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“Qubitization”

Bosonic fields on a quantum computer

o Lattice: spatial volume R? — (aZp)?¢ (“domain”) o
L . Qubitization
@ Bosonic field's Hilbert space H — Hyeg (“target”)

@ Generically, need H,eq — H as well as
L — 00 & a — 0. Not just inconvenient, but...

Each dim of H,., may be costly!
More on this later...
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O(3) o-model

A Test for Qubitization of Boson Field Theories

e Continuum O(3) o-model action

1
S = 37 /dxdta n(t,z) - #n(t,x),
for coupling ¢ and unit vectors n € S?

@ Legendre transform and discretize space: Lattice model
Hamiltonian

2
H=Y [ %v%) ~ a0 @+ 1)

for gradient V(z) w.r.t. nat z
o Global Hilbert space for lattice volume N, has dim £2(S2,C)®N=
— infinite even for one site!
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Harmonic Expansion of the o-model
Preserving O(3) in a truncated Hilbert space, Take 1

e Decompose H = L?(S?,C) into: Spherical harmonics

fmax
Z Z Wng 7 ) k

=0 m=——¢ e g

Need to lift truncation £y, — 00. , ‘
o Truncate: fpay = 1, {YQ, Y7 1, Y0, v} ¢ 8 ‘Q
@ Our reduced Hamiltonian: ‘

3

H<nd»_ [gQK Z )Yk x+1]

k=

where K = diag(0,1,1,1) and yj <> ny.
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A Fuzzy Sphere o-model

Preserving O(3) in a truncated Hilbert space, Take 2

e Promote coordinates ny, to spin-1/2 operators Jy;:

coordinate ny Ji € SU(2)
annkzl — ZJkaZ]l
k k
SPHERE FUZZY SPHERE

@ New local Hilbert space: complex 2 x 2 matrices
@ Spherical symmetry with only four points: 1 and Paulis o1, 03, 03
@ Distinct truncated Hamiltonian:

3

—nz[%( Z kaH)]

k=

where K = [J, [Jk,-]] and Ji replaces ny
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MPS Ansatz: A Practical Note

Working around the exponential Hilbert Space

Problems for both models:
o dim H; = 4, lattice volume N, — dim H = 4=
@ Monte Carlo sign problem
Solution: Matrix Product State (MPS) for global wave function W:

4
)= > A - AN)"Nay, ..., an)

at,...,any=1

R

@ Well-established variational algo (DMRG) for lowest-lying states!
@ N.B. Open boundary condition...
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Correlation Length(s) in Hamiltonian Lattice Theories

Renormalization of the speed of light

Mass “Gap” VS. Energy Gap
Inverse correlation length; Difference in lowest energies:
C(x,y) = (¥o|O(x)O(y)|¥o) aA = lim [Ey(L) - Eo(L)

Relativistic theory: 1(g%)A(g?) = m(g?), so tune the scale factor »;
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Particle mass in the continuum limit

A First Test
. 2 A 7B/ 2
Inverse spatial corr lengths have expected form: am(g*) = —e 79
g
0.30 T
¢ ( truncation o X
0.25F 5
o fuzzy model y
Continuum limit expected 0208 sy model (PBC) o
as g> = 0: am(g?) = 0 § 015f o .
o10f / ]
mass/ess 00000
0.05F e

0.00 !
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)
9

o Early failure for ¢ truncation...
Each 2 qubits/site!

@ Fuzzy model passes so far...

AA, PFB, AC, MJC, AS (2022)
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Step-scaling Curves
A Comprehensive Test

Assess “step scaling” of model across wide energy range:
E(L,)/E(2L;) vs. 1/L,E(Ly)

(e.g., Monte Carlo

simulations as the 3
. . o
basis for comparison) =1
=
=
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«infrared (IR) ultraviolet (UV)—
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Step-scaling Curves

Comparison of models

B(L)/E(2L)

Fuzzy sphere truncation Spherical harmonics truncation

1.7

1.6¢
1.5¢
14rp

E(L)/E(2L)

0.0 0j2 Oi4 OjG 018 1.0 0.0 012 014 016 0.8 1.0
1/LE(L) 1/LE(L)
o (Blue): Continuum-limit behavior derived from MC simulations
@ Smallest volumes: L;/a ~ 4,
@ Fuzzy sphere calculations approach continuum-limit behavior
much further into UV regime
AA, PFB, AC, MJC, AS (2022)
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Another picture of the fuzzy o-model

Heisenberg comb

Local chage of basis — Heisenberg comb:

—nZgQSa:O x1)+gS(ac ,0) - S(z+1,0)

Recently investigated by Bhattacharya et al (2021)
Stay tuned for more on this realization... up next!
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Resource Estimates for Truncated Models

CNOT costs to simulate one time step

@ Foundation for resource estimates of quantum simulations

@ Automatic procedure — stay tuned for code you can use!

CNOTs
11826
10000
EMM, MJC, HK,
PFB, AA (2022)
5000
3826 EMM & MJC (2023)
1000
50 10 60
Fuzzy fmax=1 fmax=2 fmax=3

Neighbor Neighbor Neighbor Neighbor
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Lessons Learned

A Summary

@ Fuzzy 2-sphere leads to continuum O(3) o-model description

«
e

@ /max mass > 0, less descriptive of UV

e Cautionary tale about the importance of small qubitization
schemes!
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- THANK YOU -

|
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Another difference between models

Fuzzy vs ¢ truncation: ferromagnetic vs antiferromagnetic

Beside algebraic closure, another distinction for the ¢ truncation:

e O e O e O e O e O e O

e Mapping between (anti)ferromagnetic models: global operator

Ny /2
0= ® (U2n-1 @ Lay),
n=1
where locally U KU = K, yet Uy, UT = —y

@ U does exist for harmonic expansion
e.g., lmax = 1: U = diag(1,—1,—-1,-1)

o (Anti)ferromagnetic phases of £ truncation have an equivalence
— if one phase fails to describe theory, so does the other
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Basis of Comparison

Monte Carlo methods

e Lattice O(3) o-model action

S——BZ n(t+1,2) +n(t,z) n(t,z+1)]

@ Boundaries: perlodlc time, “open” space <= open for MPS
e Monte Carlo simulations w/ no sign problem

@ Measure time-slice correlators C'(t) =

Fit exp[—tA(N,)] for energy gaps.
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Measurements via MPS

Extrapolation w.r.t. bond dimension

MPS ansatz becomes exact for a bond dimension cutoff
D — Dy = plt/2,

for an open chain of L sites each with local Hilbert space dimension p.

0.00730 T T T T
Fit approximate quantity A as a /
function of bond dimension D < Dy 0.00725 ¢ /

< 0.00720f
A 7 //

AD)=A+ — .
( ) * DB uoons}_//

(e.g., fuzzy, g2 = 0.53, L/a = 800) — 0.00710

0.0000 0.0005 0.0010 0.0015 0.0020  0.0025
1/D

A(Dpax) — A

= Uncertainty: ea = 5
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Euclidean Action o-model
Monte Carlo methods

e Lattice O(3) o-model action

S-—BZ n(t+1,2) +n(t,z) n(t,z+1)]

for >0 and n € S2 on a N; x N, lattice,
periodic in time yet “open” in space.
@ Monte Carlo simulations via Wolff cluster algorithm
@ Measure time-slice correlators

C(t) = 3 2 ((t,z) - n(0,y)),
x T,y
fit to exp[—tA(Ly)] for energy gaps.
@ Suppress finite-temperature T' = 1/L; effects Olexp(—m/T)]
with large m(5)/T 2 8
@ Suppress spatial boundary effects with E(L,)/T 2, 8 for free

scalar energy gap 6F = w3 — wy ~ 872 /mL?2 o



Energy Gaps in the Infinite-Volume Limit

Extrapolation w.r.t. chain length

[Given: For each fixed L,, we have extrapolated w.r.t. D already.]

0.035F

Fit energy gap A as a function of

0.030F o
volume L,: ’
0.025F
S o.020f
A ]l ;
B a4 < 0150
aA(Ly) = aA + (LI/G)B 0.010F :
. T900-0-0-0-0—0—0—-9-00-0—0—0—8]
0.005F ]
, i ]
e.g., fuzzy, g = 0.53) — o ‘ ‘ ‘ |
(eg Y. g ) o w0 w0 w0 s
L/a

o Corrections to fit function are O(e~™k<), so take mL, > 5.

@ Reasonable description down to mL, ~ 2
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Spatial Correlation Lengths

Mass Determination

@ Given the ground state |¥() of the lattice (approximated as a
MPS), the spatial correlation function:

C(z,y) = (Yol O(x)O(y)[Wo) ¢*,

where ( = —1 for antiferromagnetic models, and O = y3, j3.

@ In 141 dimensions, fit to expected form K, = BesselK|0, ]:

)= Z C(z,x+1)=AKo(r/¢)

for inverse corr length 1/£ = am, where r = |z — y|.
@ Avoid edge effects:

o Select only x € X(r) such that [z, + r] is centered around L/2
o Take fit window to r € [zg, zo + w] with sufficiently large x
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Mass Fitting Procedure

Illustrating the failure of an exponential correlator fit

Fitted mass m and c.f., effective mass (i.e., log-derivative) meg
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Bottom: Fit window of [xq, 2 + 10] for C(r) o< Ko(r/§)
AA, PFJ, AC, MJC, AS (2022)
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