Searching for the QCD critical point using Lee-Yang edge singularities

D. A. Clarke, F. Di Renzo, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh, K. Zambello
University of Utah

Lattice2023, 4 Aug 2023

The infamous problem

Trick: μ_{B} pure imaginary avoids sign problem; can analytically continue to $\mu_{B} \in \mathbb{R}^{1,2}$.

Trick: Expand pressure P / T^{4} in $\mu_{B} / T^{3,4}$.
The latter is getting a bit too pricey. Popularity of resummation schemes ${ }^{5,6,7,8}$.

[^0]
Lee-Yang theorem

Works where $\log \mathcal{Z}_{\mathrm{QCD}}$ is free of singularities.
Lee-Yang theorem ${ }^{9}$: Zeroes of the partition function that approach the real axis as $V \rightarrow \infty$ correspond to phase transitions.

Intuition: Indications of non-analyticities in P

- may hint at phase transitions
- or singularities in \mathbb{C}
- constrain validity of Taylor series

[^1]
Lee-Yang edges and extended analyticity

Ising: Generically have branch cuts on imaginary axis. (Pinch real axis at T_{c}.)

Lee-Yang edge (LYE): The singularities closest to real axis.

Extended analyticity conjecture ${ }^{10}$: LYE is the nearest singularity to the origin.

LYE position fixed at

$$
z_{c}=\left|z_{c}\right| e^{ \pm i \pi / 2 \beta \delta}
$$

with $z \equiv t h^{-1 / \beta \delta}$ and critical exponents β, δ.
${ }^{10}$ P Fonseca and A Zamolodchikov, J. Stat. Phys. 110, 527-590 (2003).

Padé approximants

Want detailed information about singularities \Rightarrow rational functions,

$$
R_{n}^{m}(x) \equiv \frac{\sum_{i=0}^{m} a_{i} x^{i}}{1+\sum_{j=1}^{n} b_{j} x^{j}}
$$

Singularities captured or mimicked by zeros in denominator.

Let f have a formal Taylor series

$$
f(x)=\sum_{k=0}^{\infty} c_{k} x^{k}
$$

Padé approximant of order $[m, n]: R_{n}^{m}$ with coefficients so that it equals the Taylor series up to order $m+n$. Gives relationship between coefficients a_{i}, b_{j}, c_{k}.

Padé approximants

Things to think about with Padé:

- Theorem: Unique when it exists
- Theorem: $[m, n]$ converges to f exactly as $m \rightarrow \infty$ when f has pole of order n
- Other properties deduced from numerical experiments
- Limited by number of known Taylor coefficients
- Only have up to $8^{\text {th }}$ order ${ }^{11,12}$ for $\log \mathcal{Z}_{\mathrm{QCD}}$; difficultly far greater for higher orders ${ }^{13}$

[^2]
Multi-point Padé approximants

Padé approximants you get by demanding ${ }^{14}$

$$
R_{n}^{m}(x)=f^{m+n}(x) \equiv \sum_{i=0}^{m+n} c_{k} x^{k}
$$

Multi-point Padé: The R_{n}^{m} satisfying

$$
R_{n}^{m}\left(x_{1}\right)=f^{m+n}\left(x_{1}\right), \quad R_{n}^{m}\left(x_{2}\right)=f^{m+n}\left(x_{2}\right), \quad \ldots, \quad R_{n}^{m}\left(x_{N}\right)=f^{m+n}\left(x_{N}\right)
$$

for N points x_{ℓ}. Some pros/cons:

- Need fewer Taylor coefficients!
- Less seems to be known about them...
${ }^{14}$ One expects corresponding relationships among derivatives of R and f.

The strategy

Roughly follow this procedure:

1. What transition are you interested in?
2. How should the singularities scale?
3. Lattice calculations at multiple, pure imaginary μ_{B}.
4. Estimate singularities with multi-point Padé.
5. Does scaling match expectation?
6. Analytically continue results to $\mu_{B} \in \mathbb{R}$.

Next: Why we trust it. (Francesco's Monday talk.)

Test: 1-d Thirring model ${ }^{15,16}$

Number density $N(\mu)$ can be worked out exactly.

Multi-point captures the exact $N(\mu)$ well, outperforms single point.

[^3]
Test: 2-d Ising model ${ }^{17,18}$

Reproduces correct scaling and critical exponents extremely well.

[^4]
Test: The Roberge-Weiss transition ${ }^{10,20}$

Lattice setup:

- $2+1$ dynamical HISQ quarks
- m_{s} / m_{l} fixed to physical value
- $N_{\tau}=4,6$ with $N_{s} / N_{\tau}=6$

$$
\begin{gathered}
h \sim \hat{\mu}_{B}-i \pi \quad t \sim T-T_{\mathrm{RW}} \\
z=t h^{-1 / \beta \delta} \quad z_{c}=\left|z_{c}\right| e^{ \pm i \pi / 2 \beta \delta} \\
\Rightarrow \quad \operatorname{Re} \hat{\mu}_{\mathrm{LY}}= \pm \pi\left(\frac{z_{0}}{\left|z_{c}\right|}\right)^{\beta \delta}
\end{gathered}
$$

Taking $\left|z_{c}\right|=2.43$ yields $9.1 \lesssim z_{0} \lesssim 9.4$.

[^5]

Taking $T_{\mathrm{RW}}^{N_{\tau}=4}=201.4 \mathrm{MeV}$ yields $\beta \delta \approx 1.5635$, compare $1.563495(15)$.

Prelim: $T_{\mathrm{RW}}=211.1(3.1) \mathrm{MeV}$, compare 208(5) MeV.

Test: Roberge-Weiss FSS

FSS scaling of Re near RW transition reasonably captured.

Toward the CEP

Assuming multi-point Padé reliable, turn attention to CEP. Also in $3-d, \mathbb{Z}_{2}$ universality class, so $\beta \delta \approx 1.5$. Exact mapping to Ising not yet known. Linear ansatz:

$$
\begin{aligned}
t & =\alpha_{t} \Delta T+\beta_{t} \Delta \mu_{B} \\
h & =\alpha_{h} \Delta T+\beta_{h} \Delta \mu_{B},
\end{aligned}
$$

where $\Delta T \equiv T-T^{\text {CEP }}$ and $\Delta \mu_{B} \equiv \mu_{B}-\mu_{B}^{\mathrm{CEP}}$, which leads to ${ }^{21}$

$$
\mu_{\mathrm{LY}}=\mu_{B}^{\mathrm{CEP}}-c_{1} \Delta T+i c_{2}\left|z_{c}\right|^{-\beta \delta} \Delta T^{\beta \delta}+\mathcal{O}\left(\Delta T^{2}\right) .
$$

Expectation from lattice ${ }^{22}: \mu_{B}^{\mathrm{CEP}} / T^{\mathrm{CEP}} \gtrsim 3$.

[^6]
Toward the CEP: Single-point and multi-point, erratum

Toward the CEP: Single-point and multi-point

Some comments:

- Must propagate fit uncertainties
- Led to discovery of a bug
- Orange: smaller N_{s} / N_{τ}
- Orange: $N_{\tau}=8$
- Orange: error estimates correct?
- Blue: $N_{\tau}=6$
- Blue: Need lower T

Rough suggestion of CEP:
$T \sim 90 \mathrm{MeV} \quad \mu_{B} \sim 600 \mathrm{MeV}$

Toward the CEP: Evaluation of rough estimate

$$
T \sim 90 \mathrm{MeV} \quad \mu_{B} \sim 600 \mathrm{MeV}
$$

- $T<T_{c} \approx 130 \mathrm{MeV}^{23}$
- $\mu_{B} / T \sim 6$ is well outside apparent convergence radius
- Functional renormalization group ${ }^{24} \mu_{B} \sim 600 \mathrm{MeV}, T \sim 100 \mathrm{MeV}$
- Dyson-Schwinger ${ }^{25} \mu_{B} \sim 500 \mathrm{MeV}, T \sim 125 \mathrm{MeV}$

[^7]
Summary and Outlook

- Multi-point Padé tested in a variety of situations
- Possible indication of CEP around $T \sim 90 \mathrm{MeV}, \mu_{B} \sim 600 \mathrm{MeV}$
- In progress: Refinement of CEP estimate strategy
- In progress: Continuum limit extrapolation
- In progress: Examine chiral transition

Thanks for your attention.

[^0]: ${ }^{1}$ P. de Forcrand and O. Philipsen, Nuclear Physics B, 642.1-2, 290-306 (2002).
 ${ }^{2}$ M. D'Elia and M.-P. Lombardo, Phys. Rev. D, 67.1, 014505 (2003).
 ${ }^{3}$ C. R. Allton et al., Phys. Rev. D, 66.7, 074507 (2002).
 ${ }^{4}$ R. V. Gavai and S. Gupta, Phys. Rev. D, 68.3, 034506 (2003).
 ${ }^{5}$ S. Borsányi et al., Phys. Rev. Lett. 126.23, 232001 (2021).
 ${ }^{6}$ D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).
 ${ }^{7}$ S. Mitra, P. Hegde, and C. Schmidt, Phys. Rev. D, 106.3, 034504 (2022).
 ${ }^{8}$ S. Mondal, S. Mukherjee, and P. Hegde, Phys. Rev. Lett. 128.2, 022001 (2022).

[^1]: ${ }^{9}$ C. N. Yang and T. D. Lee, Phys. Rev. 87.3, 404-409 (1952).

[^2]: ${ }^{11}$ S. Borsanyi et al., J. High Energ. Phys. 2018.10, 205 (2018).
 ${ }^{12}$ D. Bollweg et al., Phys. Rev. D, 108.1, 014510 (2023).
 ${ }^{13}$ Computational requirements of HotQCD EoS exceed 2000 GPU-years and 2.4 PB.

[^3]: ${ }^{15}$ P. Dimopoulos et al., Phys. Rev. D, 105.3, 034513 (2022).
 ${ }^{16}$ F. Di Renzo, S. Singh, and K. Zambello, Phys. Rev. D, 103.3, 034513 (2021).

[^4]: ${ }^{17}$ A. Deger and C. Flindt, Phys. Rev. Research, 1.2, 023004 (2019).
 ${ }^{18}$ F. Di Renzo and S. Singh, PoS(LATTICE2022)148, (2023).

[^5]: ${ }^{19}$ C. Bonati et al., Phys. Rev. D, 93.7, 074504 (2016).
 ${ }^{20}$ G. Johnson et al., Phys. Rev. D, 107.11, 116013 (2023).

[^6]: ${ }^{21}$ M. A. Stephanov, Phys. Rev. D, 73.9, 094508 (2006).
 ${ }^{22}$ D. Bollweg et al., Phys. Rev. D, 105.7, 074511 (2022).

[^7]: ${ }^{23}$ H.-T. Ding et al., Phys. Rev. Lett. 123.6, 062002 (2019).
 ${ }^{24}$ W.-j. Fu, J. M. Pawlowski, and F. Rennecke, Phys. Rev. D, 101.5, 054032 (2020).
 ${ }^{25}$ J. Bernhardt et al., Phys. Rev. D, 104.7, 074035 (2021).

