

Operator mixing and non-perturbative running of $\Delta F = 2$ BSM four-fermion operators

Riccardo Marinelli

("La Sapienza" University of Rome)

in collaboration with

A. Vladikas A, G. De Divitiis, M. Dalla Brida, L. Pirelli, A. Lyttle, M. Papinutto.

Motivations – SM fundamental parameters

Future goal: accurate evaluation of the CP-violation parameter δ in the CKM matrix

The most stringent limits on any generalisation beyond the Standard Model (BSM) are provided by the indirect investigation of BSM effects.

 $K^0 - \bar{K}^0$ oscillations are sensitive to BSM loop effects that vanish in the SM at tree level

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

2

Motivations — investigation of BSM effects

Indirect investigation of CP violation: ε parameter

$$\varepsilon^{\text{theor}}(\delta) = \frac{A(K_L \to (\pi\pi)_{I=0})}{A(K_S \to (\pi\pi)_{I=0})} \propto \tilde{U}(\mu) \langle \bar{K}^0 | \mathbf{Q}(\mu) | K^0 \rangle F(\delta)$$

To be evaluated non-perturbatively

Comparing $\varepsilon^{\text{theor}}$ with its experimental estimate we obtain

in the SM:

- 1. a new estimate of the phase δ
- 2. non-perturbative uncertainties

beyond the SM:

- 1. δ is kept to the current estimate
- 2. limits to any BSM contribution

$K^0 - \bar{K}^0$ oscillations – OPE

Effective Hamiltonian for K oscillations:

SM:
$$H_{\text{eff}}^{\Delta S=2} = \tilde{U}_1 \mathbf{Q}_1$$
 BSM: $H_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^5 \tilde{U}_i \mathbf{Q}_i + \sum_{i=1}^3 \tilde{U}_i' \tilde{\mathbf{Q}}_i$

Only one relevant operator

An operator basis \mathbf{Q}_i

Transition amplitudes are calculated with

 $\left\langle \bar{K}^{0} \right| \mathcal{H}_{\mathrm{eff}}^{\Delta S=2} \left| K^{0} \right\rangle$

i=1

The renormalisation procedure introduces an energy-scale in the matrix elements and in the Wilson coefficients:

New features

• New theoretical formulation of the operator running and mixing in the perturbative regime for $N_f = 3$.

The difference at low energies (~4 GeV) between the perturbative and non-perturbative theory can be relevant in the estimate of relevant quantities as $\varepsilon(\delta)$

Tensions!

$[1607.00299v1] \overset{i,0}{\underset{k_{2}}{\overset{(0)}}}}{\overset{(0)}{\overset{(0}{\overset{(0)}{\overset{(0}{\overset{(0)}{\overset{(0}{\overset{(0}}{\overset{(0}{\overset{(0}{\overset{(0}{$							$B_i \propto \langle \mathbf{Q}_i (\mu = 3 \text{GeV}) \rangle$					
Collaboration	Ref.	N_{f}	DUL		Chi-	finit.	reno, ro		B_2	B_3	B_4	B_5
ETM 15	[55]	2+1+1	A	*	0	0	*	a	0.46(1)(3)	0.79(2)(5)	0.78(2)(4)	0.49(3)(3)
RBC/UKQCD 16	[<mark>60</mark>]	2+1	A	0	0	0	*	b	0.488(7)(17)	0.743(14)(65)	0.920(12)(16)	0.707(8)(44)
SWME 15A	[58]	2 + 1	A	*	0	*	0 †	_	0.525(1)(23)	0.773(6)(35)	0.981(3)(62)	0.751(7)(68)
SWME 14C	[508]	2 + 1	С	*	0	*	0†	_	0.525(1)(23)	0.774(6)(64)	0.981(3)(61)	0.748(9)(79)
SWME $13A^{\ddagger}$	[495]	2 + 1	A	*	0	*	<mark>0</mark> †	_	0.549(3)(28)	0.790(30)	1.033(6)(46)	0.855(6)(43)
RBC/ UKQCD 12E	[502]	2+1	A	•	0	*	*	b	0.43(1)(5)	0.75(2)(9)	0.69(1)(7)	0.47(1)(6)
ETM 12D	[59]	2	A	*	0	0	*	c	0.47(2)(1)	0.78(4)(2)	0.76(2)(2)	0.58(2)(2)

Inconsistencies between different estimates evaluating $Z(\mu = 3 \text{ GeV})$ in different ways (perturbatively or not)

The chirally rotated SF (χSF)

In the continuum we map the SF into the χ SF with a chiral rotation:

$$q_f(x) \to \psi_f(x) = \exp\left(-i\frac{\pi}{4}r_f\gamma_5\right)q_f(x)$$
$$\bar{q}_f(x) \to \bar{\psi}_f(x) = \bar{q}_f(x)\exp\left(-i\frac{\pi}{4}r_f\gamma_5\right)$$
$$1 = r_1 = r_2 = r_3 = -r_4$$

Correspondence between correlation functions in the SF and χ SF:

$$\langle O\left[\psi,\bar{\psi}\right]\rangle_{\rm SF}^{\rm cont} = \langle O\left[R\left(\frac{\pi}{2}\right)\psi,\bar{\psi}R\left(\frac{\pi}{2}\right)\right]\rangle_{\chi \rm SF}^{\rm cont}$$

The boundary rotation removes $\mathcal{O}(a)$ effects!

$$\langle O_{\text{even}} \rangle_{\text{c}} = \langle O_{\text{even}} \rangle_{\text{c}}^{\text{cont}} + \mathcal{O}(a^2)$$

Four-Fermion Operators — Renormalisation

Parity-odd operators:

$$\begin{aligned} \mathcal{Q}_1^{\pm} &= \mathcal{O}_{[VA+AV]}^{\pm} \quad \mathcal{Q}_3^{\pm} = \mathcal{O}_{[PS-SP]}^{\pm} \quad \mathcal{Q}_5^{\pm} = -2\mathcal{O}_{[T\tilde{T}]}^{\pm} \\ \mathcal{Q}_2^{\pm} &= \mathcal{O}_{[VA-AV]}^{\pm} \quad \mathcal{Q}_4^{\pm} = \mathcal{O}_{[PS+SP]}^{\pm} \end{aligned}$$

with

$$egin{split} \mathcal{O}^{\pm}_{[\Gamma_1\Gamma_2\pm\Gamma_2\Gamma_1]} &:= \mathcal{O}^{\pm}_{[\Gamma_1\Gamma_2]} \pm \mathcal{O}^{\pm}_{[\Gamma_2\Gamma_1]} \;, \ \mathcal{O}^{\pm}_{[\Gamma_1\Gamma_2]} &:= rac{1}{2} \Big[\Big(ar{\psi}_1\Gamma_1\psi_2 \Big) \Big(ar{\psi}_3\Gamma_2\psi_4 \Big) \pm \Big(ar{\psi}_1\Gamma_1\psi_4 \Big) \Big(ar{\psi}_3\Gamma_2\psi_2 \Big) \Big] \end{split}$$

The parity-odd operators mix as in a regularisation with exact chiral symmetry:

$$\begin{pmatrix} \bar{\mathcal{Q}}_{1}^{\pm} \\ \bar{\mathcal{Q}}_{2}^{\pm} \\ \bar{\mathcal{Q}}_{3}^{\pm} \\ \bar{\mathcal{Q}}_{4}^{\pm} \\ \bar{\mathcal{Q}}_{5}^{\pm} \end{pmatrix} = \begin{pmatrix} \mathcal{Z}_{11} & 0 & 0 & 0 & 0 \\ 0 & \mathcal{Z}_{22} & \mathcal{Z}_{23} & 0 & 0 \\ 0 & \mathcal{Z}_{32} & \mathcal{Z}_{33} & 0 & 0 \\ 0 & 0 & 0 & \mathcal{Z}_{44} & \mathcal{Z}_{45} \\ 0 & 0 & 0 & \mathcal{Z}_{54} & \mathcal{Z}_{55} \end{pmatrix}^{\pm} \begin{pmatrix} \mathcal{Q}_{1}^{\pm} \\ \mathcal{Q}_{2}^{\pm} \\ \mathcal{Q}_{3}^{\pm} \\ \mathcal{Q}_{4}^{\pm} \\ \mathcal{Q}_{5}^{\pm} \end{pmatrix}$$

Evolution matrices between to scales:

$$\bar{\mathcal{Q}}_i(\mu_2) = U_{ij}(\mu_2,\mu_1)\bar{\mathcal{Q}}_j(\mu_1)$$

Evolution matrices down to a scale:

$$\mathbf{U}(\mu_2,\mu_1) =: \left[\hat{\mathbf{U}}(\mu_2)\right]^{-1} \hat{\mathbf{U}}(\mu_1)$$

Problem: for N_f = 3 the operator basis is resonant and we cannot adopt the usual definition

$$\tilde{\mathbf{U}}(\mu) = \left[\frac{\bar{g}^2(\mu)}{4\pi}\right]^{-\frac{\gamma_0}{2b_0}} \mathbf{W}(\mu)$$

$$W(\mu) \text{ not well-defined}$$

 $W(\mu)$ not well-defined for $N_f = 3$

Four-Fermion Operators — Resonant bases

Poincaré-Dulac Theorem [2013.16220v3]:

there exists an operator basis where $\mathbf{A}(g) := \frac{\boldsymbol{\gamma}(g)}{\beta(g)}$ takes the form

$$\mathbf{A}^{\mathrm{can}}(g) = \frac{1}{g} \left(\mathbf{\Lambda} + g^2 \mathbf{N}_2 \right)$$

diagonal

upper-diagonal

through a transformation
$$\mathbf{S}(g) \simeq \left(\mathbb{1} + \sum_{k=1}^{n} \mathbf{H}_{2k} g^{2k}\right) \mathbf{S}_{\mathrm{D}} \equiv \mathbf{s}_{n}(g) \mathbf{S}_{\mathrm{D}}$$

Solution: in this basis it is well-defined a perturbative running:

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{1}{2}\mathbf{\Lambda}\ln(u)\right) \exp\left(-\frac{1}{2}\mathbf{N}_{2}\ln(u)\right) \mathbf{s}_{n}(u) \mathbf{S}_{\mathrm{D}}$$

Step-scaling functions — Definitions

Non-perturbative evolution from the step-scaling functions:

$$\boldsymbol{\sigma}(u) := \mathbf{U}(\mu/2, \mu) \Big|_{\bar{g}^2(\mu) = u} \longrightarrow \mathbf{U}(u_{\text{had}}, u_{\text{pt}}) = \boldsymbol{\sigma}(u_1) \cdots \boldsymbol{\sigma}(u_N)$$

Discrete step-scaling functions:

$$\mathbf{\Sigma}\left(g_0^2, rac{a}{L}
ight) := \mathbf{\mathcal{Z}}\left(g_0^2, rac{a}{2L}
ight) \left[\mathbf{\mathcal{Z}}\left(g_0^2, rac{a}{L}
ight)
ight]^{-1}$$

 $\mathcal{O}(g^2)$ lattice artefacts are removed adopting *subtracted* step-scaling functions [2112.10606]:

$$\tilde{\boldsymbol{\Sigma}}\left(u, \frac{a}{L}\right) := \boldsymbol{\Sigma}\left(u, \frac{a}{L}\right) [\mathbf{1} + u\log(2)\boldsymbol{\delta}_k(a/L)\boldsymbol{\gamma}_0]^{-1}$$

Step-scaling functions — Continuum fit

We perform global fits with ansatz

$$\left[ilde{\mathbf{\Sigma}}\left(u_n,rac{a}{L}
ight)
ight]_{ij} = [oldsymbol{\sigma}(u_n)]_{ij} + \left(rac{a}{L}
ight)^2 \sum_{m=0}^2 [oldsymbol{
ho}_m]_{ij} u_n^m$$

The parameters are found minimising the χ^2

$$\chi^{2}(\vec{\sigma},\vec{\rho}) := \sum_{n=1}^{7} \sum_{r=1}^{2(3)} \frac{1}{\Delta \Sigma_{r,n}^{2}} \left[\tilde{\Sigma}_{n,r} - \sigma_{n} - x_{r} \sum_{m=0}^{2} \rho_{m} u_{n}^{m} \right]^{2}$$

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

12

Evolution matrices from SSF

The continuum extrapolations are fitted as power series in the coupling

$$\boldsymbol{\sigma}(u) = \mathbf{1} + \mathbf{r}_1 u + \mathbf{r}_2 u^2 + \mathbf{r}_3 u^3 + \mathbf{r}_4 u^4$$

Fixed coefficients:

$$egin{aligned} \mathbf{r}_1 &= m{\gamma}_0 \ln 2 \,, \ \mathbf{r}_2 &= m{\gamma}_1 \ln 2 + b_0 m{\gamma}_0 \ln^2 2 + rac{1}{2} (m{\gamma}_0)^2 \ln^2 2 \,. \end{aligned}$$

N coupling evaluated as: $\sigma^{-1}(u_{n-1}) = u_n$

Evolution operator between u_1 and u_N :

$$\mathbf{U}(u_{\mathrm{had}}, u_{\mathrm{pt}}) = \boldsymbol{\sigma}(u_1) \cdots \boldsymbol{\sigma}(u_N)$$

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

03/08/2023

13

Non-perturbative running — Errors

Non-perturbative running:

$$\hat{\mathbf{U}}(u) = \mathbf{S}_{\mathrm{D}}^{-1} \exp\left(-\frac{\mathbf{\Lambda}}{2} \ln u_{\mathrm{pt}}\right) \exp\left(-\frac{\mathbf{N}_2}{2} \ln u_{pt}\right) \mathbf{s}_n(g) \mathbf{S}_{\mathrm{D}}[\mathbf{U}(u, u_{\mathrm{pt}})]^{-1}$$

- **Statistical errors**: propagation of the errors from the fits
- Systematic errors (guess): lack of knowledge on the anomalous dimension matrix at higher orders

Non-perturbative running — BSM 2|3 indices

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

15

Non-perturbative running — BSM 4|5 indices

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

16

We computed non-perturbatively the running down to a scale $\mathcal{O}(4 \text{ GeV})$ incorporating the NLO in the perturbative part of the study and solving the problem that appears for $N_f = 3$.

In order to evaluate the value of $\varepsilon^{\text{theor}}$ we are planning to perform the following computations:

- a non-perturbative evaluation of the running also in the region from $\Lambda_{\rm QCD}$ to $\mathcal{O}(4 \, {\rm GeV})$;
- renormalised tM-QCD matrix elements estimate at the scale $\Lambda_{\rm QCD}$ on Wilson gauge configurations (CLS);
- renormalisation constants at Λ_{QCD} in the $\chi SF.$

Thank you!

If you need to contact me: riccardomarinelli1999@gmail.com

Operator mixing and nonperturbative running of $\Delta F = 2$ BSM four-fermion operators

18

Backup — Results at the most hadronic scale

	N = 5	N=7	N=9	N = 11
$\hat{U}_{11}(\mu_0)$	0.71 ± 0.05	0.71 ± 0.06	0.72 ± 0.06	0.72 ± 0.06
$\hat{U}_{22}(\mu_0)$	1.23 ± 0.07	1.20 ± 0.08	1.18 ± 0.08	1.17 ± 0.08
$\hat{U}_{23}(\mu_0)$	-0.76 ± 0.02	-0.76 ± 0.02	-0.76 ± 0.02	-0.76 ± 0.02
$\hat{U}_{32}(\mu_0)$	-0.43 ± 0.05	-0.41 ± 0.06	-0.40 ± 0.06	-0.40 ± 0.06
$\hat{U}_{33}(\mu_0)$	2.22 ± 0.07	2.21 ± 0.08	2.21 ± 0.08	2.21 ± 0.09
$\hat{U}_{44}(\mu_0)$	1.78 ± 0.07	1.77 ± 0.08	1.77 ± 0.08	1.76 ± 0.09
$\hat{U}_{45}(\mu_0)$	-0.050 ± 0.003	-0.049 ± 0.004	-0.048 ± 0.004	-0.047 ± 0.004
$\hat{U}_{54}(\mu_0)$	1.7 ± 0.4	1.7 ± 0.4	1.7 ± 0.5	1.7 ± 0.5
$\hat{U}_{55}(\mu_0)$	0.48 ± 0.03	0.48 ± 0.03	0.48 ± 0.03	0.48 ± 0.03

Università di Roma

Backup – $W(\mu)$ definition issues

In general, $W(\mu)$ is the solution of the equation

$$\mu \frac{\mathrm{d}}{\mathrm{d}\mu} \mathbf{W}(\mu) = [\boldsymbol{\gamma}[\bar{g}(\mu)], \mathbf{W}(\mu)] - \beta[\bar{g}(\mu)] \left(\frac{\boldsymbol{\gamma}[\bar{g}(\mu)]}{\beta[\bar{g}(\mu)]} - \frac{\boldsymbol{\gamma}^{(0)}}{\bar{g}(\mu)b_0}\right) \mathbf{W}(\mu)$$

and admits the perturbative expansion

$$\mathbf{W}(\mu) = \mathbf{1} + \bar{g}^2(\mu)\mathbf{J}_1 + \bar{g}^4(\mu)\mathbf{J}_2 + \bar{g}^6(\mu)\mathbf{J}_3 + \dots$$

implying
$$2\mathbf{J}_1 - \left[\frac{\gamma_0}{b_0}, \mathbf{J}_1\right] = \frac{b_1}{b_0}\frac{\gamma_0}{b_0} - \frac{\gamma_1}{b_0}$$

Non-invertible system of equations if $N_f = 3!$

