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Inverse problem: generalities

◦ Computing the spectral density ρ(E) associated to a lattice
correlator C(t)

◦ Ill-posed in presence of a finite set of noisy data.

◦ Regularisations are available: Backus-Gilbert & Bayesian
methods have different philosophies but share similarities

ρ(E) = lim
σ→0

∑
t

gt (σ; E) C(t)
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Wish list

◦ To obtain a function that is smooth even at finite volume:

ρσ(ω) =

∫
dE Sσ(E, ω) ρ(E)

◦ For some applications, a fixed smearing kernel across lattice spacings,
volumes, . . . to control systematics of fits & extrapolations

◦ Understand dependence of the result on algorithmic inputs,
parameters, priors . . .

• Remark: linear combination of C(t) is always smeared

ρσ(E) =
∑

t

gt (σ; E) C(t)

=
∑

t

gt (σ; E)

∫
dE e−tE

ρ(E)
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Bayesian Inference with Gaussian Processes

◦ Aim for a probability distribution over a functional space of possible
spectral densities

◦ Consider the stochastic field R(E) Gaussian-distributed around the
prior value ρprior(E) with covariance Kprior(E, E′).

GP
(
ρ

prior(E),Kprior(E, E′)
)

◦ Similarly, assume that observational noise is Gaussian: η(t)

G (η, Covd ) = exp

(
−

1

2
~η

T Cov−1
d ~η

)

◦ The stochastic variable associated to the correlator, C, is related to R
and η via

C(t) =

∫
dE e−tER(E) + η(t)

Valentine, Sambridge 19
Horak, Pawlowski, Rodríguez-Quintero, Turnwald, Urban 21

Del Debbio, Giani, Wilson 21
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Bayesian Inference with Gaussian Processes
◦ The joint, posterior distribution for ρpost at some energy has centre

and variance (set ρprior = 0)

ρ
post(ω) =

tmax∑
t=1

gGP
t (ω) C(t)

Kpost(ω, ω) =

Kprior(ω, ω) −
tmax∑
t=1

gGP
t (ω) Ft (ω)


◦ The coefficients are

gGP
t (ω) =

tmax∑
r=1

( 1

Σ + Covd

)
tr

Fr (ω)

◦ Ingredients:

Σtr =

∫
dE1

∫
dE2 e−tE1 Kprior(E1, E2) e−rE2 ill cond

Ft (ω) =

∫
dE Kprior(ω, E) e−tE

Alessandro Lupo (University of Edinburgh) Bayesian interpretation of BG methods 4 / 10



Bayesian Inference with Gaussian Processes

◦ Let the model prior for the spectral density have covariance

Kσ(E, E′) =
e−(E−E′ )2/2σ2

λ
, ρ

prior = 0

◦ The model covariance acts as a smearing kernel,

SGP
σ (E, ω) =

tmax∑
t=1

gGP
t (σ;ω)e−tE

◦ If we are interested in removing the smearing, there should be a limit in
which S approaches a δ-function

ρσ(ω) =

∫
dE SGP

σ (E, ω) ρ(E)
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Prior dependence

◦ Allow the model prior to vary

Kprior
σ (E, E′) =

e−(E−E′)2/2σ2

λ
eαE

,

◦ By changing α and λ we can explore the dependence
on the posterior from the prior

◦ There is a region in which the dependence on the prior is
absorbed in the statistical error

◦ Choice of the parameters: minimise Negative Log
Likelihood

− log P(data|parameters)
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Backus Gilbert

◦ (Hansen Lupo Tantalo 19) Target a spectral density smeared with a
chosen kernel

◦ Recipe for gt : make them such that

∞∑
t=1

gt (ω) e−tE = Sσ(E − ω) =⇒
∞∑
t=1

gt (ω) c(t) = ρσ(ω)

◦ How? By minimising

(1 − λ)

∫ ∞

0
dE eαE

∣∣∣∣∣∣
tmax∑
t=1

gt e
−tE − Sσ(ω, E)

∣∣∣∣∣∣
2

︸ ︷︷ ︸
Provides solution

+λ ~g · Covd · ~g︸ ︷︷ ︸
Regularises

◦ λ ∈ (0, 1) and α < 2 are algorithmical input parameters.
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Backus Gilbert

◦ Our prescription leads to

gBG(σ;ω) =

(
1

Σ0 + λ′ Covd

)
tr

Fr (σ;ω) , λ
′ = λ/(1−λ)

◦ The ingredients are

Σ0
tr =

∫
dE e−tE e−rE eαE

, ill-cond

Ft (σ;ω) =

∫
dE e−tE eαESσ(E, ω)

◦ When σ → 0, gGP → gBG but for σ 6= 0 they differ
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Backus-Gilbert as a Gaussian Process

◦ Compute the posterior probability distribution for a spectral density

smeared with a fixed kernel Gσ(E, E′) = exp−(E−E′ )2/2σ2

◦ Let the model prior for the spectral density have diagonal covariance

K(E, E′) =
δ(E − E′)

λ
eαE

,

◦ By computing the posterior probability, one gets coefficients gGPsmr

gGPsmr(σ;ω) = gBG(σ;ω) even at finite σ

◦ The only difference is in the error (bootstrap for Backus-Gilbert
methods)

ΓGPsmr(σ;ω)2 =
1

2

∫
dE

(∑
t

gBG
t (σ, ω)e−tE − Gσ(E, ω)

)
Gσ(E, ω)

Alessandro Lupo (University of Edinburgh) Bayesian interpretation of BG methods 9 / 10



Conclusions

◦ Same regularisation of the problem via Covd

◦ Algorithmic parameters of BG can be understood as Bayesian priors,
and vice versa

◦ There is a region in which the result does not depend on the inputs /
priors within statistical error. In the same region, the NLL finds its
minimum.

◦ The statistical error of BG is of the same order of magnitude of the
Bayesian error ΓGPsmr
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