Nucleon Axial Form Factor from Domain Wall on HISQ

Aaron S. Meyer

Lawrence Livermore National Laboratory

August 1, 2023

40th International Symposium on Lattice Field Theory

This work is supported by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344 with the U.S. Department of Energy.

LLNL-PRES-852529

Outline

- Neutrino Oscillation
- Quasielastic Scattering
- ▶ LQCD Fit Setup
- ▶ Fit Stability
- Axial Form Factor
- Future Prospects

Special thanks: Daniel Xing, Jinchen He

Note: all references in online slides are hyperlinked

Neutrino Oscillation

Neutrino Physics Goals

Flagship long baseline experiments to measure neutrino oscillation

DUNE: USA, HyperK: Japan

Seek to answer fundamental questions about neutrinos:

- mass ordering $(\Delta m_{32}^2 > 0?)$
- octant $(\sin^2 \theta_{23} = 0.5?)$
- CP violation ($\delta_{CP} = ?$)

PMNS unitarity?

- 3ν flavors?
- precision constraints

Measurements of solar, supernova ν

Data collection starts $2028-2029 \implies$ need support from theory!

Neutrino Oscillation and Quasielastic

Compute *nucleon* amplitudes, ingredients for *nuclear* models

Quasielastic is lowest E_{ν} , simplest \implies most important

Question:

How well do we know nucleon quasielastic cross section from elementary target sources?

 Hydrogen/Deuterium scattering Lattice QCD

Quasielastic Form Factors

Quasielastic (QE) scattering assumes quasi-free nucleon inside nucleus

$$\begin{array}{c} \nu_{\mu} & \mu^{-} \\ & & \mathcal{M}_{\text{nucleon}} = \langle \ell | \mathcal{J}^{\mu} | \nu_{\ell} \rangle \langle N' | \mathcal{J}_{\mu} | N \rangle \\ & & \langle N'(p') | (V - A)_{\mu}(q) | N(p) \rangle \\ & = \bar{u}(p') \Big[\gamma_{\mu} F_{1}(q^{2}) & + \frac{i}{2M_{N}} \sigma_{\mu\nu} q^{\nu} F_{2}(q^{2}) \\ & & + \gamma_{\mu} \gamma_{5} F_{A}(q^{2}) & + \frac{1}{2M_{N}} q_{\mu} \gamma_{5} F_{P}(q^{2}) \end{array} \Big] u(p)$$

- ▶ F_1, F_2 : constrained by eN scattering
- ▶ F_P : subleading in cross section, $\propto F_A$ from pion pole dominance constraint

Axial form factor F_A is leading contribution to nucleon cross section uncertainty Induced pseudoscalar form factor F_P can be determined independently

Deuterium Constraints on F_A

- Outdated bubble chamber experiments:
 - Total $O(10^3) \nu_{\mu} QE$ events
 - Digitized event distributions only
 - Unknown corrections to data
 - Deficient deuterium correction
- Dipole overconstrained by data underestimated uncertainty ×O(10)
- Prediction discrepancies could be from nucleon and/or nuclear origins

Coming soon:

MINER $\nu A \ \bar{\nu}_{\mu} p \rightarrow \mu^{+} n$ dataset & updated form factor fits See [Nature 614 (2023)]

Matrix Elements from LQCD

Fit Setup

$$\mathcal{R}_{\mathcal{A}_{z}}(t,\tau,\mathbf{q}) = \frac{C_{\mathcal{A}_{z}}^{3\mathrm{pt}}(t,\tau,\mathbf{q})}{\sqrt{C^{2\mathrm{pt}}(t-\tau,\mathbf{0})C^{2\mathrm{pt}}(\tau,\mathbf{q})}} \sqrt{\frac{C^{2\mathrm{pt}}(\tau,\mathbf{0})}{C^{2\mathrm{pt}}(t,\mathbf{0})}} \frac{C^{2\mathrm{pt}}(t-\tau,\mathbf{q})}{C^{2\mathrm{pt}}(t,\mathbf{q})}$$

$$\xrightarrow[t-\tau,\tau\to\infty]{} \frac{1}{\sqrt{2E_{\mathbf{q}}(E_{\mathbf{q}}+M)}} \left[-\frac{q_z^2}{2M} \mathring{F}_P(Q^2) + (E_{\mathbf{q}}+M) \mathring{F}_A(Q^2) \right]$$

 $Q^2=|\mathbf{q}|^2-(E_{\mathbf{q}}-M)^2$

$$\mathcal{A}_z$$
 with $q_z = 0 \implies \mathcal{R}_{\mathcal{A}_z}(t, \tau, \mathbf{q}) \rightarrow \sqrt{\frac{E_{\mathbf{q}} + M}{2E_{\mathbf{q}}}} \mathring{g}_A(Q^2)$

- \implies No induced pseudoscalar
- \implies Simplified analysis of $\mathring{F}_A(Q^2) = \mathring{g}_A(Q^2)$
- \implies 3-state Bayesian fits to excited states
- \implies a12m130 ensemble only: $a \approx 0.12$ fm, $M_{\pi} \approx 130$ MeV, $M_{\pi}L \approx 3.8$

Aaron S. Meyer

Correlation Function Ratio

sink side (p = 0)

- ▶ Horizontal: source-insertion time, centered about midpoint
- ▶ Vertical: correlator ratio \sim axial matrix element
- Color: source-sink separation time; $t_{sep}/a \in \{3, ..., 12\}$
- ▶ Colored bands: fit range ▶ Gray band: \mathring{g}_A posterior value

$\mathring{g}_A(Q^2)$ Correlators

Stability – Maximum Momentum

Correlated difference with nominal fit

Systematic drift of \mathring{g}_A as more data added to fit

 $(qL/2\pi)^2 = 50$ fit: 516 parameters, 1732 timeslices, 1000 samples

> 1200 eigenvalues modified by SVD cut

 \implies poorly conditioned covariance matrix?

Stability – Maximum Momentum

Remove subset of momenta \implies fewer data

Symptoms improve... reduce degrees of freedom further?

Stability – Maximum Momentum

Fit pairs of momenta (q = 0 and one $q \neq 0$) Final step: drop excited state parameters, perform weighted average over q = 0 parameters, $q \neq 0$ allowed to float due to correlations but not refit

Pair fit: 60 parameters, 212 timeslices Averaging fit, $(qL/2\pi)^2 = 50$: 88 parameters

Axial Form Factor Fit

Trend of high- Q^2 enhancement seen in other LQCD results 2–4% LQCD uncertainty vs 10% uncertainty on D₂ result

TODO list:

 $qL/2\pi = (1,0,0)$ matrix element larger than expectation Deep dive into excited states systematics, prior dependence More momenta, $q_z \neq 0$, full set of ensembles

Free Nucleon Cross Section

- ▶ LQCD prefers 30–40% enhancement of ν_{μ} CCQE cross section
- recent Monte Carlo tunes require 20% enhancement of QE [Phys.Rev.D 105 (2022)] [2206.11050 [hep-ph]]
- ▶ QE enhancements produce 10-20% event rate enhancement, E_{ν} -dependent
- ► cross section changes at ND ≠ effective cross section changes at FD: insufficient CCQE model freedom → bias in FD prediction

Concluding Remarks

Outlook

- Nucleon form factor uncertainty significantly underestimated in neutrino cross sections
- LQCD is a proxy for missing experimental data, potential for big impact in neutrino oscillation
- Fits to LQCD data limited by number of samples
 meed to work around poorly conditioned covariance
- Excited state contamination is a significant systematics in LQCD

Thank you for your attention!

Backup

Form Factor Parameterizations

Most common in experimental literature: dipole ansatz —

$$F_A(Q^2) = g_A \left(1 + \frac{Q^2}{m_A^2}\right)^{-2}$$

- Overconstrained by both experimental and LQCD data (revisit later)
- ▶ Inconsistent with QCD, requirements from unitarity bounds
- ▶ Motivated by $Q^2 \to \infty$ limit, data restricted to low Q^2

Model independent alternative: z expansion [Phys.Rev.D 84 (2011)] —

$$F_A(z) = \sum_{k=0}^{\infty} a_k z^k \qquad z(Q^2; t_0, t_{\text{cut}}) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}} - t_0}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}} - t_0}} \qquad t_{\text{cut}} \le (3M_\pi)^2$$

- Rapidly converging expansion
- Controlled procedure for introducing new parameters

Axial Radius (r_A^2)

Radius related to slope: $r_A^2 = -\frac{6}{g_A} \frac{dF_A}{dQ^2} \Big|_{Q^2=0}$

Good agreement with r_A^2 from experiment, poor agreement with large Q^2 Fixing radius to agree at large Q^2 would bring radius down to $r_A^2 \sim 0.25 \text{ fm}^2$

 \implies Incompatible with dipole ansatz

Electro Pion Production

Modern experiments do not report $F_A(Q^2) \implies$ averages out of date Possible argument for comparing to r_A^2 from low Q^2 ; high Q^2 untrustworthy Effort needed to update prediction from photo/electro pion production