Confining Strings as Integrable Spin Chains in Large N Lattice Yang-Mills Theory

Hiroki Kawai in collaboration with David Berenstein

University of California, Santa Barbara

August 2, 2023

Hiroki Kawai (UCSB)

Confining Strings as Integrable Spin Chains

August 2, 2023

Index

1 Background: Strings for gauge theories

- 2 Setup: confining string on lattice gauge theory
- 3 Diagonal string
- 4 Straight string
- 5 Conclusion and discussion

イロト イボト イヨト イヨト

Strings for hadrons

String theory

- Formulated to describe hadron dynamics before QCD: "S-matrix" approach
- flux tube \sim string

Not quite successful for strong interaction but...

- zigzag symmetry [Polyakov, 1997]: remove spin-2 modes (graviton)
- noncritical strings can be still an effective discription for a long string keeping Lorentz symmetry (e.g. [Polchinski and Strominger, 1991])

Large $\it N$ GT ['t Hooft, 1974] \sim string perturbation

• E.g. AdS/CFT [Maldacena, 1997]

2 Setup: confining string on lattice gauge theory

- 3 Diagonal string
- 4 Straight string
- 5 Conclusion and discussion

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background fields

We think of the 2+1-D LGT in the Hamiltonian formulation.

(Pure) Kogut-Susskind Hamiltonian ([Kogut and Susskind, 1975])

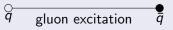
$$H_{KS} = \frac{g^2}{2} \sum_{\ell} \operatorname{Tr} \left[E_{\ell}^2 \right] - \frac{1}{2g^2} \sum_{P} \operatorname{Tr} \left[U_P + U_P^{\dagger} \right]$$
(1)
$$U_P = \bigcup_{P} \quad , \quad U_P^{\dagger} = \bigcup_{P} \quad .$$

Let us call the first term H_E and the second H_B . Think of the **strong coupling limit** $g \gg 1$ (i.e. H_B is the perturbation). Ground state $|\Omega\rangle$: no gluon excitation.

Confining string

Quark confinement probed on lattice

Long color-flux tube \sim Wilson line between (anti)quarks.



Such a state is $|\Gamma\rangle = \mathbf{P} \prod_{\ell \in \Gamma} U_{\ell} |\Omega\rangle$: eigenstates of H_E with $E \propto$ length.

We think of the situation with:

- heavy quarks \Rightarrow no string breaking, fixed endpoints
- large $N \Rightarrow$ suppression on glueball fusion/release

Hiroki Kawai (UCSB)

Confining Strings as Integrable Spin Chains

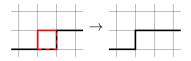
Plaquette action on a string

Excitation back and forth = no excitation

$$\int dU \ U_{ij} U_{k\ell}^{\dagger} = \frac{1}{N} (\delta_{i\ell} \delta_{jk}) = \implies = \frac{1}{N} (\ \mathtt{J} \quad \mathtt{C}),$$
$$U_{ij} U_{jk}^{\dagger} = \implies \mathtt{I} \Rightarrow \mathsf{Zigzag \ symmetry}$$

\Rightarrow It can deform the string.

Especially, deformation by a plaquette sharing two edges with a string does not change the length, i.e. its energy:



It gives the extra 1/N factor.

No string deformation: same as vacuum (we ignore).

2 Setup: confining string on lattice gauge theory

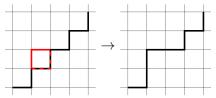
3 Diagonal string

- 4 Straight string
- 5 Conclusion and discussion

イロト イポト イヨト イヨト

Degeneracy of a diagonal string

A single plaquette operator sharing two edges with a diagonal string can deform it as



Swaps neighborhood horizontal and vertical links.

All the string configurations (L/2 vertical and horizontal edges) generated in this way have the same energy (w/o perturbation) and the same endpoints.

They span a
$$\binom{L}{L/2}$$
-D Hilbert space (let us call it \mathcal{H}_{Γ}).
1st-order corrections: diagonalizing the matrix

$$W_{ij} = -\frac{1}{2g^2} \sum_{P} \langle \Gamma_i | \mathrm{Tr} \Big[U_P + U_P^{\dagger} \Big] | \Gamma_j \rangle \quad | \Gamma_i \rangle \in \mathcal{H}_{\Gamma}$$
(2)

Spin chain description: XX model

Regard horizontal links as $|\uparrow\rangle$ and vertical links as $|\downarrow\rangle$ Each link ~ spin-1/2 and $U_P(^{\dagger})$ ~ spin swap:

$$\operatorname{Tr}\left[U_{P}(^{\dagger})\right] \sim \frac{1}{N} (\sigma_{j}^{+} \sigma_{j+1}^{-} + \sigma_{j}^{-} \sigma_{j+1}^{+})$$
(3)

So, the matrix W is exactly the representation of the XX model Hamiltonian in the S_z basis

$$H_{XX} = -\frac{1}{2g^2N} \sum_{j=1}^{L} \sigma_j^+ \sigma_{j+1}^- + \sigma_j^- \sigma_{j+1}^+$$
(4)

in the magnetization M = L/2 sector (= \mathcal{H}_{Γ}).

This model is trivially integrable \sim two free fermions! Derivation as the free fermion model is in [Kogut et al. 1981]

s August 2, 2023

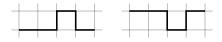
10/17

- 2 Setup: confining string on lattice gauge theory
- 3 Diagonal string
- 4 Straight string
 - 5 Conclusion and discussion

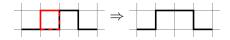
イロト イボト イヨト イヨト

States we need

The non-perturbed state $|\tilde{\Gamma}\rangle$ is the straight string: non-degenerate. 1st-order correction $\propto \langle \tilde{\Gamma} | \text{Tr} [U_P + U_P^{\dagger}] | \tilde{\Gamma} \rangle$ is zero. Need 2nd order: need states with one defect, e.g.



Such strings with a defect are degenerate with

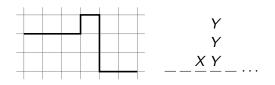


Corresponding to moving one kink left or right $(\times 1/N)$. Need to diagonalize the perturbation in this sector.

Spin chain description

We translate the three edge configurations to three letters $Z = _$, $X = _$, and $Y = _$.

of Z's is fixed (L + 1). X's and Y's are "impurities" between. Configuration like I is prohibited \therefore zigzag symmetry. each Z has a stack of either X's or Y's at each site. E.g. ZZZXZYYYZZ...:



 $U_P(^{\dagger})$ hops X or Y to the NN site.

Only one misalignment at a site for the leading order: the states are $|0\rangle$ (no misalignment), $|+1\rangle$ (one X) or $|-1\rangle$ (one Y). The matrix we need to diagonalize for the low-order corrections is the same as the spin chain Hamiltonian

$$H = -\frac{1}{2g^2N} \sum_{j=1}^{L} \left(e_j^1 f_{j+1}^1 + f_j^1 e_{j+1}^1 + e_j^2 f_{j+1}^2 + f_j^2 e_{j+1}^2 \right)$$
(5)

with
$$e^1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $e^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $f^1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $f^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Solitons and integrability

The Hamiltonian has $U(2) \simeq SU(2) \times U(1)_I$ symmetry (rotations for the bottom right 2 × 2 block, $|+1\rangle \leftrightarrow |-1\rangle$). There are two U(1) charges:

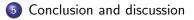
• $< S^z >= U(1) \subset SU(2)$: prohibits exchange of $|+1\rangle \leftrightarrow |-1\rangle$.

• $U(1)_I$: conserve the total number of $|{+1}
angle$ & $|{-1}
angle$

Hence, $|\pm1\rangle$ propagates without deforming \Rightarrow solitons. Indeed, the model is integrable with the R-matrix

	$(i \cosh \lambda)$	0	0	0	0	0	0	0	0 \
$R(\lambda) =$	0	$\sinh\lambda$	0	i	0	0	0	0	0
	0	0	$\sinh\lambda$	0	0	0	i	0	0
	0	i	0	$\sinh\lambda$	0	0	0	0	0
	0	0	0	0	$i\cosh\lambda$	0	0	0	0
	0	0	0	0	0	0	0	$i\cosh\lambda$	0
	0	0	i	0	0	0	$\sinh\lambda$	0	0
	0	0	0	0	0	$i\cosh\lambda$	0	0	0
	\ 0	0	0	0	0	0	0	0	$i \cosh \lambda$

- 2 Setup: confining string on lattice gauge theory
- 3 Diagonal string
- 4 Straight string



イロト イボト イヨト イヨト

- We described the leading-order energy corrections to the string defect in LGT with integrable spin chains.
- They can be solved by means of the Bethe ansatz.
- Large *N* gives the extra suppression on the higher-order corrections than strong coupling.
- Broken Lorentz symmetry ⇒ two differnt string configurations (diagonal and straight): different spin systems for each.
- The two descriptions should match in the continuum, or the thermodynamic limit of the spin chains.