Qubitization Strategies for Bosonic Field Theories

Michael J. Cervia

Departments of Physics,
University of Maryland, College Park \&
The George Washington University
Tuesday, August 1, 2023

Articles

Basis for this talk
Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, Michael J. Cervia, and Andy Sheng
"Qubitization strategies for bosonic field theories," (2022). PRD 107, 034503 (2023). arXiv:2209.00098

Edison M. Murairi, Michael J. Cervia, Hersh Kumar, Paulo F. Bedaque, and Andrei Alexandru
""How many quantum gates do gauge theories require?"
PRD 106, 094504 (2022). arXiv:2208.11789
E Edison Murairi and Michael J. Cervia "Reducing Circuit Depth with Qubitwise Diagonalization." arXiv:2306.00170
© Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, Michael J. Cervia, Edison M. Murairi, and Andy Sheng "'Fuzzy Gauge Theory," manuscript in preparation (2023).

"Qubitization"

Bosonic fields on a quantum computer

- Lattice: spatial volume $\mathbb{R}^{d} \rightarrow\left(a \mathbb{Z}_{L}\right)^{d}$ ("domain")
- Bosonic field's Hilbert space $\mathcal{H} \rightarrow \mathcal{H}_{\text {reg }}$ ("target")

Qubitization

- Generically, need $\mathcal{H}_{\text {reg }} \rightarrow \mathcal{H}$ as well as $L \rightarrow \infty \& a \rightarrow 0$. Not just inconvenient, but...

Each dim of $\mathcal{H}_{\text {reg }}$ may be costly! More on this later...

$O(3) \sigma$-model

A Test for Qubitization of Boson Field Theories

- Continuum $O(3) \sigma$-model action

$$
S=\frac{1}{2 g^{2}} \int \mathrm{~d} x \mathrm{~d} t \partial_{\mu} \mathbf{n}(t, x) \cdot \partial^{\mu} \mathbf{n}(t, x)
$$

for coupling g^{2} and unit vectors $\mathbf{n} \in \mathcal{S}^{2}$

- Legendre transform and discretize space: Lattice model Hamiltonian

$$
H=\sum_{x}\left[-\frac{g^{2}}{2} \nabla^{2}(x)-\frac{1}{g^{2} a^{2}} \mathbf{n}(x) \cdot \mathbf{n}(x+1)\right]
$$

for gradient $\nabla(x)$ w.r.t. \mathbf{n} at x

- Global Hilbert space for lattice volume N_{x} has $\operatorname{dim} \mathcal{L}^{2}\left(\mathcal{S}^{2}, \mathbb{C}\right)^{\otimes N_{x}}$
- infinite even for one site!

Harmonic Expansion of the σ-model

Preserving $O(3)$ in a truncated Hilbert space, Take 1

- Decompose $\mathcal{H} \equiv \mathcal{L}^{2}\left(\mathcal{S}^{2}, \mathbb{C}\right)$ into:

$$
\Psi[\mathbf{n}(\theta, \phi)]=\sum_{\ell=0}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} \psi_{\ell m} Y_{\ell}^{m}(\theta, \phi)
$$

Need to lift truncation $\ell_{\text {max }} \rightarrow \infty$.

- Truncate: $\ell_{\max }=1,\left\{Y_{0}^{0}, Y_{1}^{-1}, Y_{1}^{0}, Y_{1}^{+1}\right\}$
- Our reduced Hamiltonian:
$H \leftarrow \eta \sum_{x}\left[g^{2} K(x) \pm \frac{1}{g^{2}} \sum_{k=1}^{3} y_{k}(x) y_{k}(x+1)\right]$
where $K=\operatorname{diag}(0,1,1,1)$ and $y_{k} \leftrightarrow n_{k}$.

A Fuzzy Sphere σ-model

Preserving $O(3)$ in a truncated Hilbert space, Take 2

- Promote coordinates n_{k} to spin- $1 / 2$ operators J_{k} :

coordinate n_{k}			
$\sum_{k} n_{k} n_{k}=1$	\longleftrightarrow		$J_{k} \in \mathrm{SU}(2)$
---:			
SPHERE	$\quad \sum_{k} J_{k} J_{k}=\mathbb{1}$		

- New local Hilbert space: complex 2×2 matrices
- Spherical symmetry with only four points: $\mathbb{1}$ and Paulis $\sigma_{1}, \sigma_{2}, \sigma_{3}$
- Distinct truncated Hamiltonian:

$$
H=\eta \sum_{x}\left[g^{2} K(x) \pm \frac{3}{4 g^{2}} \sum_{k=1}^{3} J_{k}(x) J_{k}(x+1)\right]
$$

where $K=\left[J_{k},\left[J_{k}, \cdot\right]\right]$ and J_{k} replaces n_{k}

MPS Ansatz: A Practical Note

Working around the exponential Hilbert Space

Problems for both models:

- $\operatorname{dim} \mathcal{H}_{1}=4$, lattice volume $N_{x} \longrightarrow \operatorname{dim} \mathcal{H}=4^{N_{x}}$
- Monte Carlo sign problem

Solution: Matrix Product State (MPS) for global wave function Ψ :

$$
\begin{aligned}
|\Psi\rangle & =\sum_{a_{1}, \ldots, a_{N}=1}^{4} A(1)^{a_{1}} \cdots A(N)^{a_{N}}\left|a_{1}, \ldots, a_{N}\right\rangle \\
& =
\end{aligned}
$$

- Well-established variational algo (DMRG) for lowest-lying states!
- N.B. Open boundary condition...

Correlation Length(s) in Hamiltonian Lattice Theories

 Renormalization of the speed of lightMass "Gap"

Inverse correlation length;

$$
C(x, y)=\left\langle\Psi_{0}\right| O(x) O(y)\left|\Psi_{0}\right\rangle
$$

vs. Energy Gap
Difference in lowest energies:

$$
a \Delta \equiv \lim _{L \rightarrow \infty}\left[\hat{E}_{1}(L)-\hat{E}_{0}(L)\right]
$$

Relativistic theory: $\eta\left(g^{2}\right) \Delta\left(g^{2}\right)=m\left(g^{2}\right)$, so tune the scale factor η;

$$
\eta\left(g^{2}\right)=\frac{a m\left(g^{2}\right)}{a \Delta\left(g^{2}\right)}
$$

Particle mass in the continuum limit

A First Test

Inverse spatial corr lengths have expected form: $a m\left(g^{2}\right)=\frac{A}{g^{2}} e^{-B / g^{2}}$

Continuum limit expected as $g^{2} \rightarrow 0: \operatorname{am}\left(g^{2}\right) \rightarrow 0$
massless

- Early failure for ℓ truncation...
- Fuzzy model passes so far... $\}$ Each 2 qubits/site!

AA, PFB, AC, MJC, AS (2022)

Step-scaling Curves

A Comprehensive Test

Assess "step scaling" of model across wide energy range: $E\left(L_{x}\right) / E\left(2 L_{x}\right)$ vs. $1 / L_{x} E\left(L_{x}\right)$
(e.g., Monte Carlo simulations as the basis for comparison)

\leftarrow infrared (IR)
ultraviolet (UV) \rightarrow

Step-scaling Curves

Comparison of models

Fuzzy sphere truncation

Spherical harmonics truncation

- (Blue): Continuum-limit behavior derived from MC simulations
- Smallest volumes: $L_{x} / a \sim 4$,
- Fuzzy sphere calculations approach continuum-limit behavior much further into UV regime

Another picture of the fuzzy σ-model

Heisenberg comb

Local chage of basis \rightarrow Heisenberg comb:

$$
H=\eta \sum_{x} g^{2} \vec{S}(x, 0) \cdot \vec{S}(x, 1)+\frac{1}{g^{2}} \vec{S}(x, 0) \cdot \vec{S}(x+1,0)
$$

Recently investigated by Bhattacharya et al (2021)
Stay tuned for more on this realization... up next!

Resource Estimates for Truncated Models CNOT costs to simulate one time step

- Foundation for resource estimates of quantum simulations
- Automatic procedure - stay tuned for code you can use! CNOTs

11826

Lessons Learned

A Summary

- Fuzzy 2-sphere leads to continuum $O(3) \sigma$-model description

- $\ell_{\text {max }}$ mass >0, less descriptive of UV
- Cautionary tale about the importance of small qubitization schemes!

- THANK YOU -

Another difference between models

Beside algebraic closure, another distinction for the ℓ truncation:

- Mapping between (anti)ferromagnetic models: global operator

$$
O=\bigotimes_{n=1}^{N_{x} / 2}\left(U_{2 n-1} \otimes \mathbb{1}_{2 n}\right)
$$

where locally $U K U^{\dagger}=K$, yet $U y_{k} U^{\dagger}=-y_{k}$

- U does exist for harmonic expansion
e.g., $\ell_{\max }=1$: $U=\operatorname{diag}(1,-1,-1,-1)$
- (Anti)ferromagnetic phases of ℓ truncation have an equivalence \Longrightarrow if one phase fails to describe theory, so does the other

Basis of Comparison

Monte Carlo methods

- Lattice $O(3) \sigma$-model action

$$
S=-\beta \sum_{t, x}[\mathbf{n}(t, x) \cdot \mathbf{n}(t+1, x)+\mathbf{n}(t, x) \cdot \mathbf{n}(t, x+1)]
$$

- Boundaries: periodic time, "open" space \Longleftrightarrow open for MPS
- Monte Carlo simulations w/ no sign problem
- Measure time-slice correlators $C(t)=\frac{1}{N_{x}^{2}} \sum_{x, y}\langle\mathbf{n}(t, x) \cdot \mathbf{n}(0, y)\rangle$

Fit $\exp \left[-t \Delta\left(N_{x}\right)\right]$ for energy gaps.

Measurements via MPS

Extrapolation w.r.t. bond dimension
MPS ansatz becomes exact for a bond dimension cutoff

$$
D \rightarrow D_{0} \equiv p^{\lfloor L / 2\rfloor},
$$

for an open chain of L sites each with local Hilbert space dimension p.
Fit approximate quantity Δ as a function of bond dimension $D \ll D_{0}$

$$
\Delta(D)=\Delta+\frac{A}{D^{B}}
$$

(e.g., fuzzy, $\left.g^{2}=0.53, L / a=800\right) \rightarrow$

\Longrightarrow Uncertainty: $\epsilon_{\Delta}=\frac{\Delta\left(D_{\max }\right)-\Delta}{2}$

Euclidean Action σ-model

Monte Carlo methods

- Lattice $O(3) \sigma$-model action

$$
S=-\beta \sum_{t, x}[\mathbf{n}(t, x) \cdot \mathbf{n}(t+1, x)+\mathbf{n}(t, x) \cdot \mathbf{n}(t, x+1)]
$$

for $\beta>0$ and $\mathbf{n} \in \mathcal{S}^{2}$ on a $N_{t} \times N_{x}$ lattice, periodic in time yet "open" in space.

- Monte Carlo simulations via Wolff cluster algorithm
- Measure time-slice correlators

$$
C(t)=\frac{1}{N_{x}^{2}} \sum_{x, y}\langle\mathbf{n}(t, x) \cdot \mathbf{n}(0, y)\rangle,
$$

fit to $\exp \left[-t \Delta\left(L_{x}\right)\right]$ for energy gaps.

- Suppress finite-temperature $T=1 / L_{t}$ effects $\mathcal{O}[\exp (-m / T)]$ with large $m(\beta) / T \gtrsim 8$
- Suppress spatial boundary effects with $\delta E\left(L_{x}\right) / T \gtrsim 8$ for free scalar energy gap $\delta E \equiv \omega_{3}-\omega_{1} \approx 8 \pi^{2} / m L_{x}^{2}$

Energy Gaps in the Infinite-Volume Limit

Extrapolation w.r.t. chain length

[Given: For each fixed L_{x}, we have extrapolated w.r.t. D already.]
Fit energy gap Δ as a function of volume L_{x} :

$$
\begin{aligned}
& a \Delta\left(L_{x}\right)=a \Delta+\frac{A}{\left(L_{x} / a\right)^{B}} \\
& \quad\left(\text { e.g., fuzzy, } g^{2}=0.53\right) \rightarrow
\end{aligned}
$$

- Corrections to fit function are $\mathcal{O}\left(e^{-m L_{x}}\right)$, so take $m L_{x} \gtrsim 5$.
- Reasonable description down to $m L_{x} \sim 2$

Spatial Correlation Lengths

Mass Determination

- Given the ground state $\left|\Psi_{0}\right\rangle$ of the lattice (approximated as a MPS), the spatial correlation function:

$$
C(x, y)=\left\langle\Psi_{0}\right| O(x) O(y)\left|\Psi_{0}\right\rangle \zeta^{x-y},
$$

where $\zeta=-1$ for antiferromagnetic models, and $O=y_{3}, j_{3}$.

- In $1+1$ dimensions, fit to expected form $K_{0} \equiv \operatorname{BesselK}[0, \cdot]$:

$$
C(r) \equiv \sum_{x \in \mathcal{X}(r)} C(x, x+r)=A K_{0}(r / \xi)
$$

for inverse corr length $1 / \xi=a m$, where $r=|x-y|$.

- Avoid edge effects:
- Select only $x \in \mathcal{X}(r)$ such that $[x, x+r]$ is centered around $L / 2$
- Take fit window to $r \in\left[x_{0}, x_{0}+w\right]$ with sufficiently large x_{0}

Mass Fitting Procedure

Illustrating the failure of an exponential correlator fit
Fitted mass m and c.f., effective mass (i.e., log-derivative) $m_{\text {eff }}$

Bottom: Fit window of $\left[x_{0}, x_{0}+10\right]$ for $C(r) \propto K_{0}(r / \xi)$ AA, PFJ, AC, MJC, AS (2022)

