Fluctuations of conserved charges in strong magnetic fields in (2+1)-flavor QCD

Jin-Biao Gu
Central China Normal University

In collaboration with H.-T. Ding, S.-T. Li and J.-H. Liu

arXiv: 2208.07285 and work in progress
Outline

▶ Introduction and motivation
 ‣ QCD in strong magnetic field

▶ Lattice Setup

▶ Lattice results
 ‣ 2nd fluctuations of conserved charges
 ‣ Proxy for fluctuations in heavy-ion experiment

▶ Summary
Strong magnetic fields in heavy-ion collisions

\[eB_{\tau=0} \sim 3M_{\pi}^2 \text{ in RHIC} \]

\[eB_{\tau=0} \sim 40M_{\pi}^2 \text{ in LHC} \]

The magnetic field is the key ingredient for chiral magnetic effect

Isospin symmetry breaking at $eB \neq 0$ manifested in chiral condensates

\[\Sigma_l = \frac{2m_l}{(\pi^2 \rho^2)} [\bar{\psi}_l(B) - \bar{\psi}_l(0)] + 1 \]

\[T = 0 \]

A clear effect but Not accessible in HIC experiments!

Fluctuations of net baryon number, electric charge and strangeness

Taylor expansion of the QCD pressure:

\[
\frac{p}{T^4} = \frac{1}{VT^3} \ln \mathcal{F} (T, V, \hat{\mu}_u, \hat{\mu}_d, \hat{\mu}_s) = \sum_{i,j,k=0}^{\infty} \chi_{ijk}^{BQS} \left(\frac{\mu_B}{T} \right)^i \left(\frac{\mu_Q}{T} \right)^j \left(\frac{\mu_S}{T} \right)^k
\]

Taylor expansion coefficients at \(\mu = 0 \) are computable in LQCD

\[
\hat{\chi}_{ijk}^{uds} = \left. \frac{\partial^{i+j+k} p/T^4}{\partial (\mu_u/T)^i \partial (\mu_d/T)^j \partial (\mu_s/T)^k} \right|_{\mu_{u,d,s}=0}
\]

\[
\hat{\chi}_{ijk}^{BQS} = \left. \frac{\partial^{i+j+k} p/T^4}{\partial (\mu_B/T)^i \partial (\mu_Q/T)^j \partial (\mu_S/T)^k} \right|_{\mu_{B,Q,S}=0}
\]

\[
\mu_u = \frac{1}{3} \mu_B + \frac{2}{3} \mu_Q
\]

\[
\mu_d = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q
\]

\[
\mu_s = \frac{1}{3} \mu_B - \frac{1}{3} \mu_Q - \mu_S
\]

At \(eB \neq 0 \) a lot more need to be explored

HRG: G. Kadam et al., JPG 47 (2020) 125106, Ferreira et al., PRD 98(2018)034003, Fukushima and Hidaka, PRL117 (2016)102301, Bhattacharyya et al., EPL115(2016)62003

PNJL: W.-J. Fu, Phys. Rev. D 88 (2013) 014009

See recent reviews:

Highly improved staggered fermions and a tree-level improved Symanzik gauge action

- $N_f = 2 + 1$
- Lattice sizes: $32^3 \times 8, 48^3 \times 12$
- $m_s^{\text{phy}}/m_l = 27, m_\pi \approx 135$ MeV
- T window: $(144 \text{ MeV}, 165 \text{ MeV})$, i.e. $(0.9 T_{pc}, 1.1 T_{pc})$
- eB window: $0 \leq eB \lesssim 9m_\pi^2$
 \[eB = \frac{6\pi N_b}{N_x N_y} a^{-2}, \quad N_b = 0, 1, 2, 3, 4, 6 \]
- Statistics ($eB \neq 0$): $N_t=8$: $3000 \sim 14000$ ($#N_{rv}: 204$)
 $N_t=12$: $2200 \sim 5900$ ($#N_{rv}: 102 \sim 705$)
Ratio for 2nd order diagonal fluctuations

\[N_{f=2+1} \text{ QCD}, M_{\pi}(eB = 0) \approx 135 \text{ MeV}, T_{pc}(eB = 0) \approx 156 \text{ MeV}, \text{with HISQ action} \]

\[
\frac{\chi_2^B(eB, T_{pc}(eB))}{\chi_2^B(0, T_{pc}(0))} = 2 + QCD, \]

with \(N_f = 8 \) and \(N_f = 12 \),

\[
X \left(eB, T_{pc}(eB) \right) \text{ : } R_{cp} \text{ like observable}
\]

At \(eB \approx 9M_{\pi}^2 \): \(\approx 1.3-1.4 \)
Ratio for 2nd order off-diagonal correlations

\[\frac{X_{11}^B(eB,T_{pc}(eB))}{X_{11}^B(0,T_{pc}(0))}\] for 2nd order off-diagonal correlations

\[X \left(eB, T_{pc}(eB) \right) \frac{X \left(0, T_{pc}(0) \right)}{X \left(0, T_{pc}(0) \right)}: R_{cp} \text{ like observable}\]

At \(eB \approx 9M_{\pi}^2 \): \(\sim 2-2.4 \)

Central Collisions

Peripheral Collisions

\(N_f=2+1 \) QCD, \(M_\pi(eB = 0) \approx 135 \text{ MeV} \), \(T_{pc}(eB = 0) \approx 156 \text{ MeV} \), with HISQ action
Ratio for other 2nd order fluctuations and correlations

At $eB \approx 9M_\pi^2$:
- Ratio of $\chi^S_2 \sim 1.12$
- Ratio of $\chi^Q_2 \sim 1.07$
- Ratio of $\chi^{BS}_{11} \sim 1.3$
- Ratio of $\chi^{QS}_{11} \sim 1.03$
Lattice QCD meets experiment

Lattice QCD

Proxy for χ_{11}^{BS}/χ_2^S

$\chi_{11}^{BS}/\chi_2^S(eB, T_{pc}(eB)) / \chi_{11}^{BS}/\chi_2^S(0, T_{pc}(0))$

LQCD cont. est.

$L_t=8$

$L_t=12$

Smaller eB

Larger eB

Larger eB

Smaller eB

STAR, Phys.Rev.C 100 (2019) 1, 014902

HRG: Pressure arising from charged hadrons ($eB \neq 0$):

\[
p_{c}^{M/B} = \left| q_{i} \right| \frac{B}{2 \pi^{2}T^{3}} \sum_{s_{z}=-s_{i}}^{s_{i}} \sum_{l=0}^{\infty} \epsilon_{0} \sum_{k=1}^{\infty} (\pm 1)^{k+1} \frac{e^{k\mu_{i}/T}}{k} K_{1} \left(\frac{k\epsilon_{0}}{T} \right)
\]

where $\epsilon_{0} = \sqrt{m_{i}^{2} + 2 \left| q_{i} \right| B \left(l + 1/2 - s_{z} \right)}$, K_{1} is the first-order modified Bessel function.

Fluctuations of conserved charges:
\[
\hat{\chi}_{ijk}^{BQS} = \sum_{c} \frac{\partial^{i+j+k}(p_{c}/T^{4})}{\partial (\mu_{B}/T)^{i} \partial (\mu_{Q}/T)^{j} \partial (\mu_{S}/T)^{k}} \bigg|_{\mu_{B,Q,S}=0}
\]

For 2nd order ($X, Y = B, Q, S$):

\[
\chi_{11}^{XY} = \frac{B}{2 \pi^{2}T} \sum_{i} \left| q_{i} \right| X_{i}Y_{i} \sum_{s_{z}=-s_{i}}^{s_{i}} \sum_{l=0}^{\infty} f(\epsilon_{0}) , \quad f(\epsilon_{0}) = \epsilon_{0} \sum_{k=1}^{\infty} (\pm 1)^{k+1} k K_{1} \left(\frac{k\epsilon_{0}}{T} \right)
\]
Contributions from Individual hadrons in HRG model

- The results of HRG model are consistent with LQCD up to \(eB \sim 6M^2(0.11 \text{ GeV}^2) \)
- \(p \) contributions are almost independent on \(eB \)
- \(\Delta^{++}(1232) \) and \(\Delta^{--}(1232) \) give most of the contributions of magnetic field dependence of \(\chi_{11}^{BQ} \)
- \(\Delta^{++}(1232) \) and \(\Delta^{--}(1232) \) are not measurable in HIC experiments
Proxy construction based on the HRG

\[\Delta^{++}(1232) \rightarrow p + \pi^+ : \text{branching ratio almost } 100\% ! \]

HRG: Fluctuations expressed in terms of stable hadronic states:

\[
\chi^{BQS}_{ijk} \left(T, \hat{\mu}_B, \hat{\mu}_Q, \hat{\mu}_S \right) = \sum_R B_R^i Q_R^j S_R^k \frac{\partial p_R/T^4}{\partial \hat{\mu}_R^l}
\]

\[\text{net- } B : \bar{p} + \bar{n} + \bar{\Lambda} + \bar{\Sigma}^+ + \bar{\Sigma}^- + \bar{\Xi}^0 + \bar{\Xi}^- + \bar{\Omega}^- \]
\[\text{net- } Q : \bar{\pi}^+ + \bar{\bar{K}}^+ + \bar{\bar{p}} + \bar{\Sigma}^+ - \bar{\Sigma}^- - \bar{\Xi}^- - \bar{\Omega}^- \]
\[\text{net- } S : \bar{\bar{K}}^+ + \bar{\bar{K}}^0 - \bar{\bar{\Lambda}} - \bar{\bar{\Sigma}}^+ - \bar{\bar{\Sigma}}^- - 2\bar{\bar{\Xi}}^0 - 2\bar{\bar{\Xi}}^- - 3\bar{\bar{\Omega}}^- \]

\(B_R, Q_R, S_R \) are the baryon number, electric charge and strangeness of the species \(R \)

In experiment, fluctuations are related to the variance or covariance of Identified \(\pi, K, p \)

e.g. the proxy for \(\chi^{BQ}_{11} \) is

\[
\sigma^{1,1}_{Q^{\Pi D}, p} = \sigma^2_p + \sigma^{1,1}_{p,\pi} + \sigma^{1,1}_{p,K}
\]

In HRG:

\[
\sigma^2_p = \sum_R \left(P_{R\rightarrow \bar{p}} \right) \left(P_{R\rightarrow \bar{p}} \right) \frac{\partial^2 p_R/T^4}{\partial \hat{\mu}_R^2}
\]
\[
\sigma^{1,1}_{p,\pi} = \sum_R \left(P_{R\rightarrow \bar{p}} \right) \left(P_{R\rightarrow \bar{\pi}^+} \right) \frac{\partial^2 p_R/T^4}{\partial \hat{\mu}_R^2}
\]
\[
\sigma^{1,1}_{p,K} = \sum_R \left(P_{R\rightarrow \bar{p}} \right) \left(P_{R\rightarrow \bar{K}^+} \right) \frac{\partial^2 p_R/T^4}{\partial \hat{\mu}_R^2}
\]

where

\[
P_{R\rightarrow i} = \sum_{\alpha} N_{R\rightarrow i}^\alpha n_{i,\alpha}^R
\]

\(n_{i,\alpha}^R \): numbers of \(i \) produced by \(R \) in decay channel \(\alpha \)

\(N_{R\rightarrow i}^\alpha \): Branching ratio of channel \(\alpha \)
Proxy for χ_{11}^{BQ} with $T = 145$ MeV

The results of HRG model and proxy are consistent with LQCD up to $eB \sim 0.08$ GeV2

At $eB \simeq 8M^2_\pi$, ratio of $\chi_2^S \sim 2.4$

At $eB > 0.08$ GeV2, the difference between the proxy and lattice $\sim 20\%$
Proxy for χ_{11}^{BQ} at T_{pc}

At $eB \approx 8M_\pi^2$, ratio of $\chi^S_2 \sim 2$

The proxy $\sigma^{1,1}_{Q^{PID},p}$ can represent approximately 90% of the LQCD results.
Proxy for $\chi_{11}^{BQ}/\chi_{11}^{QS}$ at T_{pc}

The proxy $\frac{\sigma_{Q^{PID,p}}^{1,1}}{\sigma_{Q^{PID,k}}^{1,1}}$ can represent approximately 85% of the LQCD results.
Summary and outlook

- QCD benchmarks are provided for the 2nd order fluctuations of conserved charges based on LQCD computation on $N_t=8$ and 12 lattices.

- χ_{11}^{BQ} is strongly affected by eB, and a reasonable proxy is provided for measurement in HIC.

Computation of 4th order fluctuations is on the way.
Thank you for your attention!
Backup
Lattice QCD in strong magnetic fields

\(B \) pointing to the \(z \) direction

\[
\begin{align*}
 u_x(n_x, n_y, n_z, n_\tau) &= \begin{cases}
 \exp[-iqa^2BN_xn_y] & (n_x = N_x - 1) \\
 1 & (\text{otherwise})
 \end{cases} \\
 u_y(n_x, n_y, n_z, n_\tau) &= \exp[iqa^2Bn_x] \\
 u_z(n_x, n_y, n_z, n_\tau) &= u_t(n_x, n_y, n_z, n_\tau) = 1
\end{align*}
\]

Quantization of the magnetic field

\[
q_u = \frac{2}{3}e \\
q_d = -\frac{1}{3}e \\
q_s = -\frac{1}{3}e
\]

\[eB = \frac{6\pi N_b}{N_xN_y}a^{-2}\]

\(a \) is changed to get the targeted \(T \), \(T = \frac{1}{aN_\tau} \)

No sign problem!

Landau gauge

Isospin symmetry breaking in lattice

\[\left(\frac{2\chi_{11}^{BQ} - \chi_{11}^{BS}}{\chi_{11}^{BS}} \right) / \chi_{2}^{S}(eB, T_{pc}(eB)) \]

Due to \(\chi_{11}^{us} = \chi_{11}^{ds} \) at \(eB = 0 \) case, we get:

\[2\chi_{11}^{QS} - \chi_{11}^{BS} = \chi_{2}^{S}, \]

\[2\chi_{11}^{BQ} - \chi_{11}^{BS} = \chi_{2}^{B} \]
Transition line on $T - eB$ plane and T_{ch} in experiment

\[
\Sigma = \frac{1}{f_K^4} \left[m_s \langle \bar{u}u + \bar{d}d \rangle - (m_u + m_d) \langle \bar{s}s \rangle \right]
\]

\[
\chi^\Sigma = m_s \left(\frac{\partial}{\partial m_u} + \frac{\partial}{\partial m_d} \right) \Sigma
\]

Finding the peak location of χ^Σ at each eB value
Proxy in experiment

- Conserved charges susceptibilities in experiment:

\[\chi_\alpha^2 = \frac{1}{VT^3} \kappa_\alpha^2, \quad \chi_{\alpha,\beta}^{1,1} = \frac{1}{VT^3} \kappa_{\alpha,\beta}^{1,1} \]

the second-order cumulants \((\kappa)\) are the variance or covariance \((\sigma)\) of the net-multiplicity \(N\):

\[\kappa_\alpha^2 = \sigma_\alpha^2 = \langle (\delta N_\alpha - \langle \delta N_\alpha \rangle)^2 \rangle \]
\[\kappa_{\alpha,\beta}^{1,1} = \sigma_{\alpha,\beta}^{1,1} = \langle (\delta N_\alpha - \langle \delta N_\alpha \rangle)(\delta N_\beta - \langle \delta N_\beta \rangle) \rangle \]

with \(\delta N_\alpha = N_{\alpha^+} - N_{\alpha^-}\) and \(\alpha, \beta = p, Q, k\)

\[\sigma_{Q^{PID},p}^{1,1}(\chi_{11}^{BQ}) : \quad \bar{p}p + \bar{p}\pi^+ + \bar{p}\tilde{K}^+ \]
\[\sigma_{Q^{PID},K}^{1,1}(\chi_{11}^{QS}) : \quad \tilde{K}^+\bar{p} + \tilde{K}^+\bar{\pi}^+ + \tilde{K}^+\tilde{K}^+ \]

In experiment:
- \(p\) : a proxy for the net-baryon
- \(k\) : a proxy for the net-strangeness
- \(Q^{PID}\) : identified \(\pi, k\) and \(p\)

The fluctuations are related to the variance or covariance of these net-multiplicities.