Symmetry Breaking and Clock Model Interpolation in 2D Classical O(2) Spin Systems

Leon Hostetler ¹, Ryo Sakai ², Jin Zhang ³, Alexei Bazavov ¹, and Yannick Meurice 3

¹ Michigan State University

²Syracuse University

³University of Iowa

August 4, 2023

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- Summary & Outlook

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- 5 Summary & Outlook

Motivation

- Field digitization in quantum simulation
 - **1** Can approximate U(1) by \mathbb{Z}_q
 - Need to optimize the approximation
 - It is useful to have a continuous family of models that interpolate among the different q
- Playground for tensor methods
- Early results suggested a phase diagram similar to that found in Rydberg atom chains (Bernien et. al. Nature 551, 579-584 (2017), Keesling et. al. Nature 568, 207 (2019))

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - ullet The $h_q o\infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- 5 Summary & Outlook

Introduction

$$S = -J \sum_{x,\mu} \vec{S}_x \cdot \vec{S}_{x+\hat{\mu}} = -J \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x)$$

(a) Ising Model

Introduction

$$S = -J \sum_{x,\mu} \vec{S}_x \cdot \vec{S}_{x+\hat{\mu}} = -J \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x)$$

$$(a) \text{ Ising Model}$$

$$(b) \text{ Clock Models}$$

Introduction

$$S = -J \sum_{x,\mu} \vec{S}_x \cdot \vec{S}_{x+\hat{\mu}} = -J \sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x)$$
(a) Ising Model (b) Clock Models (c) XY Model

Leon Hostetler (MSU)

Symmetry Breaking

Aug. 4, 2023

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - The $h_q \to \infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- 5 Summary & Outlook

The Extended-O(2) Model

• We consider an extended-O(2) model in 2D with action

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

- When $h_q = 0$, this is the classic XY model, with a BKT transition
- When $h_q \to \infty$, the continuous angle φ is forced into the discrete values

$$\varphi_0 \le \varphi_{x,k} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$$

- ▶ For $q \in \mathbb{Z}$, this is the ordinary q-state clock model with \mathbb{Z}_q symmetry
- ► For $q \notin \mathbb{Z}$, this defines an interpolation of the clock model for noninteger q

The $h_a \to \infty$ limit¹

• In the limit $h_a \to \infty$, we can replace the action with

$$S_{\mathsf{ext-}q} = -\sum_{\mathsf{x},\mu} \cos(\varphi_{\mathsf{x}+\hat{\mu}} - \varphi_{\mathsf{x}})$$

 We directly restrict the previously continuous angles to the discrete values

$$\varphi_0 \le \varphi_{\mathsf{x},\mathsf{k}} = \frac{2\pi \mathsf{k}}{\mathsf{q}} < \varphi_0 + 2\pi$$

- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$
- For $q \notin \mathbb{Z}$, divergence from ordinary clock model behavior is driven by the introduction of a "small angle":

¹PRD 104 (5), 054505 and PoS(LATTICE2021)353 □ → ← ♠ → ← ≧ →

(1 TICE2021)555 3 7 1 1 1 7 1 2 7 1 2 7 2 1 2 7 4

The $h_q \to \infty$ limit²

²PRD 104 (5), 054505 and PoS(LATTICE2021)353

| ▶ ◀♬ ▶ ◀ 볼 ▶ ④ 토| ㅌ **♡** ♀ ○

TRG results at large volume³

Figure: Specific heat results for the extended-q clock model from TRG obtained by Ryo for q = 4.1, 4.5, 4.9, and 5.0 at volumes from $2^2 \times 2^2$ up to $2^7 \times 2^7$.

Leon Hostetler (MSU) Symmetry Breaking Aug. 4, 2023 7 / 19

The $h_q \to \infty$ limit⁴

⁴PRD 104 (5), 054505 and PoS(LATTICE2021)353

▶ 《레 ▶ 《 문 ▶ 《 문 ▶ · 문 |도 《) 역(S

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - The $h_q \to \infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- 5 Summary & Outlook

Phase Diagram

$$S = -\sum_{x,\mu} \cos{(arphi_{x+\hat{\mu}} - arphi_{x})} - h_q \sum_{x} \cos(qarphi_{x})$$

Phase Diagram at Finite- h_q

$$S_{\mathsf{ext-O(2)}} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

Leon Hostetler (MSU)

Symmetry Breaking

Aug. 4, 2023

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

Leon Hostetler (MSU)

Symmetry Breaking

Aug. 4, 2023

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

Leon Hostetler (MSU)

Symmetry Breaking

Aug. 4, 2023

$$S_{\mathsf{ext-}O(2)} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$

$$S_{\mathsf{ext-}O(2)} = -\sum_{\mathsf{x},\mu} \cos(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$

Finishing Up: Reweighting and Finite Size Scaling

$$\begin{split} \frac{dU_M}{d\beta}\bigg|_{max} &= U_0 + U_1 L^{1/\nu} \\ C_V|_{max} &= C_0 + C_1 L^{\alpha/\nu} \\ \langle M \rangle|_{infl} &= M_0 + M_1 L^{-\beta/\nu} \\ \chi_M|_{max} &= \chi_0 + \chi_1 L^{\gamma/\nu} \\ F(\vec{q})|_{max} &= F_0 + F_1 L^{2-\eta}. \end{split}$$

Phase Diagram

Outline

- Motivation
- 2 Introduction
- 3 The Extended-O(2) Model
 - The $h_q \to \infty$ limit
 - Phase Diagram
- 4 Phase Diagram at Finite- h_q
- 5 Summary & Outlook

Summary & Outlook

• We looked at an extended O(2) model with parameters β , h_q , and q

$$S = -\sum_{x,\mu} \cos\left(\varphi_{x+\hat{\mu}} - \varphi_x\right)$$

Rich phase diagram with crossovers, second-order phase transitions of various universality classes and BKT transitions

Thank you!

Additional Slides:

Previous Work on the Extended-O(2) Model

- José, Kadanoff, Kirkpatrick, and Nelson, Phys. Rev. B 16, 1217 (1977).
- Landau, Journal of Magnetism and Magnetic Materials 31-34, 1115 (1983)
- Hu and Ying, Physica A: Statistical Mechanics and its Applications 140, 585 (1987)
- Bramwell, Holdsworth, and Rothman, Modern Physics Letters B 11, 139 (1997)
- Calabrese and Celi, Phys. Rev. B 66, 184410 (2002)
- Rastelli, Regina, and Tassi, Phys. Rev. B 69, 174407 (2004)
- Rastelli, Regina, and Tassi, Phys. Rev. B 70, 174447 (2004)
- Taroni, Bramwell, and Holdsworth, Journal of Physics: Condensed Matter 20, 275233 (2008)
- Nguyen and Ngo, Advances in Natural Sciences: Nanoscience and Nanotechnology 8, 015013 (2017)
- Chlebicki and Jakubczyk, Phys. Rev. E 100, 052106 (2019)
- Butt, Jin, Osborn, and Saleem, (2022), arXiv:2205.03548

2/16

TRG for Extended-q-state Clock Model

- In the Monte Carlo approach, we use a Markov chain importance-sampling algorithm to generate equilibrium configurations
 - ▶ Monte Carlo has difficulty sampling this model appropriately at $\beta>1$ for $q\notin\mathbb{Z}$
 - ► Integrated autocorrelation time explodes, and we have to perform billions of heatbath sweeps already on a 4 × 4 lattice
 - Studying this model on larger lattices with Monte Carlo is challenging

- Tensor renormalization group (TRG) approach can be used instead
 - We validate TRG against Monte Carlo in the regime accessible to Monte Carlo
 - ▶ Then we use TRG to explore lattice sizes and β -values beyond the reach of Monte Carlo

Algorithm Developments Needed for Extended-O(2) Model

- ullet In the $h_q o\infty$ limit, the DOF could be treated as discrete
 - ▶ Which means we could use an MCMC heatbath algorithm
 - We could use a TRG method for large volumes
- ullet The model is more difficult to study at finite h_q
- For finite h_q , the DOF are continuous
 - MCMC heatbath is not an option, so we're left with the Metropolis, which suffers from low acceptance rates and leads to large autocorrelations in this model
 - lacktriangle Furthermore, our TRG method was only designed for the $h_q o \infty$ limit
- We needed to make some algorithmic developments
 - ► We implemented a *biased Metropolis heatbath algorithm*⁵ (BMHA) which is designed to approach heatbath acceptance rates
 - ► To explore large volumes, Ryo Sakai implemented a Gaussian quadrature method

⁵A. Bazavov and B. A. Berg, PRD 71, 114506 (2005) ←□ ト ← ■ ト ← ■ ト ← ■ ト → ■ □ → へへ

Connections to Quantum Simulation

- Field digitization in quantum simulation
 - Can approximate U(1) by \mathbb{Z}_a
 - Need to optimize the approximation
 - It is useful to have a continuous family of models that interpolate among the different q
- 2 The extended-O(2) model shows interesting behavior already on very small lattices making it a good test case for analog simulation
- Quantum simulation of similar models with a continuously tunable parameter have been done with Rydberg atoms (Bernien et. al. Nature 551, 579-584 (2017), Keesling et. al. Nature 568, 207 (2019))
 - ► The resulting phase diagram (right) shows similarities to the phase diagram of the extended-O(2) model at finite h_a .

$$S_{ ext{ext-}O(2)} = -\sum_{ ext{x},\mu} \cos(arphi_{ ext{x}+\hat{\mu}} - arphi_{ ext{x}}) - h_q \sum_{ ext{x}} \cos(qarphi_{ ext{x}})$$

Leon Hostetler (MSU)

Entanglement Entropy from TRG with L = 1024

Entanglement Entropy from TRG with L = 1024

Entanglement Entropy near q = 3

Specific Heat from TRG with L = 1024

Specific Heat near q = 3

Choice of φ_0

- ullet Choice of $arphi_0$ can change the DOF in the model
- We choose $\varphi_0 = 0$, i.e. $\varphi \in [0, 2\pi)$, but we also investigate $\varphi_0 = -\pi$

Phase diagram for $h_q = \infty$ and $\varphi_0 = -\pi$

Placement of β

• One can define the model as

$$S = -eta \sum_{\mathsf{x},\mu} \cos\left(arphi_{\mathsf{x}+\hat{\mu}} - arphi_{\mathsf{x}}
ight) - h_q \sum_{\mathsf{x}} \cos(qarphi_{\mathsf{x}})$$

where β is multiplying the first term like a field-theoretic coupling. Then the Boltzmann factor is e^{-S}

 \bullet Alternatively, one can factor β out front and define the model as

$$S = -\sum_{x,\mu} \cos(\varphi_{x+\hat{\mu}} - \varphi_x) - h_q' \sum_x \cos(q\varphi_x)$$

with Boltzmann factor $e^{-\beta S}$, where β is the inverse temperature

- ullet The two definitions are related by $h_q'=h_q/eta$
- ullet We have used both definitions, however, the Monte Carlo results shown in these slides are from the definition with eta factored out front

• In the ordinary clock model, we have the energy function

$$S = -\sum_{\langle x, y \rangle} \cos(\varphi_x - \varphi_y)$$

- The angles $\varphi_x^{(k)}$ are selected discretely as $\varphi_0 \leq \varphi_x^{(k)} = \frac{2\pi k}{q} < \varphi_0 + 2\pi$ • When $\beta = 0$ and with $\varphi_0 = 0$, the spins are selected uniformly from a
- When eta=0 and with $arphi_0=0$, the spins are selected uniformly from a "Dirac comb"

$$P_{q,\varphi_0=0}^{clock}(\varphi) \sim \sum_{k=0}^{\lfloor q \rfloor} \delta\left(\varphi - \frac{2\pi k}{q}\right)$$

• In the Extended-O(2) model, we have the energy function

$$S = -\sum_{\langle x,y
angle} \cos(arphi_x - arphi_y) - h_q \sum_x \cos(q arphi_x)$$

ullet The angles φ_{x} are now selected continuously in

$$\varphi_0 \le \varphi \in \mathbb{R} < \varphi_0 + 2\pi$$

• When $\beta = 0$ and with $\varphi_0 = 0$, the spins are selected from a distribution

$$P_{q,arphi_0}^{extO2}(arphi) \sim e^{h_q\cos(qarphi)}$$

Figure: To recover the Dirac comb of the clock model distribution in the $h_q \to \infty$ limit, the angle domain must be shifted by some ε so that the histogram includes all relevant peaks.

ullet To match the clock model in the $h_q o \infty$ limit, it should be sufficient to choose arepsilon such that

$$P_{q,\varphi_0}^{extO2}(\varphi) \xrightarrow[h_q \to \infty]{} P_{q,\varphi_0}^{clock}(\varphi)$$

where for the clock model, angles are selected from $[\varphi_0, \varphi_0 + 2\pi)$, but for the Extended-O(2) model, they are selected from $[\varphi_0 - \varepsilon, \varphi_0 - \varepsilon + 2\pi)$

• In our case, we use $\varphi_0 = 0$, and choose

$$\varepsilon = \pi \left(1 - \frac{\lfloor q \rfloor}{q} \right)$$

so that the $\lceil q \rceil$ peaks of the distribution $P_{q,\varphi_0}^{extO2}(\varphi)$ are centered in the domain $[-\varepsilon, 2\pi - \varepsilon)$

◆ロト ◆母 ト ◆ き ト ◆ き ト き 目 を り へ ○ ○