Toward Contour Deformation for 4d Gauge Theories

Yin Lin 林胤 yin01@mit.edu

Aug 2, 2023 Lattice 2023
Fermilab

Gurtej Kanwar

Michael Wagman

Phiala Shanahan

William Detmold

Signal-to-noise problems in LGT

Ubiquitous exponential signal-to-noise problems

Signal-to-noise problems in LGT

Ubiquitous exponential signal-to-noise problems

- Nucleon correlation functions
- Multi-hadron systems
- Highly boosted hadrons
- $J_{\mu}^{e m} J_{\mu}^{e m}$ correlation functions
.
....

Signal－to－noise problems in LGT

Ubiquitous exponential signal－to－noise problems

－Nucleon correlation functions
－Multi－hadron systems
－Highly boosted hadrons
－$J_{\mu}^{e m} J_{\mu}^{e m}$ correlation functions

Monte Carlo measurements are complex－valued \longrightarrow Sign problems
［M．Wagman，M．Savage hep－lat／1611．07643］

Cauchy theorem and contour deformation

Can we design a＂better＂observable to alleviate the sign problem？
［A．Alexandru，G，Basar，P．Bedaque，N．Warrington hep－lat／2007．05436］

Cauchy theorem and contour deformation

Can we design a＂better＂observable to alleviate the sign problem？
［A．Alexandru，G，Basar，P．Bedaque，N．Warrington hep－lat／2007．05436］

For holomorphic $f(z)$ in some domain

$$
\oint f(z) d z=0
$$

Cauchy theorem and contour deformation

Can we design a＂better＂observable to alleviate the sign problem？
［A．Alexandru，G，Basar，P．Bedaque，N．Warrington hep－lat／2007．05436］
For holomorphic $f(z)$ in some domain

Cauchy theorem and contour deformation

Can we design a＂better＂observable to alleviate the sign problem？
［A．Alexandru，G，Basar，P．Bedaque，N．Warrington hep－lat／2007．05436］

For holomorphic $f(z)$ in some domain

Cauchy theorem and contour deformation

Can we design a "better" observable to alleviate the sign problem?
[A. Alexandru, G, Basar, P. Bedaque, N. Warrington hep-lat/2007.05436]

For holomorphic $f(z)$ in some domain

$\oint f(z) d z=0$

Cauchy theorem and contour deformation

Can we design a＂better＂observable to alleviate the sign problem？
［A．Alexandru，G，Basar，P．Bedaque，N．Warrington hep－lat／2007．05436］

Expectation values are holomorphic，while variances are not

Contour deforming Wilson loops

Given a deformation on gauge field $U \rightarrow \widetilde{U}$

Contour deforming Wilson loops

Given a deformation on gauge field $U \rightarrow \widetilde{U}$
Wilson loop means are holomorphic $\langle\operatorname{ReW}\rangle$

$$
\begin{aligned}
& =\operatorname{Re} \int \prod_{n} d U_{n} p[U] W[U] \\
& =\operatorname{Re} \int \prod_{n}^{n} d \widetilde{U}_{n} p[\widetilde{U}] W[\widetilde{U}]
\end{aligned}
$$

Contour deforming Wilson loops

Given a deformation on gauge field $U \rightarrow \widetilde{U}$

Wilson loop means are holomorphic $\langle\operatorname{Re} W\rangle$
$=\operatorname{Re} \int \prod d U_{n} p[U] W[U]$
$=\operatorname{Re} \int \prod_{n}^{n} d \widetilde{U}_{n} p[\widetilde{U}] W[\widetilde{U}]$

Variances are not holomorphic
$\operatorname{Var}(\operatorname{Re} W[U]) \neq \operatorname{Var}(\operatorname{Re} W[\widetilde{U}])$
$\left.\left\langle(\operatorname{Re} W[U])^{2}\right\rangle\right)-\langle(\operatorname{Re} W[U])\rangle^{2}$

Contour deforming Wilson loops

Given a deformation on gauge field $U \rightarrow \widetilde{U}$

Wilson loop means are holomorphic $\langle\operatorname{Re} W\rangle$
$=\operatorname{Re} \int \prod d U_{n} p[U] W[U]$
$=\operatorname{Re} \int \prod_{n}^{n} d \widetilde{U}_{n} p[\widetilde{U}] W[\widetilde{U}]$

Variances are not holomorphic
$\operatorname{Var}(\operatorname{Re} W[U]) \neq \operatorname{Var}(\operatorname{Re} W[\widetilde{U}])$ $\left.\left\langle(\operatorname{Re} W[U])^{2}\right\rangle\right)-\langle(\operatorname{Re} W[U])\rangle^{2}$

Deform $U \rightarrow \widetilde{U}$ to minimize the variances while guaranteeing exactness!

Constant deformations of SU（2）and SU（3）

$S U(2)$ Euler angles

$S U(3)$ Euler angles

$U=U\left(\theta_{1}, \phi_{1}, \phi_{2}\right)$
$U=U\left(\theta_{1}, \theta_{2}, \theta_{3}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}\right)$
$\theta_{i} \in[0, \pi / 2], \phi_{i} \in[0,2 \pi)$
［W．Detmold，G．Kanwar，H．Lamm，M．Wagman，N．Warrington，hep－lat／2101．12668］

Constant deformations of SU(2) and SU(3)

$S U(2)$ Euler angles
$S U(3)$ Euler angles
$U=U\left(\theta_{1}, \phi_{1}, \phi_{2}\right)$
$U=U\left(\theta_{1}, \theta_{2}, \theta_{3}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}\right)$
$\theta_{i} \in[0, \pi / 2], \phi_{i} \in[0,2 \pi)$
[W. Detmold, G. Kanwar, H. Lamm, M. Wagman, N. Warrington, hep-lat/2101.12668]

Constant deformations

$$
U\left(\theta_{i}, \phi_{i}\right) \rightarrow \widetilde{U}=U\left(\theta_{i}, \phi_{i}+i \Delta_{i}\right)
$$

Δ_{i} are independent of the values of ϕ_{i} and θ_{i}

Constant deformations of SU(2) and SU(3)

$S U(2)$ Euler angles
$S U(3)$ Euler angles

$$
\begin{gathered}
U=U\left(\theta_{1}, \phi_{1}, \phi_{2}\right) \quad U=U\left(\theta_{1}, \theta_{2}, \theta_{3}, \phi_{1}, \phi_{2}, \phi_{3}, \phi_{4}, \phi_{5}\right) \\
\theta_{i} \in[0, \pi / 2], \phi_{i} \in[0,2 \pi)
\end{gathered}
$$

[W. Detmold, G. Kanwar, H. Lamm, M. Wagman, N. Warrington, hep-lat/2101.12668]

Constant deformations

$$
U\left(\theta_{i}, \phi_{i}\right) \rightarrow \widetilde{U}=U\left(\theta_{i}, \phi_{i}+i \Delta_{i}\right)
$$

Δ_{i} are independent of the values of ϕ_{i} and θ_{i}

When we put a bunch of $\operatorname{SU}(\mathrm{N})$ matrices on a lattice...

Optimize $\Delta_{i, \mu}(x, y, z)$ to minimize the observable variance

Success story so far: $\mathrm{SU}(\mathrm{N})$ in 2d

Constant deformation work extremely well for U(1), SU(2), and SU(3) in 2d!

[W. Detmold, G. Kanwar, M. Wagman, N. Warrington, hep-lat/2003.05914]
[W. Detmold, G. Kanwar, H. Lamm, M. Wagman, N. Warrington, hep-lat/2101.12668]

Success story so far: SU(N) in 2d

Constant deformation work extremely well for U(1), SU(2), and SU(3) in 2d!

[W. Detmold, G. Kanwar, M. Wagman, N. Warrington, hep-lat/2003.05914]
[W. Detmold, G. Kanwar, H. Lamm, M. Wagman, N. Warrington, hep-lat/2101.12668]

Massachusetts Institute of Technology

Troubles of going beyond 2d

2d SU(N) gauge theories are special

* With open boundary condition and gauge fixing, we can use plaquette degrees of freedom

Troubles of going beyond 2d

2d SU(N) gauge theories are special

* With open boundary condition and gauge fixing, we can use plaquette degrees of freedom
* No such formulation exist for $\operatorname{SU}(\mathrm{N})$ gauge theories in higher dimensions and/or with periodic boundary condition

Troubles of going beyond 2d

2d SU（N）gauge theories are special
＊With open boundary condition and gauge fixing，we can use plaquette degrees of freedom
＊No such formulation exist for $\operatorname{SU}(\mathrm{N})$ gauge theories in higher dimensions and／or with periodic boundary condition
＊Need to use link degrees of freedom for deformation

Troubles of going beyond 2d

2d SU(N) gauge theories are special

* With open boundary condition and gauge fixing, we can use plaquette degrees of freedom
* No such formulation exist for $\operatorname{SU}(\mathrm{N})$ gauge theories in higher dimensions and/or with periodic boundary condition
* Need to use link degrees of freedom for deformation
- Fail to decrease variance for $\operatorname{SU}(\mathrm{N})$ gauge theories if directly applying the contour deformation, $\Delta_{i, \mu}(x, y, z)$

Contour deformation beyond 2d

Gauge fixing for contour deformation

Heuristics: Reduce redundant degrees of freedom

Gauge fixing for contour deformation

Heuristics：Reduce redundant degrees of freedom （orange links are gauge－fixed and black links are active）

Gauge fixing for contour deformation

Heuristics: Reduce redundant degrees of freedom (orange links are gauge-fixed and black links are active)

Results with direct parametrization

Example: SU(2), $\beta=3.75,8^{\mathbf{3}}$

Optimizing $\Delta_{i, \mu}(x, y, z)$
by minimizing the variance of Wilson loops

Massachusetts Institute of Technology

Results with direct parametrization

Example：SU（2），$\beta=3.75,8^{\mathbf{3}}$

Optimizing $\Delta_{i, \mu}(x, y, z)$ by minimizing the variance of Wilson loops

Smaller improvements on larger lattices

Massachusetts Institute of Technology

Contour deformation beyond 2d

U－net for contour deformation

U－net is an alternative parametrization of $\Delta_{i, \mu}(x, y, z)$
 ［O．Ronneberger，P．Fischer，T．Brox，cs／1505．04597］

U-net for contour deformation

U-net is an alternative parametrization of $\Delta_{i, \mu}(x, y, z)$
 [0. Ronneberger, P. Fischer, T. Brox, cs/1505.04597]

U-net

$$
\longrightarrow \Delta_{i, \mu}(x, y, z)
$$

Input binary masks: encode the information of which links are gauge fixed and which links lie on the Wilson loop we aim to deform.

U-net for contour deformation

U -net is an alternative parametrization of $\Delta_{i, \mu}(x, y, z)$
[O. Ronneberger, P. Fischer, T. Brox, cs/1505.04597]

Input binary masks: encode the information of which links are gauge fixed and which links lie on the Wilson loop we aim to deform.

U-net for contour deformation

Example: SU(2), 16³, 4-by-4 Wilson loops

Enable training with deeper networks, hence, larger lattices

Massachusetts Institute of Technology

U-net for contour deformation

Example: SU(2), 16³, 4-by-4 Wilson loops

Enable training with deeper networks, hence, larger lattices

Required a lot of gauge configurations to avoid overtraining ($\sim 10^{5}$). Unfeasible for even larger lattices

Massachusetts Institute of Technology

Contour deformation beyond 2d

Transfer learning for contour deformation

$$
\left[\begin{array}{l}
\Delta_{i, \mu}(x, y, z) \\
\left(8^{3}, \boldsymbol{\beta}=3.75\right)
\end{array}\right) \longrightarrow \begin{array}{r}
\text { Deconvolution } \\
\text { neural network }
\end{array} \longrightarrow \begin{gathered}
\Delta_{i, \mu}(x, y, z) \\
\left(16^{3}, \boldsymbol{\beta}=3.75\right)
\end{gathered}
$$

Transfer learning for contour deformation

$$
\left.\begin{array}{c}
\Delta_{i, \mu}(x, y, z) \\
\left(8^{3}, \boldsymbol{\beta}=3.75\right)
\end{array}\right) \longrightarrow \begin{gathered}
\text { Deconvolution } \\
\text { neural network }
\end{gathered} \longrightarrow\left(\begin{array}{c}
\Delta_{i, \mu}(x, y, z) \\
\left(16^{3}, \beta=3.75\right)
\end{array}\right.
$$

transfer and fine tune

$$
\left.\begin{array}{c}
\Delta_{i, \mu}(x, y, z) \\
\left(16^{3}, \boldsymbol{\beta}=3.75\right)
\end{array}\right) \longrightarrow \begin{gathered}
\text { Deconvolution } \\
\text { neural network }
\end{gathered} \longrightarrow \begin{gathered}
\Delta_{i, \mu}(x, y, z) \\
\left(32^{3}, \boldsymbol{\beta}=3.75\right)
\end{gathered}
$$

Volume transfer for contour deformation

Example: SU(2), $\beta=3.75,4$-by-4 Wilson loops

Massachusetts Institute of Technology

SU（2）preliminary results

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d

Where we are and where we are going

－Exponential improvement in the variance for SU（2），SU（3）gauge theories in 3d
－Can we gain more improvement with constant deformation？

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
- Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
- Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
- Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?
o Can we reduce the variance of other gauge observables?

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
- Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?
o Can we reduce the variance of other gauge observables?
- 4d work in progress - results soon!

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
o Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?
o Can we reduce the variance of other gauge observables?
- 4d work in progress - results soon!
- Putting fermions back to the theory

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
o Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?
o Can we reduce the variance of other gauge observables?
- 4d work in progress - results soon!
- Putting fermions back to the theory
- Gauge observables on unquenched observables

Where we are and where we are going

- Exponential improvement in the variance for SU(2), SU(3) gauge theories in 3d
- Can we gain more improvement with constant deformation?
- Can we gain improvement without gauge fixing?
- Can we perform non-constant deformation?
o Can we reduce the variance of other gauge observables?
- 4d work in progress - results soon!
- Putting fermions back to the theory
- Gauge observables on unquenched observables
o Fermionic observables on unquenched observables

Area transfer for contour deformation

Example: SU(2), $\beta=3.75$

Massachusetts Institute of Technology

Transfer learning for contour deformation

$$
\left.\begin{array}{c}
\begin{array}{c}
6 \times 8^{3} \\
\Delta_{i, \mu}(x, y, z)
\end{array}
\end{array} 66^{6 \times 16^{3}} \longrightarrow \begin{array}{c}
6 \times 16^{3} \\
\Delta_{i, \mu}(x, y, z)
\end{array}\right] \begin{gathered}
\text { up convolution }
\end{gathered}
$$

- transfer and fine tune

$$
\begin{array}{r}
6 \times 16^{3} \\
\Delta_{i, \mu}(x, y, z)
\end{array} \longrightarrow 6 \times 32^{3} \longrightarrow 6 \times 32^{3} \longrightarrow \begin{gathered}
6 \times 32^{3} \\
\Delta_{i, \mu}(x, y, z)
\end{gathered}
$$

up convolution
\longrightarrow = conv. , batch norm., ReLU \square = up cons.
$\longrightarrow=$ gauge fix

Massachusetts Institute of Technology

Reweighting complex action

$$
\begin{aligned}
\langle\operatorname{Re} W\rangle & =\operatorname{Re} \int \prod_{n}\left[h\left(\widetilde{\theta}_{n}\right) d \widetilde{\theta}_{n} d \widetilde{\phi}_{1, n} d \widetilde{\phi}_{2, n}\right] p[\widetilde{U}] W[\widetilde{U}] \\
& =\operatorname{Re} \int \prod_{n}\left[h(\theta) d \theta_{n} d \phi_{1, n} d \phi_{2, n}\right] p[U]\left(\frac{h\left(\widetilde{\theta}_{n}\right) p[\widetilde{U}]}{h\left(\theta_{n}\right) p[U]} W[\widetilde{U}]\right) \\
& =\operatorname{Re} \int \prod_{n} d U_{n} p[U] \mathbb{Q}[U]=\langle\widehat{Q}\rangle
\end{aligned}
$$

U-net for contour deformation

U-net is an alternative parametrization of $\Delta_{i, \mu}(x, y, z)$

[O. Ronneberger, P. Fischer, T. Brox, cs/1505.04597]

Example: SU(2), $\mathbf{1 6}^{\mathbf{3}}$

$\longrightarrow=$ conv. , batch norm., ReLU \square = down conv.
= up conv.

$$
\longrightarrow=\text { copy } \longrightarrow=\text { gauge fix }
$$

Errors on reweighing factors

IIIII

