Exploring the large-N_c limit of one-flavour $SU(N_c)$

Michele Della Morte, Benjamin Jäger, Steffen Ulrik Jensen, Sofie Martins, Justus Tobias Tsang and Felix P. G. Ziegler

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement № 813942.
Overview

1. Motivation
2. Study Setup
3. Computational Challenges
4. Some results
Motivation
BSM Physics on the Lattice

• Approaches to problem of UV divergences in radiative corrections to the mass of the Higgs → for example strongly-coupled extensions/Composite-Higgs or supersymmetry

• Basic principles forbid us to study supersymmetry directly

\[
\{ Q, Q^\dagger \} = p^\mu \\
\{ Q, Q \} = \{ Q^\dagger, Q^\dagger \} = 0 \\
[p^\mu, Q] = [p^\mu, Q^\dagger] = 0
\]

see for example [Martin 1998] for review.

SUSY on the Lattice

• Make use of duality between Large-\(N_c\) and super-Yang-Mills ['t Hooft 1974]

• More approaches to SUSY on the lattice [Schaich 2023]
Theoretical Background

• Quarks in the fundamental representation do not approximate SUSY → Does not reproduce the spectrum so well because of suppression of loop corrections

• Instead use a single quark in the two-index antisymmetric representation, right degrees of freedom [Corrigan and Ramond 1979]

• This is predicted to reproduce the low-lying mesonic supersymmetric spectrum well [Armoni, Shifman, and Veneziano 2003a,b] and further developed in [Feo, Merlatti, and Sannino 2004; Sannino and Shifman 2004; Sannino 2005]

• Previous studies: [Armoni, Shifman, and Veneziano 2004; Armoni et al. 2008; Athenodorou et al. 2021; Creutz 2007; DeGrand et al. 2006; Farchioni et al. 2007; Francis et al. 2018; Hambye and Tytgat 2010; Leutwyler and Smilga 1992; Lucini et al. 2010; Shuryak and Verbaarschot 1993]

• Our previous work: [Della Morte et al. 2023; Jaeger et al. 2023; Ziegler et al. 2022]
Study Setup
\(N_c = 3 \) summarized, [Della Morte et al. 2023]

Goal: Test [Sannino and Shifman 2004]

\[
\frac{m_P}{m_S} = 1 - \frac{22}{9N_c} - \frac{4}{9} \beta + \mathcal{O}\left(\frac{1}{N_c^2}\right) \lesssim 0.185
\]

we found for \(N_c = 3 \)

\[
\frac{m_P}{m_S} = 0.356(54)
\]

How will this look for \(N_c > 3 \)?

How strong are cut-off effects for \(N_c = 3 \)?
$N_c = 3$ summarized, [Della Morte et al. 2023]

- Symanzik-improved gauge action
- $\mathcal{N} = 1, 2$AS, clover-improved with $c_{SW} = 1$

Chiral extrapolation

Vary lattice extents and masses
Find limit by taking pseudoscalar meson mass to zero (connected) \rightarrow We call this fake pion, [Francis et al. 2018]
$N_c > 3$ setup

- Pure gauge and dynamic for $N_c = 4, 5, 6$
- Critical to performance:
 - Wilson fermions with or without clover-improvement
 - CPUs \rightarrow GPUs?
- Computation expense scales poorly
- More MD evolution steps, depends on integrator
- Clover or no-clover: understand cutoff effects
There is a lot of Software available with different features, this is what we ran:

<table>
<thead>
<tr>
<th>$c_{sw} = 0$</th>
<th>$c_{sw} = 1$</th>
<th>Pure gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_c = 3$</td>
<td>HiRep</td>
<td>OpenQCD</td>
</tr>
<tr>
<td>$N_c = 4$</td>
<td>HiRep</td>
<td>HiRep, Grid</td>
</tr>
<tr>
<td>$N_c > 4$</td>
<td>HiRep</td>
<td>HiRep</td>
</tr>
</tbody>
</table>

Grid supports GPUs for Wilson Fermions with larger-N_c, but only for the fundamental representation. https://github.com/paboyle/Grid/

GPU support for HiRep will come soon!
https://github.com/claudiopica/HiRep branch HiRep-CUDA
Parameter Choices – Clover Improved

- Scale β such that $\beta \propto N_c^2$, [‘t Hooft 1974]

<table>
<thead>
<tr>
<th>N_c</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>8.0</td>
</tr>
<tr>
<td>5</td>
<td>12.5</td>
</tr>
<tr>
<td>6</td>
<td>18.0</td>
</tr>
</tbody>
</table>
Without clover-improvement we might need to adjust our baseline β, compared at $N_c = 3$.
Computational Challenges
Configuration Generation

- Thermalization is usually quick
- Thermalizing large lattices on smaller ones works well

\[a m_{\pi} \approx 0.6, \text{ clover-improved, } N_c = 4, \kappa = 0.1450 \]
\textbf{Topological Charge}

\[a m_\pi \approx 0.6, \text{ clover-improved}, N_c = 4, \kappa = 0.1450 \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{topological_charge.png}
\end{figure}

\textbf{Lattice 2023}
Exploring the large-N_c limit of one-flavour $SU(N_c)$

\hfill 15/27
Some insights from pure gauge runs

Lattice 2023
Exploring the large-N_c limit of one-flavour $SU(N_c)$
Finite-Volume Effects, [Della Morte et al. 2023]

Lattice 2023
Exploring the large-N_c limit of one-flavour $SU(N_c)$

![Graph showing finite-volume effects with different lattice sizes ($L/a = 12, 16, 20, 24, 32$) for various m_{π} values.](image)
Results
Fake-Pion

- Larger-N_c needs larger κ for the same mass
- need to simulate high κ for chiral extrapolation

Disconnected Contributions

- dominate spectrum
- $N_c = 3$: LapH
- $N_c > 3$: Time dilution in HiRep → no signal yet

![Graph showing a_{π} vs κ with different N_c values: 3, 4, 5, 6.](image)
Summary

We have examined

- one-flavour QCD for approximating SUSY
- Challenges in configuration generation for $N_c > 3$
- Parameter tuning for $N_c = 3$ cutoff effects

This study is expensive because

- Cost $\propto N_c^2$ per site
- $\beta \propto N_c^2$ rescaling \rightarrow topological freezing
- κ increase for chiral extrapolation \rightarrow more topological freezing
- Need at least $L/a = 24$

Outlook

- Evaluate spectrum for $N_c > 3$
- Quantify cutoff-effects for $N_c = 3$ by comparison $c_{sw} = 0$ and $c_{sw} = 1$

References IV

Thank you for your attention!