Extracting Yang-Mills topological structures with adjoint modes

I. Soler, G. Bergner, A.González-Arroyo

ivan.soler.calero@uni-jena.de

Jena University

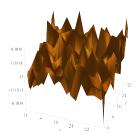
Fermilab, Chicago, August 4th 2023

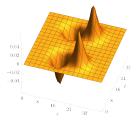
Extracting Yang-Mills topological structures with adjoint modes Ivan Soler Fermilab, Chicago, August 4th 2023 0/15

Overview

Motivation

- Finite volume: Adiabatic continuity
- String tension: $T^3 \times R$
- · Fractional instantons (FI)
- Filtering gauge configurations
 - Adjoint Filtering Method (AFM)
 - Testing configurations
 - Monte-Carlo configurations
- Conclusions





Extracting Yang-Mills topological structures with adjoint modes Ivan Soler Fermilab, Chicago, August 4th 2023 1/15

Yang-Mills on finite volume

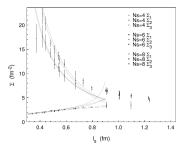
- Study the theory as a function of the compactification radius L_s
- Specifically $L_s \ll 1/\Lambda$ (weak coupling regime) are interesting:
 - Semi-classical methods available
 - · Center symmetry ("confinement") may persist at small coupling

Yang-Mills on finite volume

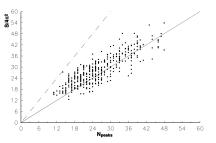
- Study the theory as a function of the compactification radius L_s
- Specifically $L_s \ll 1/\Lambda$ (weak coupling regime) are interesting:
 - · Semi-classical methods available
 - · Center symmetry ("confinement") may persist at small coupling



$\overline{T^3}$ × *R* with Twisted BC

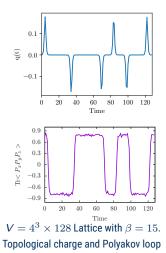


String tension Σ as a function of the compactification radius from correlation of Polyakov loops with different windings [González-Arroyo, Martinez, 1995]



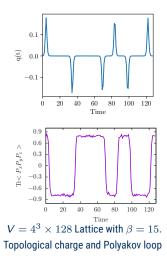
Action density per peak normalized to half the action of an instanton. Ensemble looks populated by fractional instantons [González-Arroyo, Martinez, 1995]

Fractional instantons (FI)



- Ground state of YM with twisted BC $U_{\mu}(\vec{x} + L/a \, \vec{\nu}) = \Omega_{\nu} \, U_x(x) \Omega_{\nu}^{\dagger}.$
- Fractional topological charge $Q = \frac{\kappa}{N_c} + n, \quad n, \kappa \in Z.$
- Self-dual solutions of YM, $F_{\mu\nu} = \pm \tilde{F}_{\mu\nu}$ with finite action $S = \frac{8\pi^2}{g^2 N_c}$.
- Two adjoint zero modes Index $(i \not D) = n_+ - n_- = 2NQ = 2\kappa$.

Fractional instantons (FI)



- Ground state of YM with twisted BC $U_{\mu}(\vec{x} + L/a \vec{\nu}) = \Omega_{\nu} U_{x}(x) \Omega_{\nu}^{\dagger}.$
- Fractional topological charge $Q = \frac{\kappa}{N_c} + n, \quad n, \kappa \in Z.$
- Self-dual solutions of YM, $F_{\mu\nu} = \pm \tilde{F}_{\mu\nu}$ with finite action $S = \frac{8\pi^2}{g^2 N_c}$.
- Two adjoint zero modes $\operatorname{Index}(i \not D) = n_+ - n_- = 2NQ = 2\kappa.$

Goal: FI identification in lattice configurations

Overview

- Motivation
 - Finite volume: Adiabatic continuity
 - String tension: $T^3 \times R$
 - · Fractional instantons (FI)

② Filtering gauge configurations

- Adjoint Filtering Method (AFM)
- Testing configurations
- Monte-Carlo configurations

Occusions

Adjoint Filtering Method González-Arroyo, Kirchner 2005

For a A_{μ} solution of e.o.m. there exists one supersymmetric zero mode

$$\psi^{\mathbf{a},\alpha}(\mathbf{x}) = \frac{1}{8} F^{\mathbf{a}}_{\mu\nu}(\mathbf{x}) [\gamma_{\mu}, \gamma_{\nu}] V^{\alpha}.$$

Properties:

- · Zero-mode with definite chirality
- The real part of its first component vanishes everywhere \rightarrow Distinguishable
- Its density reproduces the dual part of the action \rightarrow Filtering method

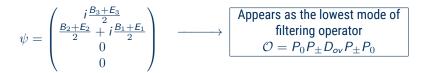
Adjoint Filtering Method González-Arroyo, Kirchner 2005

For a A_{μ} solution of e.o.m. there exists one supersymmetric zero mode

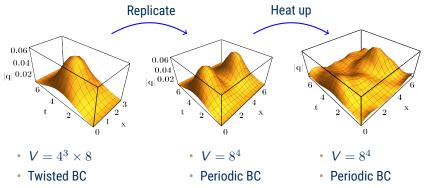
$$\psi^{\mathbf{a},\alpha}(\mathbf{x}) = \frac{1}{8} F^{\mathbf{a}}_{\mu\nu}(\mathbf{x}) [\gamma_{\mu},\gamma_{\nu}] V^{\alpha}.$$

Properties:

- · Zero-mode with definite chirality
- The real part of its first component vanishes everywhere \rightarrow Distinguishable
- Its density reproduces the dual part of the action \rightarrow Filtering method



Test configurations



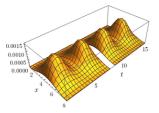
- Q = 1/2
- Smooth

Q = 4
Smooth

- Q = 4
- Noise

Q = 4 Smooth configuration

Test: Does AFM leave a smooth configuration untouched?



$PD_{ov}P$	\mathcal{O}_{-}
$\lambda_{116} = 1 * 10^{-9}$	$\lambda_1 = 4.99 * 10^{-7}$
$\lambda_{17,18} = 1.16 * 10^{-1}$	$\lambda_2 = 1.12 * 10^{-3}$

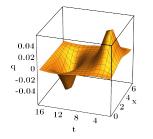
Topological charge and Supersymmetric zero mode density

Lowest eigenvalues of \mathcal{O}_{\pm} and $P_{\pm}D_{ov}P_{\pm}$

- · Each fractional instanton suports a pair of zero modes
- Big gap on the filtering operator

Q = 0 Smooth configuration

Challenges: (a) Quasi-zero modes instead of zero modes (index theorem) (b) Not a solution of e.o.m.



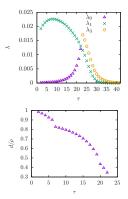
Supersymmetric zero mode density reproduces the topological charge

$P D_{ov} P$	\mathcal{O}_{-}
$\lambda_{1,2} = 1.03 * 10^{-4}$	_
$\lambda_{2,3} = 1.51 * 10^{-2}$	$\lambda_2 = 1.75 * 10^{-2}$

$P_+ D_{ov} P_+$	\mathcal{O}_+
$\lambda_{1,2} = 1.03 * 10^{-4}$	_
$\lambda_{2,3} = 1.51 * 10^{-2}$	$\lambda_2 = 1.75 * 10^{-2}$

Lowest eigenvalues of the \mathcal{O}_{\pm} and $P_{\pm}D_{ov}P_{\pm}$ operators for the Q = 0 configuration

Effects of gradient flow



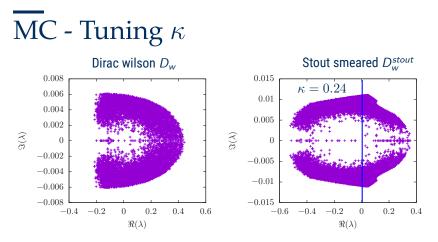
Instanton and anti-instanton annihilation triggered by gradient flow

Lowest part $\mathcal O$ spectrum and d/ρ evolution during flow

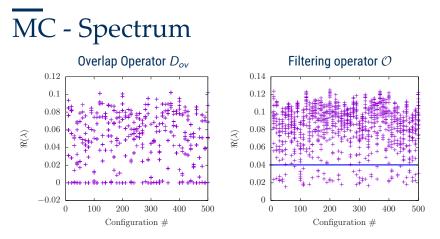
Q = 0 SU(3) heated configuration $\lambda_1^{\mathcal{O}^+} = 3.38 * 10^{-2} \qquad \lambda_2^{\mathcal{O}^+} = 3.56 * 10^{-2}$ 0.008 0.004 0.04 $^{/}32$ 32 -0.02-0.004-0.04-0.00816 16 0 1616 24

AFM applied to a heated configuration. Two zero modes of the O operator need to be summed to obtain the supersymmetric zero mode. Next excited state lies at $\lambda_3 = 9.26 * 10^{-2}$

32



Lowest part of the spectrum of the Wilson operator for 50 Monte-Carlo generated configurations with $V=4^3 imes 32$ and $\beta=2.44$. Right plot corresponds to one level of stout smearing with $\rho=0.15$. Kappa was tuned to $\kappa=0.24$

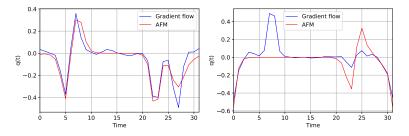


Lowest part of the spectrum of the Overlap operator (left) and \mathcal{O} operator (right) for 50 Monte-Carlo generated configurations with $V = 4^3 \times 32$ and $\beta = 2.55$. Threshold for summing \mathcal{O} modes was set at $\lambda_M = 0.04$

MC - Example configurations

${\rm Configuration}\;40$

Configuration 210



Topological density obtained from the GF at t = 4 and by summing the lowest modes of the O operator on two Monte-Carlo generated configurations with $V = 4^3 \times 32$ and $\beta = 2.55$.

Conclusions

- The AFM can capture the topological structure of gauge configurations.
- **②** The AFM can resolve $Q = 0 \rightarrow$ more information than just index theorem.
- We found qualitative agreement between GF and AFM also for MC configurations.
- AFM does not modify the underlying gauge configuration unlike cooling.

