Confining strings and glueballs in \mathbb{Z}_N gauge theories

Conghuan Luo

New York University Advisor: Sergei Dubovsky

Andreas Athenodorou, Sergei Dubovsky, CL, Michael Teper, 2301.00034 2310.xxxxx

Lattice 2023, July 31st

1/40

Table of Contents

Background & Motivation

4 The confining phases of 3d \mathbb{Z}_N gauge theories

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Table of Contents

Background & Motivation

2 Lattice setup

3 3d Ising strings

 Φ The confining phases of 3d \mathbb{Z}_N gauge theories

Luo,	Conghuan	(NYU)	
------	----------	-------	--

イロト イポト イヨト イヨト

Why do we want to look at the confining phases of 3d \mathbb{Z}_N gauge theories?

- Understand confinement in QCD using toy models
- Use the techniques we have developed for long strings to understand low energy Ising string theory.
- How do the \mathbb{Z}_N gauge theory approaches the U(1) gauge theory (Polyakov model) when $N \to \infty$?

- Confining phase ⇔ unbroken 1-form symmetry ⇔ Area law of Wilson loops; Stable strings with finite tension.
- Examples: Confining flux tubes in 3d & 4d Yang-Mills theory, Abrikosov-Nielson-Oleson strings in 4d Abelian Higgs model, confining strings in 3d Z_N gauge theories, ...
- Low energy effective description?

イロト イヨト イヨト ・

(See e.g. Aharony, Komargodski 1302.6257, Dubovsky et al. 1203.1054)

A straight long string spontaneously breaks the D-dimensional spacetime Poincaré symmetry $ISO(1, D-1) \rightarrow ISO(1, 1) \times O(D-2)$:

 $\Rightarrow D - 2$ Goldstone bosons X^i

(Assume a bulk mass gap)

イロト 不得下 イヨト イヨト 二日

Write down the most general low energy effective worldsheet action that preserves reparametrization invariance and D-dimensional spacetime Poincaré symmetry (ℓ_s^{-2} : string tension):

$$S = -\int d^2\sigma \sqrt{-\det h_{\alpha\beta}} \left[\ell_s^{-2} + \mathcal{R} + \mathcal{K}^2 + \ell_s^2 \mathcal{K}^4 + \cdots \right]$$

 $\begin{array}{l} \mathcal{R}: \text{ topological} \\ \mathcal{K}^2: \propto \text{EOM} \end{array} \Rightarrow \textbf{low energy universality} \end{array}$

イロト イヨト イヨト ・

 Spectrum for low-lying excited states is described well by the GGRT (a.k.a. free string) spectrum in many cases:

$$E_{\rm GGRT}(N,\tilde{N}) = \sqrt{\frac{4\pi^2(N-\tilde{N})^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N + \tilde{N} - \frac{D-2}{12}\right)}$$

 N, \tilde{N} : levels

- Obtained from Thermodynamic Bethe Ansatz (TBA) from the leading term of the 2 → 2 phase shift.
- Much better convergence than derivative expansions.

< 日 > < 同 > < 三 > < 三 >

Effective string theory

3d Yang-Mills flux tube spectrum in the $0^+\ \text{sector}$

Luo,	Conghuan	(NYU)
------	----------	-------

Lattice 2023

A D N A B N A B N A B N

Effective string theory

- Need modification at the energy of bulk gap or massive resonance on the worldsheet.
- In 4d Yang-Mills theory, the Monte Carlo results indicate the existence of a massive resonance at low energy.

$$\mathcal{L}_{\phi} = -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\alpha}{8\pi} \phi \epsilon^{ij} \epsilon^{\alpha\beta} \partial_{\alpha} \partial_{\gamma} X^i \partial_{\beta} \partial^{\gamma} X^j + \dots$$

• A pseudoscalar coupled to a topological invariant

Dubovsky, Flauger, Gorbenko 1404.0037 Ongoing work: Athenodorou, Dubovsky, CL, Teper 2308.xxxxx

Luo,	Conghuan	(NYU)
------	----------	-------

Effective string theory

- Need modification at the energy of bulk gap or massive resonance on the worldsheet.
- In 4d Yang-Mills theory, the Monte Carlo results indicate the existence of a massive resonance at low energy.

$$\mathcal{L}_{\phi} = -\frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{\alpha}{8\pi} \phi \epsilon^{ij} \epsilon^{\alpha\beta} \partial_{\alpha} \partial_{\gamma} X^i \partial_{\beta} \partial^{\gamma} X^j + \dots$$

• A pseudoscalar coupled to a topological invariant

Dubovsky, Flauger, Gorbenko 1404.0037 Ongoing work: Athenodorou, Dubovsky, CL, Teper 2308.xxxx

Is there a massive resonance on the worldsheet for 3d Ising string?

Luo, Conghuan (NYU)

Confining strings

Lattice 2023

イロト イヨト イヨト ・

Table of Contents

Background & Motivation

3 3d Ising strings

 Φ The confining phases of 3d \mathbb{Z}_N gauge theories

Luo,	Conghuan	(NYU)
------	----------	-------

イロト イヨト イヨト

Wilson action for lattice gauge theory:

$$\mathcal{S} = eta \sum_{ ext{plaq}} \{1 - \mathsf{Re}(\mathsf{Tr} \ \mathcal{U}_{ ext{plaq}})\}$$

where

$$U_{ ext{plaq}}(n,\mu,
u) = U_{\mu}(n) \cdot U_{
u}(n+\hat{\mu}) \cdot U^{\dagger}_{\mu}(n+\hat{
u}) \cdot U^{\dagger}_{
u}(n)$$

Vector \mathbb{Z}_N gauge theory: $U_\mu(n)=e^{rac{2\pi ik}{N}}, \quad k\in\mathbb{Z}/N\mathbb{Z}$

イロト 不得 トイヨト イヨト 二日

Lattice setup

Spectrum computation

• Compute spectrum from two point functions:

$$\mathcal{L}_{ij}(t) = \left\langle \phi_i^{\dagger}(t)\phi_j(0) \right\rangle = \sum_k \left\langle v \left| \phi_i^{\dagger} e^{-Ht} \right| k \right\rangle \left\langle k \left| \phi_j \right| v \right\rangle = \sum_k c_{ik} c_{kj}^* e^{-E_k t}$$

• Take $t \to \infty$ for some operator:

$$\left\langle \phi^{\dagger}(t)\phi(0)
ight
angle =\sum_{n}|\langle v|\phi|n
angle|^{2}e^{-E_{n}t} \stackrel{
ightarrow}{t
ightarrow\infty}|\langle v|\phi|0
angle|^{2}e^{-E_{0}t}$$

- Include a large basis of operators and diagonalize the correlation matrix: extract the spectrum of low-lying excited states
- Include all blocking levels to create large overlaps to low energy spectrum

- ∢ ⊒ →

Lattice operators we use to represent:

- Confining strings: Polyakov operators winding around one spatial dimension with 1-form charge 1.
- Glueballs: Contractible Wilson loops.

A (1) < A (2) < A (2) </p>

Lattice setup

The Polyakov operators we use to representing confining strings:

After blocking and adding quantum numbers: over 1000 operators in total

Luo, C	Conghuan	(NYU)
--------	----------	-------

< □ > < □ > < □ > < □ > < □ > < □ >

Quantum numbers for 3d Ising strings winding around x direction:

- Transverse parity P_t : $(x, y) \xrightarrow{P_t} (x, -y)$
- Longitudinal parity P_l : $(x, y) \xrightarrow{P_l} (-x, y)$
- Longitudinal momentum: $p = \frac{2\pi q}{R}$
- Transverse momentum? Usually fixed to be zero.
- Charge conjugation is trivial for Ising.

Sectors denoted as: q = 0: (P_t, P_l) or $q \neq 0$; (P_t)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Quantum numbers for 3d glueballs:

- Spin J of *SO*(2)
- Parity P (Note $O(2) = SO(2) \rtimes \mathbb{Z}_2$)
- Charge conjugation C.

Sectors denoted as $|J|^{PC}$

3

Table of Contents

Background & Motivation

 Φ The confining phases of 3d \mathbb{Z}_N gauge theories

Luo, Co	nghuan	(NYU)
---------	--------	-------

イロト イヨト イヨト

э

3d Ising strings

3d Ising model:

$$Z_{\text{spin}}(J/T) = \sum_{s_i} e^{\frac{-H(s_i)}{T}}, \quad H(s_i) = -J \sum_{\langle i,j \rangle} s_i s_j$$

 $3d\ \mathbb{Z}_2 \ \text{gauge theory}$

$$Z_{\mathsf{gauge}}(\beta) = \sum_{\{\sigma_l = \pm 1\}} \exp\left(\beta \sum_{\Box} \sigma_{\Box}\right)$$

Kramers-Wannier duality

$$Z_{\text{spin}} = Z_{\text{gauge}}, \quad \beta = -\frac{1}{2}\log \tanh \frac{J}{T}$$

Can be generalized to \mathbb{Z}_N

L

Luo, Conghuan (NYU)	Confining strings	Lattice 2023	19 / 40

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Phase structure of \mathbb{Z}_2 gauge theory:

- 2nd order phase transition: $\beta_c \approx 0.7614133(22)$
- Order parameter: $\langle W
 angle$

Study in the confining phase ($\beta < \beta_c$) and take the continuum limit $\beta \rightarrow \beta_c$.

Lattice parameters:

- $\beta = 0.756321$
- String tension $a/\ell_s = 0.0691(1)$ fitted from the ground state energy
- Lattice size: $20 80a \times 70a \times 70a$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Results at first glance

Low-lying states are in general in good agreement with GGRT formula at long string regime:

$$E_{\rm GGRT}(N,\tilde{N}) = \sqrt{\frac{4\pi^2(N-\tilde{N})^2}{R^2} + \frac{R^2}{\ell_s^4} + \frac{4\pi}{\ell_s^2} \left(N + \tilde{N} - \frac{D-2}{12}\right)}$$

There is one exception for $P_t = +$ sectors

3d Ising string spectrum

3d Ising string spectrum

Luo, Conghuan (NYU)

Confining strings

Lattice 2023 23 / 40

3d Ising string spectrum

q = 1 states: (+) (Blue) and (-) (Brown)

- No $1/N_c^2$ suppression for glueball mixing in \mathbb{Z}_N gauge theory
- ullet \Rightarrow Expect to see glueball resonance as well

$$m_{res}\ell_s = 3.825(50), \quad m_G\ell_s = 3.124(10)$$

Questions:

- Where is the glueball?
- How to distinguish?

Remark 1

Glueballs are bulk states, while resonances are localized on the worldsheet Glueballs can have momentum relative to the flux tube, while genuine resonances cannot.

- Such scattering states are hard to probe with normal Polyakov operators we use.
 - \Rightarrow Need multi-trace operators
- Probe the glueball continuum with scattering operators

$$\phi_{ ext{scattering}} = \sum_{n,m=1}^{l_{\perp}/a} \phi_P(y+na)\phi_G(y+ma)e^{rac{2\pi i q \perp (n-m)a}{l_{\perp}}}$$

Remark 2

Scattering states have large finite volume dependence due to dispersion relation:

$$E = \sqrt{m_{
m flux}^2 + p_\perp^2} + \sqrt{m_{
m glue}^2 + p_\perp^2}, \quad p_\perp = 2\pi q_\perp/\ell_\perp$$

Exception: $q_{\perp} = 0$

Use finite volume dependence to identify glueball mixing states.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Worldsheet resonance vs Glueball

0.10

Include scattering operators with relative momentum quanta $q_{\perp} = 0, 1, 2, 3, 4$: (++) sector with R = 55a $E/\sqrt{\sigma}^{10}$ $N = 3, \tilde{N} = 3$ Ŧ $N = 2, \tilde{N} = 2$ 8 $N = 1, \tilde{N} = 1$ 6 4 $N = 0, \tilde{N} = 0$

0.05 Luo, Conghuan (NYU)

Confining strings

0.20

0.15

 $1/I_{\perp}\sqrt{\sigma}$ Lattice 2023 28 / 40

0.25

Worldsheet resonance vs Glueball

Conclusion

- We don't see extra resonances besides glueball mixing states.
- We also observe the interaction between glueballs and flux tubes: the lifting of the glueball resonance at finite volume.
- Low-lying states below glueball threshold are well described by GGRT formula.

Table of Contents

Background & Motivation

4 The confining phases of 3d \mathbb{Z}_N gauge theories

Luo,	Conghuar	ı (NYU)	1
------	----------	---------	---

イロト イポト イヨト イヨト

\mathbb{Z}_N gauge theory

Kramers-Wannier duality

$$Z_{
m clock\ spin} pprox Z_{
m vector\ gauge}$$

Critical behavior of \mathbb{Z}_N clock spin model:

- \mathbb{Z}_2 : 3d Ising universality class
- \mathbb{Z}_3 : 1st order; no critical point
- $\mathbb{Z}_4 = \mathbb{Z}_2 \times \mathbb{Z}_2$: 3d Ising universality class
- \mathbb{Z}_N , N > 4: O(2) universality class

$$eta_{c}pproxrac{1.5}{1-\cos(2\pi/N)} \xrightarrow{N
ightarrow\infty} \infty$$

(No deconfining transition for 3d U(1) gauge theory at zero temperature)

イロト 不得 トイヨト イヨト

\mathbb{Z}_N gauge theory

Away from the critical point, the glueball spectrum of \mathbb{Z}_N (N > 4) gauge theories approaches those of U(1) gauge theory

₩

In the IR, they are all described by a free massive scalar.

Z(N) and $U(1)$ lightest masses and string tension					
group	β	$L_s^2 L_t$	аМ ₀₊₊	аМ ₀	$a\sqrt{\sigma}$
U(1)	2.20	48 ³	0.5386(23)	0.2691(14)	0.16646(62)
Z(100)	2.20	48 ³	0.5320(23)	0.2648(12)	0.16683(50)
Z(10)	2.20	48 ³	0.5367(23)	0.2673(17)	0.16488(39)
Z(8)	2.20	48 ³	0.5267(92)	0.2644(17)	0.16469(76)
Z(6)	2.20	48 ³	0.451(9)	0.2167(18)	0.14252(51)

We have confinement in these theories:

- 3d \mathbb{Z}_N clock spin model has domain walls in the disordered phase.
- 3d *U*(1) gauge theory (Polyakov model) has screened monopole instantons, which leads to the area law of Wilson loops.

In the IR, we need two parameters to describe the theory: bulk mass gap and string tension.

What are the relations of bulk gap and string tension, as a function of β ?

• Away from criticality: same as in U(1) gauge theory

$$a^{2}m^{2} \stackrel{\beta \to \infty}{=} c\beta \exp\{-\tilde{c}\beta\},$$
$$a^{2}\sigma \stackrel{\beta \to \infty}{=} c'am/\beta$$

• Around the critical point: governed by O(2) universality class

Consider the low energy EFT for spin model. UV fixed point: complex Φ^4 theory

$$S = \int d^3x \left[|\partial_\mu \Phi|^2 + u |\Phi|^2 + g |\Phi|^4 + \lambda_n (\Phi^n + \overline{\Phi}^n)
ight] \,.$$

Turn on $g|\Phi^4|$ and flow past O(2) CFT: critical behavior! Flow towards Nambu-Goldstone fixed point

$$\mathcal{S} = \int d^3 x \mathcal{K} (\partial_\mu heta)^2 + \lambda_n \mathcal{K}^3 \cos n heta \, ,$$

Now the \mathbb{Z}_N anisotropic term $\propto \lambda_n$ becomes relevant! In the deep IR: \rightarrow Massive scalar field (Our observables)

36 / 40

Dangerously irrelevant operators

37 / 40

From effective field theory:

 \mathbb{Z}_N anisotropy: $\lambda_n \sim (T - T_c)^{\nu |y_n|}$ Scale of Nambu-Goldstone mode: $K \sim 1/\xi \sim (T - T_c)^{\nu}$

critical behavior

Mass gap:
$$m^2 = \lambda_n K^2 \sim (T - T_c)^{\nu(|y_n|+2)}$$

Tension of the domain wall: $\sigma \sim Km \sim (T - T_c)^{\nu(\frac{|y_n|}{2}+2)}$

イロト 不得下 イヨト イヨト 二日

- Lattice results of \mathbb{Z}_5 and \mathbb{Z}_6 qualitatively support these relations. Prediction: $\nu(|y_5|+2)/2 = 1.098(4)$, $\nu(\frac{|y_5|}{2}+2) = 1.770(4)$ Lattice results: $\nu_m = 1.09(19)$, $\nu_\sigma = 1.68(31)$
- Need to improve precision to do quantitative computations of charge-N operator dimensions of O(2) CFT

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

Luo,	Cong	huan I	(NYU)
------	------	--------	------	---

3

40 / 40

イロト イヨト イヨト イヨト