Extracting Yang-Mills topological structures with adjoint modes

I. Soler, G. Bergner, A.González-Arroyo
ivan.soler.calero@uni-jena.de
Jena University

Fermilab, Chicago, August 4th 2023

Overview

(1) Motivation

- Finite volume: Adiabatic continuity
- String tension: $T^{3} \times R$
- Fractional instantons (FI)
(2) Filtering gauge configurations
- Adjoint Filtering Method (AFM)
- Testing configurations
- Monte-Carlo configurations
(3) Conclusions

Yang-Mills on finite volume

- Study the theory as a function of the compactification radius L_{s}
- Specifically $L_{s} \ll 1 / \Lambda$ (weak coupling regime) are interesting:
- Semi-classical methods available
- Center symmetry ("confinement") may persist at small coupling

Yang-Mills on finite volume

- Study the theory as a function of the compactification radius L_{s}
- Specifically $L_{s} \ll 1 / \Lambda$ (weak coupling regime) are interesting:
- Semi-classical methods available
- Center symmetry ("confinement") may persist at small coupling

weak coupling

strong coupling

$$
\begin{aligned}
& R^{4} \text { with PBC } \\
& R^{3} \times T^{1} \mathrm{SYM}
\end{aligned}
$$

[Bergner, Piemonte, Ünsal, 2018]

$$
\xrightarrow{\text { Phase Transition }}
$$

$R \times T^{3}$ with TBC
[González-Arroyo, Martinez, Perez 1995]
$R^{2} \times T^{2}$ with TBC
???

$T^{3} \times R$ with Twisted BC

String tension Σ as a function of the compactification radius from correlation of Polyakov loops with different windings [González-Arroyo, Martinez, 1995]

Action density per peak normalized to half the action of an instanton. Ensemble looks populated by fractional instantons [González-Arroyo, Martinez, 1995]

Fractional instantons (FI)

$V=4^{3} \times 128$ Lattice with $\beta=15$.
Topological charge and Polyakov loop

- Ground state of YM with twisted BC $U_{\mu}(\vec{x}+L / a \vec{\nu})=\Omega_{\nu} U_{x}(x) \Omega_{\nu}^{\dagger}$.
- Fractional topological charge

$$
Q=\frac{\kappa}{N_{c}}+n, \quad n, \kappa \in Z .
$$

- Self-dual solutions of $\mathrm{YM}, F_{\mu \nu}= \pm \tilde{F}_{\mu \nu}$ with finite action $S=\frac{8 \pi^{2}}{g^{2} N_{c}}$.
- Two adjoint zero modes

$$
\operatorname{Index}(i \not \square)=n_{+}-n_{-}=2 N Q=2 \kappa .
$$

Fractional instantons (FI)

$V=4^{3} \times 128$ Lattice with $\beta=15$.

- Ground state of YM with twisted BC $U_{\mu}(\vec{x}+L / a \vec{\nu})=\Omega_{\nu} U_{x}(x) \Omega_{\nu}^{\dagger}$.
- Fractional topological charge $Q=\frac{\kappa}{N_{c}}+n, \quad n, \kappa \in Z$.
- Self-dual solutions of $\mathrm{YM}, F_{\mu \nu}= \pm \tilde{F}_{\mu \nu}$ with finite action $S=\frac{8 \pi^{2}}{g^{2} N_{c}}$.
- Two adjoint zero modes $\operatorname{Index}(i \not \subset)=n_{+}-n_{-}=2 N Q=2 \kappa$.

Goal: FI identification in lattice configurations

Topological charge and Polyakov loop

Overview

(1) Motivation

- Finite volume: Adiabatic continuity
- String tension: $T^{3} \times R$
- Fractional instantons (FI)
(2) Filtering gauge configurations
- Adjoint Filtering Method (AFM)
- Testing configurations
- Monte-Carlo configurations
(3) Conclusions

For a A_{μ} solution of e.o.m. there exists one supersymmetric zero mode

$$
\psi^{a, \alpha}(x)=\frac{1}{8} F_{\mu \nu}^{a}(x)\left[\gamma_{\mu}, \gamma_{\nu}\right] V^{\alpha}
$$

Properties:

- Zero-mode with definite chirality
- The real part of its first component vanishes everywhere \rightarrow Distinguishable
- Its density reproduces the dual part of the action \rightarrow Filtering method

Adjoint Filtering Method
For a A_{μ} solution of e.o.m. there exists one supersymmetric zero mode

$$
\psi^{a, \alpha}(x)=\frac{1}{8} F_{\mu \nu}^{a}(x)\left[\gamma_{\mu}, \gamma_{\nu}\right] V^{\alpha}
$$

Properties:

- Zero-mode with definite chirality
- The real part of its first component vanishes everywhere \rightarrow Distinguishable
- Its density reproduces the dual part of the action \rightarrow Filtering method

$$
\psi=\left(\begin{array}{c}
i \frac{B_{3}+E_{3}}{2} \\
\frac{B_{2}+E_{2}}{2}+i \frac{B_{1}+E_{1}}{2} \\
0 \\
0
\end{array}\right)
$$

Appears as the lowest mode of filtering operator $\mathcal{O}=P_{0} P_{ \pm} D_{\text {ov }} P_{ \pm} P_{0}$

Test configurations

- $V=4^{3} \times 8$
- Twisted BC
- $Q=1 / 2$
- Smooth
- $V=8^{4}$
- Periodic BC
- $Q=4$
- Smooth

Heat up

- $V=8^{4}$
- Periodic BC
- $Q=4$
- Noise

$Q=4$ Smooth configuration

Test: Does AFM leave a smooth configuration untouched?

$P_{-} D_{\text {ov }} P_{-}$	\mathcal{O}_{-}
$\lambda_{1 . .16}=1 * 10^{-9}$	$\lambda_{1}=4.99 * 10^{-7}$
$\lambda_{17,18}=1.16 * 10^{-1}$	$\lambda_{2}=1.12 * 10^{-3}$

Topological charge and Supersymmetric zero mode density

Lowest eigenvalues of $\mathcal{O}_{ \pm}$and $P_{ \pm} D_{\text {ov }} P_{ \pm}$

- Each fractional instanton suports a pair of zero modes
- Big gap on the filtering operator

$Q=0$ Smooth configuration

Challenges: (a) Quasi-zero modes instead of zero modes (index theorem)
(b) Not a solution of e.o.m.

Supersymmetric zero mode density reproduces the topological charge

$P_{-} D_{o v} P_{-}$	\mathcal{O}_{-}
$\lambda_{1,2}=1.03 * 10^{-4}$	$\lambda_{1}=1.17 * 10^{-4}$
$\lambda_{2,3}=1.51 * 10^{-2}$	$\lambda_{2}=1.75 * 10^{-2}$

$P_{+} D_{o v} P_{+}$	\mathcal{O}_{+}
$\lambda_{1,2}=1.03 * 10^{-4}$	$\lambda_{1}=1.17 * 10^{-4}$
$\lambda_{2,3}=1.51 * 10^{-2}$	$\lambda_{2}=1.75 * 10^{-2}$

Lowest eigenvalues of the $\mathcal{O}_{ \pm}$and $P_{ \pm} D_{\text {ov }} P_{ \pm}$operators for the $Q=0$ configuration

Effects of gradient flow

Instanton and anti-instanton annihilation triggered by gradient flow

Lowest part \mathcal{O} spectrum and d / ρ evolution during flow
$Q=0 S U(3)$ heated configuration

AFM applied to a heated configuration. Two zero modes of the \mathcal{O} operator need to be summed to obtain the supersymmetric zero mode. Next excited state lies at $\lambda_{3}=9.26 * 10^{-2}$

MC - Tuning κ

Dirac wilson D_{w}

Stout smeared $D_{w}^{\text {stout }}$

Lowest part of the spectrum of the Wilson operator for 50 Monte-Carlo generated configurations with $V=4^{3} \times 32$ and $\beta=2.44$. Right plot corresponds to one level of stout smearing with $\rho=0.15$. Kappa was tuned to $\kappa=0.24$

MC - Spectrum
Overlap Operator $D_{\text {ov }}$

Filtering operator \mathcal{O}

Lowest part of the spectrum of the Overlap operator (left) and \mathcal{O} operator (right) for 50 Monte-Carlo generated configurations with $V=4^{3} \times 32$ and $\beta=2.55$. Threshold for summing \mathcal{O} modes was set at $\lambda_{M}=0.04$

MC - Example configurations

Configuration 40

Configuration 210

Topological density obtained from the GF at $t=4$ and by summing the lowest modes of the \mathcal{O} operator on two Monte-Carlo generated configurations with $V=4^{3} \times 32$ and $\beta=2.55$.

Conclusions

(1) The AFM can capture the topological structure of gauge configurations.
(2) The AFM can resolve $Q=0 \rightarrow$ more information than just index theorem.
(3) We found qualitative agreement between GF and AFM also for MC configurations.
(4) AFM does not modify the underlying gauge configuration unlike cooling.

