Confining strings and glueballs in \mathbb{Z}_{N} gauge theories

Conghuan Luo

New York University
Advisor: Sergei Dubovsky

Andreas Athenodorou, Sergei Dubovsky, CL, Michael Teper, 2301.00034 2310.xxxxx

Lattice 2023, July 31st

Table of Contents

(1) Background \& Motivation
(2) Lattice setup
(3) 3d Ising strings
(4) The confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories

Table of Contents

(1) Background \& Motivation
(2) Lattice setup
(3) 3d Ising strings

44 The confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories

Motivation

Why do we want to look at the confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories?

- Understand confinement in QCD using toy models
- Use the techniques we have developed for long strings to understand low energy Ising string theory.
- How do the \mathbb{Z}_{N} gauge theory approaches the $U(1)$ gauge theory (Polyakov model) when $N \rightarrow \infty$?

Effective string theory

- Confining phase \Leftrightarrow unbroken 1-form symmetry \Leftrightarrow Area law of Wilson loops; Stable strings with finite tension.
- Examples: Confining flux tubes in 3d \& 4d Yang-Mills theory, Abrikosov-Nielson-Oleson strings in 4d Abelian Higgs model, confining strings in $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories, ...
- Low energy effective description?

Effective string theory

(See e.g. Aharony, Komargodski 1302.6257, Dubovsky et al. 1203.1054)

A straight long string spontaneously breaks the D-dimensional spacetime Poincaré symmetry $I S O(1, D-1) \rightarrow I S O(1,1) \times O(D-2)$:

$$
\Rightarrow D-2 \text { Goldstone bosons } X^{i}
$$

(Assume a bulk mass gap)

Effective string theory

Write down the most general low energy effective worldsheet action that preserves reparametrization invariance and D-dimensional spacetime Poincaré symmetry (ℓ_{s}^{-2} : string tension):

$$
S=-\int d^{2} \sigma \sqrt{-\operatorname{det} h_{\alpha \beta}}\left[\ell_{s}^{-2}+\mathcal{R}+K^{2}+\ell_{s}^{2} K^{4}+\cdots\right]
$$

\mathcal{R} : topological
$K^{2}: \propto E O M$

$$
\Rightarrow \text { low energy universality }
$$

Effective string theory

- Spectrum for low-lying excited states is described well by the GGRT (a.k.a. free string) spectrum in many cases:

$$
E_{\mathrm{GGRT}}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

N, \tilde{N} : levels

- Obtained from Thermodynamic Bethe Ansatz (TBA) from the leading term of the $2 \rightarrow 2$ phase shift.
- Much better convergence than derivative expansions.

Effective string theory

3d Yang-Mills flux tube spectrum in the 0^{+}sector

Effective string theory

- Need modification at the energy of bulk gap or massive resonance on the worldsheet.
- In 4d Yang-Mills theory, the Monte Carlo results indicate the existence of a massive resonance at low energy.

$$
\mathcal{L}_{\phi}=-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\alpha}{8 \pi} \phi \epsilon^{i j} \epsilon^{\alpha \beta} \partial_{\alpha} \partial_{\gamma} X^{i} \partial_{\beta} \partial^{\gamma} X^{j}+\ldots
$$

- A pseudoscalar coupled to a topological invariant

Dubovsky, Flauger, Gorbenko 1404.0037
Ongoing work: Athenodorou, Dubovsky, CL, Teper 2308.xxxxx

Effective string theory

- Need modification at the energy of bulk gap or massive resonance on the worldsheet.
- In 4d Yang-Mills theory, the Monte Carlo results indicate the existence of a massive resonance at low energy.

$$
\mathcal{L}_{\phi}=-\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\alpha}{8 \pi} \phi \epsilon^{i j} \epsilon^{\alpha \beta} \partial_{\alpha} \partial_{\gamma} X^{i} \partial_{\beta} \partial^{\gamma} X^{j}+\ldots
$$

- A pseudoscalar coupled to a topological invariant

Dubovsky, Flauger, Gorbenko 1404.0037
Ongoing work: Athenodorou, Dubovsky, CL, Teper 2308.xxxxx
Is there a massive resonance on the worldsheet for 3d Ising string?

Table of Contents

(1) Background \& Motivation
(2) Lattice setup
(3) 3d Ising strings
(4) The confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories

Lattice setup

Wilson action for lattice gauge theory:

$$
S=\beta \sum_{\text {plaq }}\left\{1-\operatorname{Re}\left(\operatorname{Tr} U_{\text {plaq }}\right)\right\}
$$

where

$$
U_{\text {plaq }}(n, \mu, \nu)=U_{\mu}(n) \cdot U_{\nu}(n+\hat{\mu}) \cdot U_{\mu}^{\dagger}(n+\hat{\nu}) \cdot U_{\nu}^{\dagger}(n)
$$

Vector \mathbb{Z}_{N} gauge theory: $U_{\mu}(n)=e^{\frac{2 \pi i k}{N}}, \quad k \in \mathbb{Z} / N \mathbb{Z}$

Lattice setup

Spectrum computation

- Compute spectrum from two point functions:

$$
C_{i j}(t)=\left\langle\phi_{i}^{\dagger}(t) \phi_{j}(0)\right\rangle=\sum_{k}\langle v| \phi_{i}^{\dagger} e^{-H t}|k\rangle\langle k| \phi_{j}|v\rangle=\sum_{k} c_{i k} c_{k j}^{*} e^{-E_{k} t}
$$

- Take $t \rightarrow \infty$ for some operator:

$$
\left.\left.\left\langle\phi^{\dagger}(t) \phi(0)\right\rangle=\sum_{n}|\langle v| \phi| n\right\rangle\left.\right|^{2} e^{-E_{n} t} \underset{t \rightarrow \infty}{\rightarrow}|\langle v| \phi| 0\right\rangle\left.\right|^{2} e^{-E_{0} t}
$$

- Include a large basis of operators and diagonalize the correlation matrix: extract the spectrum of low-lying excited states
- Include all blocking levels to create large overlaps to low energy spectrum

Lattice setup

Lattice operators we use to represent:

- Confining strings: Polyakov operators winding around one spatial dimension with 1 -form charge 1.
- Glueballs: Contractible Wilson loops.

Lattice setup

The Polyakov operators we use to representing confining strings:

After blocking and adding quantum numbers: over 1000 operators in total

Lattice setup

Quantum numbers for 3d Ising strings winding around x direction:

- Transverse parity $P_{t}:(x, y) \xrightarrow{P_{t}}(x,-y)$
- Longitudinal parity $P_{l}:(x, y) \xrightarrow{P_{l}}(-x, y)$
- Longitudinal momentum: $p=\frac{2 \pi q}{R}$
- Transverse momentum? Usually fixed to be zero.
- Charge conjugation is trivial for Ising.

Sectors denoted as: $q=0:\left(P_{t}, P_{l}\right)$ or $q \neq 0 ;\left(P_{t}\right)$

Lattice setup

Quantum numbers for 3d glueballs:

- Spin J of $S O(2)$
- Parity P (Note $\left.O(2)=S O(2) \rtimes \mathbb{Z}_{2}\right)$
- Charge conjugation C .

Sectors denoted as $|J|^{P C}$

Table of Contents

(1) Background \& Motivation
(2) Lattice setup
(3) 3d Ising strings

44 The confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories

3d Ising strings

3d Ising model:

$$
Z_{\text {spin }}(J / T)=\sum_{s_{i}} e^{\frac{-H\left(s_{i}\right)}{T}}, \quad H\left(s_{i}\right)=-J \sum_{\langle i, j\rangle} s_{i} s_{j}
$$

$3 \mathrm{~d} \mathbb{Z}_{2}$ gauge theory

$$
Z_{\text {gauge }}(\beta)=\sum_{\left\{\sigma_{l}= \pm 1\right\}} \exp \left(\beta \sum_{\square} \sigma_{\square}\right)
$$

Kramers-Wannier duality

$$
Z_{\text {spin }}=Z_{\text {gauge }}, \quad \beta=-\frac{1}{2} \log \tanh \frac{\mathrm{~J}}{T}
$$

Can be generalized to \mathbb{Z}_{N}

3d Ising strings

Phase structure of \mathbb{Z}_{2} gauge theory:

- 2nd order phase transition: $\beta_{c} \approx 0.7614133(22)$
- Order parameter: $\langle W\rangle$

Study in the confining phase $\left(\beta<\beta_{c}\right)$ and take the continuum limit $\beta \rightarrow \beta_{c}$.
Lattice parameters:

- $\beta=0.756321$
- String tension $a / \ell_{s}=0.0691(1)$ fitted from the ground state energy
- Lattice size: $20-80 a \times 70 a \times 70 a$

3d Ising string spectrum

Results at first glance

Low-lying states are in general in good agreement with GGRT formula at long string regime:

$$
E_{\mathrm{GGRT}}(N, \tilde{N})=\sqrt{\frac{4 \pi^{2}(N-\tilde{N})^{2}}{R^{2}}+\frac{R^{2}}{\ell_{s}^{4}}+\frac{4 \pi}{\ell_{s}^{2}}\left(N+\tilde{N}-\frac{D-2}{12}\right)}
$$

There is one exception for $P_{t}=+$ sectors

3d Ising string spectrum

$(++)$ excited states:

3d Ising string spectrum

$(-+)$ (Blue) and (--) (Brown) states:

3d Ising string spectrum

$q=1$ states: $(+)$ (Blue) and (- (Brown)

Worldsheet resonance vs Glueball

- No $1 / N_{c}^{2}$ suppression for glueball mixing in \mathbb{Z}_{N} gauge theory
- \Rightarrow Expect to see glueball resonance as well

$$
m_{\text {res }} \ell_{s}=3.825(50), \quad m_{G} \ell_{s}=3.124(10)
$$

Questions:

- Where is the glueball?
- How to distinguish?

Worldsheet resonance vs Glueball

Remark 1

Glueballs are bulk states, while resonances are localized on the worldsheet

\Downarrow

Glueballs can have momentum relative to the flux tube, while genuine resonances cannot.

- Such scattering states are hard to probe with normal Polyakov operators we use.
\Rightarrow Need multi-trace operators
- Probe the glueball continuum with scattering operators

$$
\phi_{\text {scattering }}=\sum_{n, m=1}^{I_{\perp} / a} \phi_{P}(y+n a) \phi_{G}(y+m a) e^{\frac{2 \pi i q \perp(n-m) a}{I_{\perp}}}
$$

Worldsheet resonance vs Glueball

Remark 2

Scattering states have large finite volume dependence due to dispersion relation:

$$
E=\sqrt{m_{\text {flux }}^{2}+p_{\perp}^{2}}+\sqrt{m_{\text {glue }}^{2}+p_{\perp}^{2}}, \quad p_{\perp}=2 \pi q_{\perp} / \ell_{\perp}
$$

Exception: $q_{\perp}=0$
Use finite volume dependence to identify glueball mixing states.

Worldsheet resonance vs Glueball

Include scattering operators with relative momentum quanta
$q_{\perp}=0,1,2,3,4$:
$(++)$ sector with $R=55 a$

Worldsheet resonance vs Glueball

$(-+)$ sector with $R=55 a$

Worldsheet resonance vs Glueball

Conclusion

- We don't see extra resonances besides glueball mixing states.
- We also observe the interaction between glueballs and flux tubes: the lifting of the glueball resonance at finite volume.
- Low-lying states below glueball threshold are well described by GGRT formula.

Table of Contents

(1) Background \& Motivation
(2) Lattice setup
(3) 3d Ising strings
(4) The confining phases of $3 \mathrm{~d} \mathbb{Z}_{N}$ gauge theories

\mathbb{Z}_{N} gauge theory

Kramers-Wannier duality

$$
Z_{\text {clock spin }} \approx Z_{\text {vector gauge }}
$$

Critical behavior of \mathbb{Z}_{N} clock spin model:

- \mathbb{Z}_{2} : 3d Ising universality class
- \mathbb{Z}_{3} : 1st order; no critical point
- $\mathbb{Z}_{4}=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$: 3d Ising universality class
- $\mathbb{Z}_{N}, N>4: O(2)$ universality class

$$
\beta_{c} \approx \frac{1.5}{1-\cos (2 \pi / N)} \xrightarrow{N \rightarrow \infty} \infty
$$

(No deconfining transition for $3 \mathrm{~d} U(1)$ gauge theory at zero temperature)

\mathbb{Z}_{N} gauge theory

Away from the critical point, the glueball spectrum of $\mathbb{Z}_{N}(N>4)$ gauge theories approaches those of $U(1)$ gauge theory

$$
\Downarrow
$$

In the IR, they are all described by a free massive scalar.

$Z(N)$ and $U(1)$ lightest masses and string tension					
group	β	$L_{s}^{2} L_{t}$	$a M_{0^{++}}$	$a M_{0^{--}}$	$a \sqrt{\sigma}$
$U(1)$	2.20	48^{3}	$0.5386(23)$	$0.2691(14)$	$0.16646(62)$
$Z(100)$	2.20	48^{3}	$0.5320(23)$	$0.2648(12)$	$0.16683(50)$
$Z(10)$	2.20	48^{3}	$0.5367(23)$	$0.2673(17)$	$0.16488(39)$
$Z(8)$	2.20	48^{3}	$0.5267(92)$	$0.2644(17)$	$0.16469(76)$
$Z(6)$	2.20	48^{3}	$0.451(9)$	$0.2167(18)$	$0.14252(51)$

\mathbb{Z}_{N} gauge theory

We have confinement in these theories:

- $3 \mathrm{~d} \mathbb{Z}_{N}$ clock spin model has domain walls in the disordered phase.
- 3d $U(1)$ gauge theory (Polyakov model) has screened monopole instantons, which leads to the area law of Wilson loops.

In the IR, we need two parameters to describe the theory: bulk mass gap and string tension.

Critical behavior of \mathbb{Z}_{N} gauge theory

What are the relations of bulk gap and string tension, as a function of β ?

- Away from criticality: same as in $U(1)$ gauge theory

$$
\begin{gathered}
a^{2} m^{2} \stackrel{\beta \rightarrow \infty}{=} c \beta \exp \{-\tilde{c} \beta\}, \\
a^{2} \sigma \stackrel{\beta \rightarrow \infty}{=} c^{\prime} a m / \beta
\end{gathered}
$$

- Around the critical point: governed by $O(2)$ universality class

Dangerously irrelevant operators

Consider the low energy EFT for spin model.
UV fixed point: complex Φ^{4} theory

$$
S=\int d^{3} x\left[\left|\partial_{\mu} \Phi\right|^{2}+u|\Phi|^{2}+g|\Phi|^{4}+\lambda_{n}\left(\Phi^{n}+\bar{\Phi}^{n}\right)\right] .
$$

Turn on $g\left|\Phi^{4}\right|$ and flow past $O(2)$ CFT: critical behavior!
Flow towards Nambu-Goldstone fixed point

$$
S=\int d^{3} \times K\left(\partial_{\mu} \theta\right)^{2}+\lambda_{n} K^{3} \cos n \theta
$$

Now the \mathbb{Z}_{N} anisotropic term $\propto \lambda_{n}$ becomes relevant! In the deep IR: \rightarrow Massive scalar field (Our observables)

Dangerously irrelevant operators
Phase diagrain for \mathbb{Z}_{N} gavage theory

Critical behavior of \mathbb{Z}_{N} gauge theory

From effective field theory:
\mathbb{Z}_{N} anisotropy: $\lambda_{n} \sim\left(T-T_{c}\right)^{\nu\left|y_{n}\right|}$
Scale of Nambu-Goldstone mode: $K \sim 1 / \xi \sim\left(T-T_{c}\right)^{\nu}$

critical behavior

Mass gap: $m^{2}=\lambda_{n} K^{2} \sim\left(T-T_{c}\right)^{\nu\left(\left|y_{n}\right|+2\right)}$
Tension of the domain wall: $\sigma \sim K m \sim\left(T-T_{c}\right)^{\nu\left(\frac{\left|y_{n}\right|}{2}+2\right)}$

Critical behavior of \mathbb{Z}_{N} gauge theory

- Lattice results of \mathbb{Z}_{5} and \mathbb{Z}_{6} qualitatively support these relations. Prediction: $\nu\left(\left|y_{5}\right|+2\right) / 2=1.098(4), \nu\left(\frac{\left|y_{5}\right|}{2}+2\right)=1.770(4)$ Lattice results: $\nu_{m}=1.09(19), \nu_{\sigma}=1.68(31)$
- Need to improve precision to do quantitative computations of charge-N operator dimensions of $O(2)$ CFT

Thank you!

