- Treatment of fit-range systematics:
 - Removed data points are now parameters!
 - Marginalizing out these parameters results in weighted averages over models.

[W. Jay, E. Neil, Phys. Rev. D 103, 114502 (2021)]

$$\langle f(\theta) \rangle = \sum_{i} f(\theta_{i}^{*}) \operatorname{pr}(M_{i}|y)$$
$$\mathbf{C}_{\theta\phi} = \langle \theta\phi \rangle - \langle \theta \rangle \langle \phi \rangle$$

$$-2\ln \operatorname{pr}(M_i|y) = \chi^2_{aug}(y_{keep}) + 2(k + N_{cut})$$

$$R_{p,z}^{\Gamma,\gamma}(t) = rac{M^lpha(p,z)}{f_\pi p^lpha} + A_{p,z}rac{f(E_1(p),t,T)}{f(E_0(p),t,T)}$$

8

DA Extraction

$$\mathfrak{M}(\nu, z^2) = R(x\nu, \alpha_s \ln z^2 \mu^2) \otimes \phi(x, \mu)$$

[Radyushkin, 2019] +corrections

- Use physically well motivated parameterizations to deal with inverse problem.
 - Simplest class of models: $\phi_{[a]}(x) = N_a (x \overline{x})^a$
 - Lattice Spacing errors: accumulate in $+\mathcal{O}\left(\left(\frac{a}{z}\right)^n\right)C_{disc}(\nu)$ [J. Karpie et al, 2021]

[C. Egerer, et al, 2021]

Conclusions/Future Prospects

- Estimating systematic uncertainties is important: BMA provides a rigorous, quantitative way of doing this.
- Improvements:
 - Excited State Contamination: Distillation & Variational Method to control higher-momentum results.
 - Include physical pion mass ensemble to quantitatively study pion mass effects and higher twist effects in tandem.
 - Model Dependence: BMA on several model DA's + choice of z-cut.

Cheens!