# Confining Strings as Integrable Spin Chains in Large N Lattice Yang-Mills Theory 

Hiroki Kawai<br>in collaboration with David Berenstein

University of California, Santa Barbara

August 2, 2023

## Index

(1) Background: Strings for gauge theories
(2) Setup: confining string on lattice gauge theory
(3) Diagonal string

4 Straight string
(5) Conclusion and discussion

## Strings for hadrons

## String theory

- Formulated to describe hadron dynamics before QCD: "S-matrix" approach
- flux tube $\sim$ string

Not quite successful for strong interaction but...

- zigzag symmetry [Polyakov, 1997]: remove spin-2 modes (graviton)
- noncritical strings can be still an effective discription for a long string keeping Lorentz symmetry (e.g. [Polchinski and Strominger, 1991])
Large N GT ['t Hooft, 1974] ~ string perturbation
- E.g. AdS/CFT [Maldacena, 1997]


## Index

(1) Background: Strings for gauge theories
(2) Setup: confining string on lattice gauge theory
(3) Diagonal string

4 Straight string
(5) Conclusion and discussion

## Background fields

We think of the 2+1-D LGT in the Hamiltonian formulation.

## (Pure) Kogut-Susskind Hamiltonian ([Kogut and Susskind, 1975])

$$
\begin{gather*}
H_{K S}=\frac{g^{2}}{2} \sum_{\ell} \operatorname{Tr}\left[E_{\ell}^{2}\right]-\frac{1}{2 g^{2}} \sum_{P} \operatorname{Tr}\left[U_{P}+U_{P}^{\dagger}\right]  \tag{1}\\
U_{P}=\longleftrightarrow, \quad U_{P}^{\dagger}=\uparrow
\end{gather*}
$$

Let us call the first term $H_{E}$ and the second $H_{B}$. Think of the strong coupling limit $g \gg 1$ (i.e. $H_{B}$ is the perturbation). Ground state $|\Omega\rangle$ : no gluon excitation.

## Confining string

## Quark confinement probed on lattice

Long color-flux tube $\sim$ Wilson line between (anti)quarks.


Such a state is $|\Gamma\rangle=\mathbf{P} \prod_{\ell \in \Gamma} U_{\ell}|\Omega\rangle$ : eigenstates of $H_{E}$ with $E \propto$ length.
We think of the situation with:

- heavy quarks $\Rightarrow$ no string breaking, fixed endpoints
- large $N \Rightarrow$ suppression on glueball fusion/release


Two possible endpoints on lattice: (I) diagonal from or (II) straight along the lattice edges.

## Plaquette action on a string

## Excitation back and forth $=$ no excitation

$$
\begin{aligned}
& \int d U U_{i j} U_{k \ell}^{\dagger}=\frac{1}{N}\left(\delta_{i \ell} \delta_{j k}\right)=\rightrightarrows=\frac{1}{N}(\mathbf{J} \\
& U_{i j} U_{j k}^{\dagger}=\Longrightarrow \\
& \Longrightarrow\text { r }), \\
& \Rightarrow \text { Zigzag symmetry }
\end{aligned}
$$

$\Rightarrow$ It can deform the string.
Especially, deformation by a plaquette sharing two edges with a string does not change the length, i.e. its energy:


It gives the extra $1 / N$ factor.
No string deformation: same as vacuum (we ignore).

## Index

(1) Background: Strings for gauge theories
(2) Setup: confining string on lattice gauge theory
(3) Diagonal string

4 Straight string
(5) Conclusion and discussion

## Degeneracy of a diagonal string

A single plaquette operator sharing two edges with a diagonal string can deform it as


Swaps neighborhood horizontal and vertical links.
All the string configurations ( $L / 2$ vertical and horizontal edges) generated in this way have the same energy ( $\mathrm{w} / \mathrm{o}$ perturbation) and the same endpoints.
They span a $\binom{L}{L / 2}$-D Hilbert space (let us call it $\mathcal{H}_{\Gamma}$ ). 1st-order corrections: diagonalizing the matrix

$$
\begin{equation*}
W_{i j}=-\frac{1}{2 g^{2}} \sum_{P}\left\langle\Gamma_{i}\right| \operatorname{Tr}\left[U_{P}+U_{P}^{\dagger}\right]\left|\Gamma_{j}\right\rangle \quad\left|\Gamma_{i}\right\rangle \in \mathcal{H}_{\Gamma} \tag{2}
\end{equation*}
$$

## Spin chain description: XX model

Regard horizontal links as $|\uparrow\rangle$ and vertical links as $|\downarrow\rangle$
Each link $\sim$ spin- $1 / 2$ and $U_{P}\left({ }^{\dagger}\right) \sim$ spin swap:

$$
\begin{equation*}
\operatorname{Tr}\left[U_{P}\left(^{\dagger}\right)\right] \sim \frac{1}{N}\left(\sigma_{j}^{+} \sigma_{j+1}^{-}+\sigma_{j}^{-} \sigma_{j+1}^{+}\right) \tag{3}
\end{equation*}
$$

So, the matrix $W$ is exactly the representation of the XX model Hamiltonian in the $S_{z}$ basis

$$
\begin{equation*}
H_{x x}=-\frac{1}{2 g^{2} N} \sum_{j=1}^{L} \sigma_{j}^{+} \sigma_{j+1}^{-}+\sigma_{j}^{-} \sigma_{j+1}^{+} \tag{4}
\end{equation*}
$$

in the magnetization $M=L / 2$ sector $\left(=\mathcal{H}_{\Gamma}\right)$.
This model is trivially integrable $\sim$ two free fermions! Derivation as the free fermion model is in [Kogut et al. 1981]

## Index

(1) Background: Strings for gauge theories
(2) Setup: confining string on lattice gauge theory
(3) Diagonal string

4 Straight string

## 5 Conclusion and discussion

## States we need

The non-perturbed state $|\tilde{\Gamma}\rangle$ is the straight string: non-degenerate. 1st-order correction $\propto\langle\tilde{\Gamma}| \operatorname{Tr}\left[U_{P}+U_{P}^{\dagger}\right]|\tilde{\Gamma}\rangle$ is zero. Need 2nd order: need states with one defect, e.g.


Such strings with a defect are degenerate with


Corresponding to moving one kink left or right $(\times 1 / N)$. Need to diagonalize the perturbation in this sector.

## Spin chain description

We translate the three edge configurations to three letters $Z=\ldots, X=\rfloor$ , and $Y=$

\# of Z 's is fixed $(L+1)$. $X$ 's and $Y$ 's are "impurities" between.
Configuration like $\Pi_{\text {is prohibited } \because} \because$ zigzag symmetry. each $Z$ has a stack of either $X$ 's or $Y$ 's at each site. E.g. ZZZXZYYYZZ...:

$U_{P}\left({ }^{\dagger}\right)$ hops $X$ or $Y$ to the NN site.

## Hamiltonian for low-order corrections

Only one misalignment at a site for the leading order: the states are $|0\rangle$ (no misalignment), $|+1\rangle$ (one $X$ ) or $|-1\rangle$ (one $Y$ ). The matrix we need to diagonalize for the low-order corrections is the same as the spin chain Hamiltonian

$$
\begin{equation*}
H=-\frac{1}{2 g^{2} N} \sum_{j=1}^{L}\left(e_{j}^{1} f_{j+1}^{1}+f_{j}^{1} e_{j+1}^{1}+e_{j}^{2} f_{j+1}^{2}+f_{j}^{2} e_{j+1}^{2}\right) \tag{5}
\end{equation*}
$$

with $e^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), e^{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), f^{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), f^{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

## Solitons and integrability

The Hamiltonian has $U(2) \simeq S U(2) \times U(1)$, symmetry (rotations for the bottom right $2 \times 2$ block, $|+1\rangle \leftrightarrow|-1\rangle$ ).
There are two $U(1)$ charges:

- $\left\langle S^{z}\right\rangle=U(1) \subset S U(2)$ : prohibits exchange of $|+1\rangle \leftrightarrow|-1\rangle$.
- $U(1)_{I}$ : conserve the total number of $|+1\rangle \&|-1\rangle$

Hence, $| \pm 1\rangle$ propagates without deforming $\Rightarrow$ solitons.
Indeed, the model is integrable with the R-matrix

$$
R(\lambda)=\left(\begin{array}{ccccccccc}
i \cosh \lambda & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \sinh \lambda & 0 & i & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \sinh \lambda & 0 & 0 & 0 & i & 0 & 0 \\
0 & i & 0 & \sinh \lambda & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & i \cosh \lambda & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & i \cosh \lambda & 0 \\
0 & 0 & i & 0 & 0 & 0 & \sinh \lambda & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & i \cosh \lambda & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & i \cosh \lambda
\end{array}\right)
$$

## Index

(1) Background: Strings for gauge theories
(2) Setup: confining string on lattice gauge theory
(3) Diagonal string
(4) Straight string
(5) Conclusion and discussion

## Conclusion and discussion

- We described the leading-order energy corrections to the string defect in LGT with integrable spin chains.
- They can be solved by means of the Bethe ansatz.
- Large $N$ gives the extra suppression on the higher-order corrections than strong coupling.
- Broken Lorentz symmetry $\Rightarrow$ two differnt string configurations (diagonal and straight): different spin systems for each.
- The two descriptions should match in the continuum, or the thermodynamic limit of the spin chains.

