Semileptonic Form Factors for $B_s \rightarrow K \ell \nu$ decays

Ryan Hill

J. Flynn, A. Jüttner, A. Soni, J. T. Tsang, O. Witzel
RBC-UKQCD

31$^{\text{st}}$ July 2023
Lattice 2023

Phys. Rev. D 107, 114512 (2023)
arXiv:2303.11280
The RBC & UKQCD collaborations

University of Bern & Lund
Dan Hoying

BNL and BNL/RBRC
Peter Boyle (Edinburgh)
Taku Izubuchi
Yong-Chull Jang
Chulwoo Jung
Christopher Kelly
Meifeng Lin
Nobuyuki Matsumoto
Shigemi Ohta (KEK)
Amarjit Soni
Raza Sufian
Tianle Wang

CERN
Andreas Jüttner (Southampton)
Tobias Tsang

Columbia University
Norman Christ
Sarah Fields
Ceran Hu
Yikai Huo
Joseph Karpie (JLab)
Erik Lundstrum
Bob Mawhinney
Bigeng Wang (Kentucky)

University of Connecticut
Tom Blum
Luchang Jin (RBRC)

Edinburgh University
Matteo Di Carlo
Luigi Del Debbio
Felix Erben
Vera Gülpers
Maxwell T. Hansen
Tim Harris
Ryan Hill
Raoul Hodgson
Nelson Lachini
Zi Yan Li
Michael Marshall
Fionn Ó hÓgáin
Antonin Portelli
James Richards
Azusa Yamaguchi
Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool
Nicolas Garron

LLNL
Aaron Meyer

University of Milano Bicocca
Mattia Bruno

Nara Women's University
Hiroshi Ohki

Peking University
Xu Feng

University of Regensburg
Davide Giusti
Andreas Hackl
Daniel Knüttel
Christoph Lehner
Sebastian Spiegel

RIKEN CCS
Yasumichi Aoki

University of Siegen
Matthew Black
Anastasia Boushmelev
Oliver Witzel

University of Southampton
Alessandro Barone
Bipasha Chakraborty
Ahmed Elgaziari
Jonathan Flynn
Nikolai Husung
Joe McKeon
Rajnandini Mukherjee
Callum Radley-Scott
Chris Sachrajda

Stony Brook University
Fangcheng He
Sergey Syritsyn (RBRC)
Motivation

- b-physics continues to play an important role in the search for new physics at the precision frontier
- Large m_b allows us to probe high energy scales
- Physical applications include
 - Shape of QCD form factors
 - CKM matrix elements
 - Lepton flavour universality tests

Goal

- V_{ub} enters the $B_s \to K\ell\nu$ differential decay rate:

$$\frac{d\Gamma(B_s \to K\ell\nu)}{dq^2} \bigg|_{\text{Experiment}} = \left| V_{ub} \right|^2 \times \left(\kappa_1 |f_+(q^2)|^2 + \kappa_2 |f_0(q^2)|^2 \right)$$

- $q^\mu = p_B^\mu - p_K^\mu$
- κ — Known factors

- Form factors require non-perturbative computation:

$$\langle K(\vec{p}_K) | \mathcal{V}^\mu | B_s(\vec{p}_{B_s}) \rangle = 2f_+(q^2) \left(p_B^\mu - \frac{p_{B_s} \cdot q}{q^2} q^\mu \right) + f_0(q^2) \left(\frac{M_B^2 - M_K^2}{q^2} q^\mu \right)$$

$$\mathcal{V}^\mu = \bar{u} \gamma^\mu b$$
Relativistic Heavy Quark (RHQ) action for b quarks

- Builds on original Fermilab action [El-Khadra et al. PRD 55 (1997) 3933]
- Anisotropic clover action
- Uses 3 parameters (m_0a,c_p,ζ) that can be non-pertubatively tuned to remove $O((m_0a)^n)$, $O((p a)(m_0a)^n)$ errors [Aoki et al. PRD 86 (2012) 116003]

Shamir Domain-Wall Fermions (DWF) for l,s

Relate continuum and lattice currents via renormalisation constant [El-Khadra et al. PRD 64 (2001) 014502]

$$\langle K|\nu_\mu|B_s\rangle = Z_{bl}^{\nu}\langle K|V_\mu|B_s\rangle; \quad Z_{bl}^{\nu} = \rho_{bl}^{\nu} \sqrt{Z_{bb}^{\nu}Z_{ll}^{\nu}}$$

- $O(a)$-improved V_μ at one-loop
Ensembles

<table>
<thead>
<tr>
<th></th>
<th>$L^3 \times T / a^4$</th>
<th>a^{-1} / GeV</th>
<th>m_π / MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>$24^3 \times 64$</td>
<td>1.78</td>
<td>340</td>
</tr>
<tr>
<td>C2</td>
<td>$24^3 \times 64$</td>
<td>1.78</td>
<td>430</td>
</tr>
<tr>
<td>M1</td>
<td>$32^3 \times 64$</td>
<td>2.38</td>
<td>300</td>
</tr>
<tr>
<td>M2</td>
<td>$32^3 \times 64$</td>
<td>2.38</td>
<td>360</td>
</tr>
<tr>
<td>M3</td>
<td>$32^3 \times 64$</td>
<td>2.38</td>
<td>410</td>
</tr>
<tr>
<td>F1S</td>
<td>$48^3 \times 96$</td>
<td>2.79</td>
<td>270</td>
</tr>
<tr>
<td>C0*</td>
<td>$48^3 \times 96$</td>
<td>1.73</td>
<td>139</td>
</tr>
</tbody>
</table>

- 2+1f ensembles: degenerate light quarks
- Domain-wall fermions and Iwasaki gauge action
- **F1S ensemble**: new for this analysis
 - *C0 currently under analysis.
- Addition of C0 disentangles chiral and continuum effects
Form Factor Fits

- For lattice data in the B_s-meson rest frame, easier to decompose matrix elements as
 \[f_{\parallel} = \frac{\langle K|V^0|B_s \rangle}{\sqrt{2M_{B_s}}} , \quad f_{\perp} p^i = \frac{\langle K|V^i|B_s \rangle}{\sqrt{2M_{B_s}}} \]
- Neatly separates into spatial and temporal components
- Linear combination recovers f_0 and f_+:
 \[f_+(q^2) = \frac{1}{\sqrt{2M_{B_s}}} \left[f_{\parallel}(q^2) + (M_{B_s} - E_K)f_{\perp}(q^2) \right] \]
 \[f_0(q^2) = \frac{\sqrt{2M_{B_s}}}{M_{B_s}^2 + E_K^2} \left[(M_{B_s} - E_K)f_{\parallel}(q^2) + (E_K^2 - M_K^2)f_{\perp}(q^2) \right] \]
Simultaneously fit two-point functions and three-point function ratios on each ensemble over all momenta

\[
\frac{C_3^\mu(t)}{\sqrt{C_2^K(t)C_2^{Bs}(t_{\text{sink}} - t)}} = \langle K|V^{\mu}|B_s \rangle \sqrt{\frac{4E_K E_{Bs}}{e^{-tE_K} e^{-(t_{\text{sink}} - t)E_{Bs}}}}
\]

+ excited state contrib.

Use lattice dispersion relation to constrain kaon energies in three-point fits
Form factor fits on F1S ensemble
Chiral-Continuum Fits

- Extrapolate to physical kaon mass and zero lattice spacing simultaneously
- Use NLO hard-pion (kaon) SU(2) HMχPT [PRD 67 (2003) 054010]

\[f(M_{\pi}^{\text{sim}}, E_K, a, L) = \frac{\Lambda}{E_K + \Delta_{\text{pole}}} \times \left(c^{(0)} \times (1 + \text{chiral log}) + c^{(1)} \frac{\Delta M_{\pi}^2}{\Lambda^2} + c^{(2)} \frac{E_K}{\Lambda} + c^{(3)} \left(\frac{E_K}{\Lambda} \right)^2 + c^{(4)} \left(a\Lambda \right)^2 \right) \]

\[\Delta M_{\pi}^2 = (M_{\pi}^{\text{sim}})^2 - (M_{\pi}^{\text{phys}})^2 \]

\[\Delta_{\text{pole, 0}} = M_{B^*(0^+)} - M_{B_s} \approx 263 \text{ MeV} \]

\[\Delta_{\text{pole, +}} = M_{B^*(1^-)} - M_{B_s} \approx -42.1 \text{ MeV} \]
Extrapolation in terms of f_+, f_0 and f_\perp, f_\parallel

- Choice of chiral-continuum extrapolation strategy:
 - Take continuum limit of f_+, f_0 constructed from f_\perp, f_\parallel
 - Reconstruct f_+, f_0 from continuum-limit f_\perp, f_\parallel

- Latter strategy assumes f_\perp, f_\parallel continuum limit is described well by f_+, f_0 pole energies

- **Significant difference** between the two strategies for f_0

- **Kinematic constraint at** $q^2 = 0$ **couples** f_+ **and** f_0 - influences q^2 extrapolation of both form factors!
Chiral-Continuum Fits

- E_K^2 term unresolved for f_+ and dropped
- Continuum form factor given by $f(M_{\pi}^p, E_K, a = 0, L \to \infty)$
- Variations on the continuum fit ansatz to assess systematic errors
Bayesian-inferential z-expansion

- Extrapolate over full q^2 range using a z-expansion
- Fit to synthetic data at reference q^2 points
- Limited data points restricts available number of terms in frequentist z-expansion
- Adopt a Bayesian strategy that can easily explore truncation errors for the BGL parameterisation

- **Details in Andreas Jüttner’s talk in this session at 14:30!**

![Graphs showing $f_X(q^2)$ and $f_0(q^2)$](image-url)
 observables - $|V_{ub}|$

- **Combine experimental inputs:**
 - $R_{BF} = \frac{\mathcal{B}(B_s^0 \rightarrow K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \rightarrow D^- \mu^+ \nu_\mu)}$ [LHCb PRL 126 (2021) 081804]
 - $\mathcal{B}(B_s^0 \rightarrow D^{-} \mu^+ \nu_\mu)$ [LHCb PRD 101 (2020) 072004]
 - B_s^0 lifetime $\tau_{B_s^0}$ [PDG PTEP 2022 (2022) 083C01] [HFLAV arXiv:2206.07501]

- **Lattice contribution:** Reduced decay rate $\Gamma_0 = \Gamma / |V_{ub}|^2$

$$|V_{ub}| = \sqrt{\frac{R_{BF} \mathcal{B}(B_s^0 \rightarrow D^- \mu^+ \nu_\mu)}{\tau_{B_s^0} \Gamma_0(B_s \rightarrow K\ell\nu)}}$$

- $|V_{ub}|_{RBC-UKQCD 2023}$ exclusive, $B_s \rightarrow K\ell\nu = 3.78(61) \times 10^{-3}$ [PRD 107 (2023) 114512]
- $|V_{ub}|_{FLAG 2021}$ exclusive, $B \rightarrow \pi \ell\nu = 3.74(17) \times 10^{-3}$ [FLAG EPJC 82 (2022) 869]
- $|V_{ub}|_{PDG 2022}$ inclusive, B decays $= 4.13(26) \times 10^{-3}$ [PDG PTEP 2022 (2022) 083C01]

- Consistent with both exclusive and inclusive averages
Observables - LFU-testing ratios

- Standard R-ratio takes the form

\[R_{B_s \to K} = \frac{\int_{m^2_\tau}^{q^2_{\text{max}}} dq^2 \frac{d\Gamma(B_s \to K\tau\nu_\tau)}{dq^2}}{\int_{m^2_\ell}^{q^2_{\text{max}}} dq^2 \frac{d\Gamma(B_s \to K\ell\nu_\ell)}{dq^2}} \]

- This ratio is insensitive to the region \(m^2_\ell < q^2 < m^2_\tau \)
- We can form a ratio with an equally-weighted parts by
 - Reweighting the integrand, \([\text{Isidori and Sumensari EPJC 80 (2020) 1078}]\)
 - Unifying the integration ranges \([\text{Freytsis et al. PRD 92 (2015) 054018}]\) \([\text{Bernlochner and Ligeti PRD 95 (2017) 014022}]\)
- We obtain the alternative R-ratio

\[R_{B_s \to K}^{\text{imp}} = \frac{\int_{m^2_\tau}^{q^2_{\text{max}}} dq^2 \frac{d\Gamma(B_s \to K\tau\nu_\tau)}{dq^2}}{\int_{m^2_\ell}^{q^2_{\text{max}}} dq^2 \frac{\omega_{\tau}(q^2)}{\omega_{\ell}(q^2)} \frac{d\Gamma(B_s \to K\ell\nu_\ell)}{dq^2}} \]

\[R_{B_s \to K} = 0.77(16) [21\%] \quad R_{B_s \to K}^{\text{imp}} = 1.72(11) [6.4\%] \]
Next Steps
Next steps - C0 Ensemble

- Physical-mass light, strange, and bottom quarks
- $L^3 \times T = 48^3 \times 96; \ a^{-1} = 1.73\GeV$
- Point sources replaced with Z_2 sources for increased precision

 [Dong and Liu PLB 328 (1994) 130-136]

- Accelerated light + strange quark solves by exploiting AMA-corrected zMöbius DWF action + deflation

 [Blum et al. PRD 88 (2013) 094503] [McGlynn PoS(LATTICE 2015)]

- Data generated with Grid and Hadrons

 [https://github.com/paboyle/Grid] [https://github.com/aportelli/Hadrons]

- Analysis in progress!
Next steps - Reduced-parameter fits

- We might gain better control over fits by removing parameters not directly related to our physics goals.
- The **ground-state amplitudes** cancel from the ratio in use,

\[
\frac{C_3(t, t')}{\sqrt{C_{2,A}(t)C_{2,B}(t')}} = f_{00} \sqrt{\frac{e^{-E_A^{(0)} t} e^{-E_B^{(0)} t'}}{4E_A^{(0)} E_B^{(0)}}}
\]

- ...but are still present in two-point correlators, and so cannot be removed from a combined fit.

\[
C_2(t) = \frac{Z^{(0)}}{2E^{(0)}} \left(e^{-E^{(0)} t} + e^{-E^{(0)} (T-t)} \right)
\]

- However, they **do** cancel in the effective mass.

\[
\frac{C_2(t + 1) + C_2(t - 1)}{2C_2(t)} = \cosh(E^{(0)})
\]

- This can be extended to first-excited states.
Next steps - Reduced-parameter fits

Three-point ratio (ground state only):

\[
\frac{C_3(t, t')}{\sqrt{C_{2,A}(t)C_{2,B}(t')}} = f_{00}\sqrt{\frac{e^{-E_A(0)t}e^{-E_B(0)t'}}{4E_A^{(0)}E_B^{(0)}}}
\]

Two-point effective mass (ground state only):

\[
\frac{C_2(t + 1) + C_2(t - 1)}{2C_2(t)} = \cosh(E^{(0)})
\]
Next steps - Reduced-parameter fits

Three-point ratio (ground + 1st excited states):

\[
\frac{C_3(t, t')}{\sqrt{C_{2,A}(t)C_{2,B}(t')}} = f_{00} \sqrt{\frac{e^{-E_A^{(0)} t} e^{-E_B^{(0)} t'}}{4E_A^{(0)} E_B^{(0)}}} \\
\times \left(1 + \frac{f_{10}}{f_{00}} g_A(t) + \frac{f_{01}}{f_{00}} g_B(t') + \frac{f_{11}}{f_{00}} g_A(t) g_B(t') \right)
\]

Two-point effective mass (ground + 1st excited state):

\[
\frac{C_{2,X}(t+1) + C_{2,X}(t-1)}{2C_{2,X}(t)} = \cosh(E_X^{(0)}) \left(1 + \alpha_X g_X^{ATW}(t) \frac{\cosh(E_X^{(1)})}{\cosh(E_X^{(0)})} \right) \\
\]

\[
\alpha_X = \frac{Z_X^{(1)}}{Z_X^{(0)}}, \quad g_X(t) = \alpha_X \frac{E_X^{(0)}}{E_X^{(1)}} e^{-E_X^{(0)} t} + \alpha_X \frac{E_X^{(1)}}{E_X^{(0)}} e^{-E_X^{(1)} (T-t)}
\]

\[
g_X^{ATW}(t) = \alpha_X \frac{E_X^{(0)}}{E_X^{(1)}} e^{-E_X^{(0)} t} + \alpha_X \frac{E_X^{(1)}}{E_X^{(0)}} e^{-E_X^{(1)} (T-t)}
\]
RBC-UKQCD 2023 result for $B_s \rightarrow K\ell\nu$ now published

[PRD 107 (2023) 114512] [arXiv:2303.11280]

- Directly extrapolating in f_+, f_0 vs. f_\perp, f_\parallel can produce incompatible results for f_0 at low q^2
- **Assessable truncation errors** in determination of z-expansion coefficients *via* Bayesian fit
 → Andreas Jüttner, **14:30 today**
- $|V_{ub}| = 3.78(61) \times 10^{-3}$
- **Alternative LFU-testing ratios** can yield significantly more precise theory predictions
- Update for $B \rightarrow \pi\ell\nu$ and physical-point data in progress

Phys. Rev. D 107, 114512 (2023)
arXiv:2303.11280
Backup Slides
Extrapolation in terms of f_+, f_0 and f_\perp, f_\parallel

- Literature results consistent for f_+, in tension for f_0
- $>3\sigma$ shift in RBC-UKQCD result between choice to extrapolate in f_+, f_0 or f_\perp, f_\parallel
- Results for the two choices using RBC-UKQCD data are 100% correlated and include all systematics
Extrapolation in terms of f_+, f_0 and f_\perp, f_\parallel

- Literature results consistent for f_+, in tension for f_0
- $>3\sigma$ shift in RBC-UKQCD result between choice to extrapolate in f_+, f_0 or f_\perp, f_\parallel
- Results for the two choices using RBC-UKQCD data are 100% correlated and include all systematics
Chiral-Continuum Fits

- All five terms resolved for f_0

![Graph showing the Chiral-Continuum Fits for f_0 as a function of $(E_K/M_{B_s})^2$]

- $(E_K/M_{B_s})^2$
- $f_{B_s \to K}$
- Central, M1, M2, C1, C2, M3, F1S

(a) omit FV
(b) omit $(a\Lambda)^2$
(c) omit ΔM^2_{π}
(d) omit chiral log
(e) omit $(a\Lambda)^2$ and chiral log
(f) exclude $n^2 = 0$
(g) exclude $n^2 = 4$
(h) constant dispersion relation $(a\Lambda)^2$
(i) varying f_{π}
(j) Δ_s by ± 100 MeV

![Graph showing the error in $f_{B_s \to K}$ as a function of q^2]

- q^2 [GeV2]
- $f_{B_s \to K}$
- Error 2%
- Statistics, fit systematics, discretization (heavy), renormalization, isospin breaking, discretization (light), RHQ inputs