ABSTRACT

The coupled channel $\pi \Sigma - K N$ scattering amplitudes in the $\Lambda(1405)$ region and below $\pi \pi \Lambda$ were explored using a single ensemble of gauge configurations ($N_f = 2 + 1$) [4].

The D200 ensemble of QCD gauge configurations generated by CLS was employed.

- Mass-degenerate u, d-quarks heavier than physical, and s-quark lighter than physical.
- Free-level improved Lüscher-Weisz gauge action.
- Non-pert $O(a)$-improved Wilson fermion action.
- Open temporal boundary conditions.

Hadronic scattering amplitudes determined in Lattice QCD using Lüscher’s formalism depend crucially on the finite-volume energy spectrum. Due to the critical dependence of the amplitudes on the spectra, this work presents some of the technical details of determining such spectra for the coupled-channel $\pi \pi \Lambda - K N$ [1, 2]. Finally, the results exhibit a two-pole structure for the $\Lambda(1405)$, a virtual bound state below the Σ threshold and a resonance pole right below the $K N$ threshold.

Correlator analysis

The extraction of the finite-volume energy spectrum was done using the variational method through two independent analyses (more details of this method in Ref. [3, 5, 6]).

$$C(t_a)\vec{a}(t_a, t_b) = \lambda_0(t_a, t_b) C(t_a) \vec{b}(t_b),$$

where λ_0 are eigenvalues.

The differences of both methods are:

- **Single Pivot**: a single choice of t_a and t_b is used to rotate λ_0 for all times t_b.
- **Rolling Pivot**: a single choice of t_b is used, but λ_0 is rotated at all times t_a.

$$E_{\text{non-int}} = \sum_{A,B} \left[L^2_{AB} \right]^{1/2} \left[\left(\frac{2\pi E}{\sqrt{\Lambda}} \right)^2 - \left(\frac{2\pi E}{\sqrt{\Lambda}} \right)^2 \right]$$

$E_{\text{non-int}}$ - non-interacting energy sum close to the stationary state energy. This ratio allowed us to determine the energy interaction shift $a\Delta E$ whilst taking advantage of noise-cancellation. The lab-frame energy was obtained:

$$a\Delta E = aE_{\text{non-int}}$$

Conclusion

- The finite-volume spectra was extracted reliably using different methods, which included variations of the implementation of the GEVP and a variety of fit models.
- The results from all mentioned approaches were consistent along the analysis, and the set of energy levels showed good agreement between them (see Fig. 5).
- Subsequently this spectra was used as an input to compute Scattering amplitudes using Lüscher’s formalism (see parallel talk by Fernando Romero-López).

References

Figure 1. (Top) Ratios of variances for fits to m_π for different bin sizes. (Bottom) Correlated χ^2 of two-exponential fits to m_π versus N_m.

Figure 2. Center-of-mass finite-volume energy spectra under variation of diagonalization method and diagonalization time (t_b) for single pivot method.

Figure 3. Pion mass (left column) Effective energy and its final fit result (right column) Different fit models versus variation of t_{min}.

Figure 4. Stability plot of energy fit for the lowest level of the G_m imp using diverse fit models, including two different non-interacting ratios.

Table 1. Lattice extent and Lattice spacing of the D200 ensemble. Pion mass $m_\pi = 266$ MeV, and kaon mass $m_K = 497$ MeV.

<table>
<thead>
<tr>
<th>T</th>
<th>t_{min}</th>
<th>t_{max}</th>
<th>N_A</th>
<th>N_m</th>
<th>N_b</th>
<th>aE_{lab}</th>
<th>m_π</th>
<th>m_K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6.75</td>
<td>7.00</td>
<td>7.25</td>
<td>7.50</td>
<td>7.75</td>
<td>8.00</td>
<td>8.25</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>6.75</td>
<td>7.00</td>
<td>7.25</td>
<td>7.50</td>
<td>7.75</td>
<td>8.00</td>
<td>8.25</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>6.75</td>
<td>7.00</td>
<td>7.25</td>
<td>7.50</td>
<td>7.75</td>
<td>8.00</td>
<td>8.25</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>6.75</td>
<td>7.00</td>
<td>7.25</td>
<td>7.50</td>
<td>7.75</td>
<td>8.00</td>
<td>8.25</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2. Summary of hadron masses in lattice units.

<table>
<thead>
<tr>
<th>E_{lab}</th>
<th>m_π</th>
<th>m_K</th>
<th>aE_{lab}</th>
<th>m_π</th>
<th>m_K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>6.75</td>
<td>7.00</td>
<td>7.25</td>
<td>7.50</td>
<td>7.75</td>
</tr>
</tbody>
</table>

Figure 5. Final results. (Gray) Finite-volume stationary-state spectrum in the center of mass frame. (Gray) Locations of energy sums for non-interacting hadrons.

GSI Helmholtzzentrum für Schwerionenforschung GmbH

40th International Symposium on Lattice Field Theory (August 2023, Fermilab)