methods for lattice QCD calculations of hadronic observables using stochastic locality

Marco Cè

in collaboration with Mattia Bruno, Anthony Francis, Patrick Fritzsch, Jeremy Green, Maxwell T. Hansen, Antonio Rago

based on

Exploiting stochastic locality in lattice QCD: hadronic observables and their uncertainties arXiv:2307.15674

August 3, 2023 Lattice 2023, Fermilab

motivations

stochastic locality in QCD:

[Lüscher Lattice 2017]

fields in space-time regions that are far apart fluctuate largely independently

interest in generating large volume lattices

more computational resources available
 advances in communication-avoiding algorithms

[plenary by Boyle]

- strong physics motivations to simulate larger volumes, e.g. reconstructing spectral functions from $\lim_{\sigma \to 0} \lim_{V \to \infty} \rho_{\sigma,V}$
- the master-field approach is also solution of the topological charge freezing problem, frozen topology bias: O(1/V) \ll statistical uncertainty: $O(1/\sqrt{V})$
- \Rightarrow e.g. master-field with ullet 192 4 lattice points ullet up to pprox 18 fm length ullet $m_\pi L=25$

[Fritzsch Lattice 2022]

in Bruno, MC, *et al.* arXiv:2307.15674 we investigate methods to exploit stochastic locality in lattice QCD calculations of (hadronic) observables:

in this talk, independent statistics from space-time decorrelation can be used to improve error estimates

notation

with one single gauge-field configuration with T and $L\gg 1/m_\pi$ [Lüscher Lattice 2017, Francis, Fritzsch, Lüscher, Rago 2020] given a local observable $\mathscr{O}_\alpha(x)$, the best estimator for the true expectaion value $\langle \mathscr{O}_\alpha \rangle$

$$\langle\!\langle \mathcal{O}_{\alpha} \rangle\!\rangle = \frac{1}{N} \sum_{x} \mathcal{O}_{\alpha}(x)$$

is given by the translation average over a set of points $x \in \Lambda$, where $N = |\Lambda|$ is the number of sample points

the (co)variance of the estimator $\langle\langle \mathcal{O}_{\alpha} \rangle\rangle$ is

[Lüscher Lattice 2017]

$$\left\langle \left[\left\langle \left(\mathcal{O}_{\alpha} \right\rangle \right\rangle - \left\langle \mathcal{O}_{\alpha} \right\rangle \right] \left[\left\langle \left(\mathcal{O}_{\beta} \right\rangle \right\rangle - \left\langle \mathcal{O}_{\beta} \right\rangle \right] \right\rangle = \frac{1}{N^2} \sum_{x,y} \Gamma_{\alpha\beta}(x-y) = \frac{1}{N} \sum_{y} \Gamma_{\alpha\beta}(y)$$

where the correlation function Γ and its sum over γ are

$$\Gamma_{\alpha\beta}(y) = \left\langle \left[\mathcal{O}_{\alpha}(y) - \left\langle \mathcal{O}_{\alpha} \right\rangle \right] \left[\mathcal{O}_{\beta}(0) - \left\langle \mathcal{O}_{\beta} \right\rangle \right] \right\rangle, \qquad C_{\alpha\beta} = \sum_{\nu} \Gamma_{\alpha\beta}(y)$$

how to estimate $\Gamma_{\alpha\beta}$ from one single gauge-field configuration?

autocorrelation — Wolff's Γ method

in a traditional computation with (replicas of) a Monte Carlo chain, for a primary observable \mathcal{O}_{α}

[Wolff 2003]

$$\varGamma_{\alpha\beta}(i-j) = \left\langle [\mathcal{O}_{\alpha}^{i} - \left\langle \mathcal{O}_{\alpha} \right\rangle][\mathcal{O}_{\beta}^{j} - \left\langle \mathcal{O}_{\beta} \right\rangle] \right\rangle$$

define an integrated autocorrelation time τ_{α}

$$\tau_{\alpha} = \frac{1}{2\Gamma_{\alpha\alpha}(0)} \sum_{i=-\infty}^{+\infty} \Gamma_{\alpha\alpha}(i), \quad \text{var}(\mathcal{O}_{\alpha}) = \frac{2\tau_{\alpha}}{N} \Gamma_{\alpha\alpha}(0)$$

- $\Gamma_{\alpha\alpha}(0)$ is the "naive" variance of \mathcal{O}_{α}
- in practice, extract from i = 1, ..., N configurations

$$\bar{\Gamma}_{\alpha\beta}(t) = \frac{1}{N-t} \sum_{i=1}^{N-t} [\hat{\mathcal{O}}_{\alpha}^{i} - \bar{\mathcal{O}}_{\alpha}] [\hat{\mathcal{O}}_{\beta}^{i+t} - \bar{\mathcal{O}}_{\beta}]$$

- $\sum \bar{\Gamma}(t)$ truncation \Rightarrow systematic error
- the statistical error of the error is given by Madras-Sokal formula

[Madras, Sokal 1988]

⇒ automatic windowing procedure to balance statistical and systematic uncertainties

Γ method for space-time correlations

straightforward generalization

$$\Gamma_{\alpha\beta}(y) = \left\langle \left[\mathcal{O}_{\alpha}(y) - \left\langle \mathcal{O}_{\alpha} \right\rangle \right] \left[\mathcal{O}_{\beta}(0) - \left\langle \mathcal{O}_{\beta} \right\rangle \right] \right\rangle \sim \exp\{-m|y|\}$$

is expected to fall off exponentially with the distance |y| and a mass m

• $\langle \mathcal{O}_{\alpha} \rangle \neq 0 \Rightarrow$ typically $m = 2m_{\pi}$ (the energy of the 0^{++} state)

in practice, we replace $\langle \mathcal{O}_{\alpha} \rangle \rightarrow \langle \langle \mathcal{O}_{\alpha} \rangle \rangle$

$$\left\langle\!\left\langle \, \varGamma_{\alpha\beta}(y) \,\right\rangle\!\right\rangle = \frac{1}{N} \, \sum_{x} \, \delta \mathcal{O}_{\alpha}(x+y) \delta \mathcal{O}_{\beta}(x), \qquad \delta \mathcal{O}_{\alpha}(x) = \mathcal{O}_{\alpha}(x) - \left\langle\!\left\langle \, \mathcal{O}_{\alpha} \,\right\rangle\!\right\rangle$$

 $\bullet \ \ \text{a biased estimator: } \left\langle \left\langle \left\langle \left(\varGamma_{\alpha\beta}(y) \right) \right\rangle \right\rangle - \varGamma_{\alpha\beta}(y) = -C_{\alpha\beta}/N$

and truncate the sum at a finite summation radius R

$$\langle \langle C_{\alpha\beta}(R) \rangle \rangle = \sum_{|y| < R} \langle \langle \Gamma_{\alpha\beta}(y) \rangle \rangle$$

such that

$$\left\langle \left\langle \left\langle C_{\alpha\beta}(R) \right\rangle \right\rangle \right\rangle = C_{\alpha\beta} \left[1 + O(e^{-mR}) + O(1/N) \right]$$

a higher-dimensional generalization

 Λ can be any D-dimensional subspace of space-time, e.g.

$$\begin{split} \Lambda_T &= \{x_0 \mid x_0 \in [0, T-a]\} \\ \Lambda_{TL} &= \{(x_0, x_1) \mid x_0 \in [0, T-a], x_1 \in [0, L-a]\} \\ \Lambda_{L^3} &= \{\vec{x} \mid x_1, x_2, x_3 \in [0, L-a]\} \end{split}$$

or even an irregular subset of randomly sampled points

with more than one configuration

e.g. in the case of traditional ensembles of gauge field configurations $U_i, i = \{1, \dots, N_{MC}\}$

$$\left\langle\!\left\langle \Gamma_{\alpha\beta}^{i}(y)\right\rangle\!\right\rangle = \frac{1}{N}\sum_{x}\delta\mathcal{O}_{\alpha}(x+y)\delta\mathcal{O}_{\beta}(x), \qquad \delta\mathcal{O}_{\alpha}^{i}(x) = \mathcal{O}_{\alpha}(x) - \left\langle\!\left\langle \bar{O}_{\alpha}\right\rangle\!\right\rangle$$

correlations also in MC time ⇒ "five-dimensional" gamma method

- improve the error estimate if not enough configurations are available
- first explorations along these lines Blum et al. (RBC/UKQCD) 2023

numerical tests — energy density

of the gauge action with gradient flow at flow-time $t \approx t_0 = (t \mid t^2 E_t = 0.3)$

[Lüscher 2010]

the variance of $\langle E_{t_0} \rangle$ plateaus for $R \gtrsim 1.0$ fm

left with different sets of $\Lambda \Rightarrow$ compatible plateau values, different approach

right and scaling the volume, $L/a \in \{32, 48, 64\} \Rightarrow m_{\pi}L \in \{4.5, 6.7, 8.9\}$

 \Rightarrow perfect scaling of the variance with $N \propto L^3$

the error of the error

extending Madras-Sokal formula derived in Wolff 2003, see also Madras, Sokal 1988

$$\operatorname{var}\left(\left\langle\!\left\langle C_{\alpha\beta}(R)\right\rangle\!\right\rangle\right) \approx \frac{N(R)}{N} \left[C_{\alpha\alpha}C_{\beta\beta} + C_{\alpha\beta}^{2}\right]$$

where N(R) is the number of points |y| < R, $\approx \pi^{D/2} (R/b)^D / \Gamma(D/2 + 1)$

grows with R
 has to be balanced with the systematic bias

$$\left\langle \left\langle \left\langle C_{\alpha\beta}(R) \right\rangle \right\rangle \right\rangle = C_{\alpha\beta} \left[1 + O(e^{-mR}) + O(1/N) \right]$$

as in the Γ method case, we can define an integrated autocorrelation volume

$$\tau_{\alpha} = \frac{C_{\alpha\alpha}}{\Gamma_{\alpha\alpha}(0)} \qquad \Rightarrow \qquad \operatorname{var}(\langle\langle O_{\alpha} \rangle\rangle) = \tau_{\alpha} \Gamma_{\alpha\alpha}(0)/N$$

- dimension D dependent definition!
 - estimator as a function of R

$$\tau_{\alpha}(R) = \frac{1}{\Gamma_{\alpha\alpha}(0)} \left\langle \left\langle C_{\alpha\beta}(R) \right\rangle \right\rangle = \frac{1}{\Gamma_{\alpha\alpha}(0)} \sum_{|y| < R} \left\langle \left\langle \Gamma_{\alpha\alpha}(y) \right\rangle \right\rangle$$

hadronic observables

the mesonic two-point function projected to zero momentum, $\Gamma,\Gamma'\in\{\gamma_5,\gamma_\mu,\gamma_5\gamma_\mu,\dots\}$

$$\tilde{C}(x_0 - y_0, \vec{x}) = -a^3 \sum_{\vec{y}} \text{Re Tr} [\Gamma D^{-1}(y, x) \Gamma' D^{-1}(x, y)]$$

estimated using random 3d-volume source $\Rightarrow \vec{x} \in \varLambda_{L^3}$ has an error given by

$$\left\langle \left[\left\langle \left(\tilde{C}(t) \right) \right\rangle - \left\langle \tilde{C}(t) \right\rangle \right]^{2}(R) \right\rangle = \frac{1}{L^{3}} \left[\sum_{|y| \leq R} \left\langle \left(\tilde{C}(t; \vec{x}) \tilde{C}(t; 0) \right) \right\rangle_{c} + O(e^{-mR}) + O(L^{-3}) \right]$$

where each source-sink separation t defines a different observable

scaling with source-sink separation

left: pseudoscalar \tilde{C}_{PP} , right: vector \tilde{C}_{VV} , each source-sink separation defines a different observable

important: saturation is a function of the statistical precision!

- at large source-sink separations, the noise hides space-time correlations
- just as in the case of autocorrelations in Monte Carlo time

scaling with pion mass

as a function of $m_\pi \in \{215, 293, 410\}$ MeV with L=32a, for $\tau(R)$ of the vector correlator $\tilde{\mathcal{C}}_{VV}$

left: at very short distance $x_0 \approx 0.19\,\mathrm{fm}$: lighter pions \Rightarrow larger $\tau(R)$, plateau at larger R right: at $x_0 \approx 0.38\,\mathrm{fm}$ or larger: noisier data $\Rightarrow \tau(R)$ approchaes are comparable

extrapolation to large volumes

our investigation on moderately-large volumes up to 96×64^3 / $m_\pi L \approx 8.9$

 \Rightarrow fit of the variance of the pion correlator at source-sink separation $x_0=4a$

⇒ estimate the error of the same observable on a different volume

e.g. we project a 0.5% error on the pseudoscalar correlator from a single configuration with T=L=192a

preliminary exploration: numerical tests a single 192^4 / $m_\pi L \approx 25$ master-field configuration (same lattice spacing $a\approx 0.095$ fm but slightly different $m_\pi\approx 270\,\text{MeV!}$) stochastic 3d-volume sources at two source times: $x_0=0$ and 96a

[Fritzsch Lattice 2022]

$$\tilde{C}_{PP}(x_0=4a)=0.061\,01(23) \quad \text{and} \quad am_\pi=0.126\,32(27)$$

a 0.38% and 0.22% error respectively, obtained using pyobs

conclusions

- ullet very general method, Wollf's Γ method is the 1d version of this
- already used in recent studies to improve error estimates with few configurations

[Blum et al. (RBC/UKQCD) 2023]

- large-separation correlators have a larger footprint in space
 ⇒ estimation of the integrated correlation volume depends on the statistics
- the whole procedure can be automated, see e.g. M. Bruno's pyobs Python package

https://mbruno46.github.io/pyobs/

- results for $\Gamma_{\alpha\beta}$ on a intermediate-volume lattices
 - ⇒ can inform (at fixed lattice spacing) and help plan large-volume / master-field simulation

details in the recent paper: Bruno, MC, et al. arXiv:2307.15674

position-space correlators

studied on the same intermediate volumes

[MC et al. Lattice 2021; Bruno, MC, et al. arXiv:2307.15674]

• and preliminary results on 96⁴, 192⁴ master fields

[MC et al. Lattice 2022]

ullet using blocking; or Γ method with a sufficiently high density of points

long-T approach as a solution of topological charge freezing

[Francis et al. Lattice 2022; Bruno, MC, et al. arXiv:2307.15674]

for your attention!

thanks

questions?

backup slides

saturation of the error

scaling the density of the points on which the observable E_{t_0} is computed

- red line at 48^3 is each point on the time slice, i.e. Λ_{L^3}
- green, orange, blue: artificial subsampling
- the error increases for a very sparse grid
- the error saturates as a the grid get denser:

 orange: $N=12^3$ point samples on a grid with spacing 4a \Rightarrow same error as the whole time slice (red)

⇒ possible strategy for hadronic observables: evaluate (a) stochastic volume sources vs. (b) a (more or less dense) grid of source points

source points can also be randomly distributed

blocking

of the observable \mathcal{O}_{α} over small blocks of size b^4

$$\mathcal{O}_{B\alpha}(u) = \frac{N_B}{N} \sum_{x \in \mathsf{block}} \mathcal{O}_{\alpha}(x)$$

- this can significantly reduce the cpu and memory footprint of the Γ method, in case of very large volumens
- moderate blocking does not compromise the error of the error
- the scaling of $\Gamma_{\alpha\beta}$ is non-trivial, $\mathrm{var}(\mathcal{O}_{\alpha}) = \tau_{\alpha}\Gamma_{\alpha\alpha}/N$ $\Rightarrow \tau_{\alpha}(R)$ depends on the blocking possible solution: define τ_{α} with the non-blocked $\Gamma_{\alpha\alpha}(0)$

e.g. 192^4 lattice points $\Rightarrow 48^4$ blocks of length 4a

truncated 3d sums

$$\tilde{C}^{\text{cut}}(t, r_{\text{max}}) = \int d^3 \vec{x} \, \theta(r_{\text{max}} - \left| \vec{x} \right|) C(\vec{x}, t)$$

- explored in e.g. Liu, Liang, Yang 2018
- \bullet larger t require larger $r_{\rm max}$ to reach the same $\tilde{C}^{\rm cut}/\tilde{C}$
- the pion correlator (top) is especially slow, does not saturate!
- the nucleon one (bottom) saturates at $r_{\rm max} \approx 20a$, but also the error saturates

⇒ no statistical benefit

