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“Qubitization”
Bosonic fields on a quantum computer

Lattice: spatial volume Rd → (aZL)d (“domain”)

Bosonic field’s Hilbert space H → Hreg (“target”)

Generically, need Hreg → H as well as
L→∞ & a→ 0. Not just inconvenient, but...

}
Qubitization

Each dim of Hreg may be costly!
More on this later...
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O(3) σ-model
A Test for Qubitization of Boson Field Theories

Continuum O(3) σ-model action

S =
1

2g2

∫
dx dt ∂µn(t, x) · ∂µn(t, x),

for coupling g2 and unit vectors n ∈ S2

Legendre transform and discretize space: Lattice model
Hamiltonian

H =
∑
x

[
− g2

2
∇2(x)− 1

g2a2
n(x) · n(x+ 1)

]
for gradient ∇(x) w.r.t. n at x

Global Hilbert space for lattice volume Nx has dim L2(S2,C)⊗Nx

— infinite even for one site!
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Harmonic Expansion of the σ-model
Preserving O(3) in a truncated Hilbert space, Take 1

Decompose H ≡ L2(S2,C) into:

Ψ[n(θ, φ)] =

`max∑
`=0

∑̀
m=−`

ψ`mY
m
` (θ, φ)

Need to lift truncation `max →∞.

Truncate: `max = 1, {Y 0
0 , Y

−1
1 , Y 0

1 , Y
+1

1 }
Our reduced Hamiltonian:

H ← η
∑
x

[
g2K(x)± 1

g2

3∑
k=1

yk(x)yk(x+1)

]
where K = diag(0, 1, 1, 1) and yk ↔ nk.

Spherical harmonics
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A Fuzzy Sphere σ-model
Preserving O(3) in a truncated Hilbert space, Take 2

Promote coordinates nk to spin-1/2 operators Jk:

coordinate nk Jk ∈ SU(2)∑
k

nknk = 1 ←→
∑
k

JkJk = 1

SPHERE FUZZY SPHERE

New local Hilbert space: complex 2× 2 matrices

Spherical symmetry with only four points: 1 and Paulis σ1, σ2, σ3

Distinct truncated Hamiltonian:

H = η
∑
x

[
g2K(x)± 3

4g2

3∑
k=1

Jk(x)Jk(x+ 1)

]
where K = [Jk, [Jk, ·]] and Jk replaces nk
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MPS Ansatz: A Practical Note
Working around the exponential Hilbert Space

Problems for both models:

dimH1 = 4, lattice volume Nx −→ dimH = 4Nx

Monte Carlo sign problem

Solution: Matrix Product State (MPS) for global wave function Ψ:

|Ψ〉 =

4∑
a1,...,aN=1

A(1)a1 · · ·A(N)aN |a1, . . . , aN 〉

=

Well-established variational algo (DMRG) for lowest-lying states!

N.B. Open boundary condition...
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Correlation Length(s) in Hamiltonian Lattice Theories
Renormalization of the speed of light

Mass “Gap”

Inverse correlation length;

C(x, y) = 〈Ψ0|O(x)O(y)|Ψ0〉

vs. Energy Gap

Difference in lowest energies:

a∆ ≡ lim
L→∞

[Ê1(L)− Ê0(L)]

Relativistic theory: η(g2)∆(g2) = m(g2), so tune the scale factor η;

η(g2) =
am(g2)

a∆(g2)
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Particle mass in the continuum limit
A First Test

Inverse spatial corr lengths have expected form: am(g2) =
A

g2
e−B/g

2

Continuum limit expected
as g2 → 0: am(g2)→ 0

massless
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Early failure for ` truncation...

Fuzzy model passes so far...

}
Each 2 qubits/site!

AA, PFB, AC, MJC, AS (2022)
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Step-scaling Curves
A Comprehensive Test

Assess “step scaling” of model across wide energy range:
E(Lx)/E(2Lx) vs. 1/LxE(Lx)

(e.g., Monte Carlo
simulations as the
basis for comparison)
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←infrared (IR) ultraviolet (UV)→
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Step-scaling Curves
Comparison of models

Fuzzy sphere truncation
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Spherical harmonics truncation
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(Blue): Continuum-limit behavior derived from MC simulations
Smallest volumes: Lx/a ∼ 4,
Fuzzy sphere calculations approach continuum-limit behavior
much further into UV regime

AA, PFB, AC, MJC, AS (2022)
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Another picture of the fuzzy σ-model
Heisenberg comb

Local chage of basis → Heisenberg comb:

H = η
∑
x

g2~S(x, 0) · ~S(x, 1) +
1

g2
~S(x, 0) · ~S(x+ 1, 0)

Recently investigated by Bhattacharya et al (2021)
Stay tuned for more on this realization... up next!
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Resource Estimates for Truncated Models
CNOT costs to simulate one time step

Foundation for resource estimates of quantum simulations

Automatic procedure — stay tuned for code you can use!

EMM, MJC, HK,
PFB, AA (2022)

EMM & MJC (2023)
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Lessons Learned
A Summary

Fuzzy 2-sphere leads to continuum O(3) σ-model description

`max mass > 0, less descriptive of UV

Cautionary tale about the importance of small qubitization
schemes!
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- THANK YOU -
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Another difference between models
Fuzzy vs ` truncation: ferromagnetic vs antiferromagnetic

Beside algebraic closure, another distinction for the ` truncation:

Mapping between (anti)ferromagnetic models: global operator

O =

Nx/2⊗
n=1

(U2n−1 ⊗ 12n),

where locally U K U † = K, yet U yk U
† = −yk

U does exist for harmonic expansion
e.g., `max = 1: U = diag(1,−1,−1,−1)

(Anti)ferromagnetic phases of ` truncation have an equivalence
=⇒ if one phase fails to describe theory, so does the other
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Basis of Comparison
Monte Carlo methods

Lattice O(3) σ-model action

S = −β
∑
t,x

[
n(t, x) · n(t+ 1, x) + n(t, x) · n(t, x+ 1)

]
Boundaries: periodic time, “open” space ⇐⇒ open for MPS
Monte Carlo simulations w/ no sign problem

Measure time-slice correlators C(t) =
1

N2
x

∑
x,y

〈n(t, x) · n(0, y)〉

Fit exp[−t∆(Nx)] for energy gaps.
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Measurements via MPS
Extrapolation w.r.t. bond dimension

MPS ansatz becomes exact for a bond dimension cutoff

D → D0 ≡ pbL/2c,

for an open chain of L sites each with local Hilbert space dimension p.

Fit approximate quantity ∆ as a
function of bond dimension D � D0

∆(D) = ∆ +
A

DB

(e.g., fuzzy, g2 = 0.53, L/a = 800) →
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

0.00710

0.00715

0.00720

0.00725

0.00730

=⇒ Uncertainty: ε∆ =
∆(Dmax)−∆

2
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Euclidean Action σ-model
Monte Carlo methods

Lattice O(3) σ-model action

S = −β
∑
t,x

[
n(t, x) · n(t+ 1, x) + n(t, x) · n(t, x+ 1)

]
for β > 0 and n ∈ S2 on a Nt ×Nx lattice,
periodic in time yet “open” in space.
Monte Carlo simulations via Wolff cluster algorithm
Measure time-slice correlators

C(t) =
1

N2
x

∑
x,y

〈n(t, x) · n(0, y)〉 ,

fit to exp[−t∆(Lx)] for energy gaps.
Suppress finite-temperature T = 1/Lt effects O[exp(−m/T )]
with large m(β)/T & 8
Suppress spatial boundary effects with δE(Lx)/T & 8 for free
scalar energy gap δE ≡ ω3 − ω1 ≈ 8π2/mL2

x
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Energy Gaps in the Infinite-Volume Limit
Extrapolation w.r.t. chain length

[Given: For each fixed Lx, we have extrapolated w.r.t. D already.]

Fit energy gap ∆ as a function of
volume Lx:

a∆(Lx) = a∆ +
A

(Lx/a)B

(e.g., fuzzy, g2 = 0.53) →
0 200 400 600 800
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0.035

Corrections to fit function are O(e−mLx), so take mLx & 5.

Reasonable description down to mLx ∼ 2
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Spatial Correlation Lengths
Mass Determination

Given the ground state |Ψ0〉 of the lattice (approximated as a
MPS), the spatial correlation function:

C(x, y) = 〈Ψ0|O(x)O(y)|Ψ0〉 ζx−y,

where ζ = −1 for antiferromagnetic models, and O = y3, j3.

In 1+1 dimensions, fit to expected form K0 ≡ BesselK[0, ·]:

C(r) ≡
∑

x∈X (r)

C(x, x+ r) = AK0(r/ξ)

for inverse corr length 1/ξ = am, where r = |x− y|.
Avoid edge effects:

Select only x ∈ X (r) such that [x, x+ r] is centered around L/2
Take fit window to r ∈ [x0, x0 + w] with sufficiently large x0
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Mass Fitting Procedure
Illustrating the failure of an exponential correlator fit

Fitted mass m and c.f., effective mass (i.e., log-derivative) meff

e.g.,

g2 = 0.75,

Lx/a = 60,

D = 800 0.22

0.24

0.26

0.28

0.30

0.32

0 10 20 30 40 50 60
0.237
0.239

Bottom: Fit window of [x0, x0 + 10] for C(r) ∝ K0(r/ξ)

AA, PFJ, AC, MJC, AS (2022)
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