

Exploiting hidden symmetries to accelerate the lattice calculation of $K \rightarrow \pi\pi$ decays with G-parity boundary conditions

07/31/23

<u>University of Bern & Lund</u> Dan Hoying

BNL and BNL/RBRC

Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Raza Sufian Tianle Wang

<u>CERN</u>

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Luchang Jin (RBRC)

The RBC & UKQCD collaborations

Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Erben Vera Gülpers Maxwell T. Hansen **Tim Harris** Ryan Hill **Raoul Hodgson** Nelson Lachini Zi Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli **James Richings** Azusa Yamaguchi Andrew Z.N. Yong

<u>Liverpool Hope/Uni. of Liverpool</u> Nicolas Garron

<u>LLNL</u> Aaron Meyer

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng

University of Regensburg

Davide Giusti Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Alessandro Barone Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Nikolai Husung Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

Motivation and approach

- Direct CPV in $K \rightarrow \pi\pi$ decay a sensitive probe for such physics.
 - May help explain matter dominance in Universe.
- Experimental result with ~10% error available (CERN/FNAL, 1990s)
- Standard Model calculation only recently possible due to large nonperturbative contributions: Lattice QCD!
- Lattice calculation via 3-flavor weak effective theory:

$$\begin{array}{ll} \text{Measure of} \\ \text{direct CPV} \\ (* \text{not including} \\ \text{EM, isospin} \\ \text{breaking}) \\ \underline{\text{lattice}} \\ A_I = \langle (\pi\pi)_I | H_W | K^0 \rangle \\ \text{isospin} \\ \hline \\ \text{isospin} \\ \hline \\ \hline \\ \text{isospin} \\ \hline \\ \hline \\ \text{isospin} \\ \hline \\ \hline \\ \hline \\ \text{Brockhaven} \\ \hline \\ \hline \\ \\ \text{MB: Renormalization in consistent scheme} \\ (\overline{\text{MS}}) \text{ required} \\ \hline \\ \text{NB: Renormalization in consistent scheme} \\ (\overline{\text{MS}}) \text{ required} \\ \hline \\ \text{NB2: Lellouch-Lüscher finite-volume correction required!} \\ \hline \end{array}$$

Calculation status

```
[Phys.Rev.Lett. 115 (2015) 21, 212001]
```

- RBC & UKQCD performed first complete calculation of ϵ' in 2015.
- Improved result in 2020:
 - +3.5x statistics
 - multiple $\pi\pi$ operators to better control excited state systematics.
- Result: $stat \qquad sys \qquad [Phys.Rev.D \ 102 \ (2020) \ 5, \ 054509]$ $\operatorname{Re}(\epsilon'/\epsilon) = 21.7(2.6)(8.0) \times 10^{-4} \qquad [Lattice]$ $16.6(2.3) \times 10^{-4} \qquad [Experiment]$
- Agrees with experiment but with ~4x the total error

Error budget and ways forward

- Dominated by systematic errors:
 - (~12%) Perturbation theory in Wilson coeffs to match 3f 4f weak EFT at m_c
 - Improve with 4f calculation (active charm) : computationally infeasible?
 - Non-perturbative calculation of matching matrix : investigation underway
 [M.Tomii, PoS LATTICE2018 (2019) 216]
 - (~23%) Lack of EM+isospin-breaking contributions in lattice calculation
 - Lattice measurement of these effects extremely challenging but approach is being formulated. [Phys.Rev.D 106 (2022) 1, 014508] [Christ, PoS LATTICE2021 (2022) 312]
 - (~12%) Use of single lattice spacing to compute I=0 amplitude
 - Repeat calculation with multiple, finer lattice spacings: my current focus

Physical kinematics and GPBC

Issue:

 $\pi\pi$ ground-state is 2 pions at rest, energy ~ 270 MeV $\ll m_K \sim 500$ MeV

• Options:

Signal dominated by unphysical decay!

- Attempt to extract physical decay as excited state contribution [cf M.Tomii, Thurs @2.30pm]
- Manipulate boundary conditions (BCs) to change ground-state pion momenta.
- For I=0 channel, G-parity BCs make pions antiperiodic while conserving isospin: $\hat{G}\pi^{\pm,0} = -\pi^{\pm,0}$

$$\begin{array}{|c|c|} \hline \mathbf{GPBC} & \mathbf{Periodic} \\ p_{x,y,z} = (2n+1)\pi/L & \mathbf{vs} & \begin{array}{|c|} \mathbf{Periodic} \\ p_{x,y,z} = 2n\pi/L \end{array} \\ \hline \mathbf{E}_{\pi\,\mathrm{gnd}} = \sqrt{m_{\pi}^2 + 3\frac{\pi^2}{L^2}} \longrightarrow E_{\pi\pi\,\mathrm{gnd}} = 2E_{\pi\,\mathrm{gnd}}(L) + \Delta_{\mathrm{int}}(L) \end{array}$$

Tune L to match $E_{\pi\pi\,\mathrm{gnd}}=m_K$ Measured 0.348(1) vs 0.3559(1) (2% different)

GPBC on quarks

• G-parity mixes quark flavors:

$$\hat{G}\left(\begin{array}{c}u\\d\end{array}\right)\hat{G}^{-1} = \left(\begin{array}{c}-C\bar{d}^{T}\\C\bar{u}^{T}\end{array}\right)$$

Rewrite as new "flavor doublet"

charge-conjugation (spin) matrix

$$\hat{G}\underbrace{\begin{pmatrix} d\\ C\bar{u}^T \end{pmatrix}}_{\psi} \hat{G}^{-1} = \begin{pmatrix} C\bar{u}^T\\ -d \end{pmatrix} \qquad \hat{G}\psi\hat{G}^{-1} = i\sigma_2\psi$$

- G-parity BC becomes a "flavor rotation" occurring at the boundary
- Gauge invariance demands complex-conjugate (charge conjugate) BCs for gauge links.

GPBC Dirac operator

 $\pm \sigma_2$ at spatial boundaries, 1 otherwise induces GPBC

$$\mathcal{M}(x,y) = \frac{1}{2} \sum_{\mu} \left[\tilde{U}_{\mu}(x) \gamma_{\mu} B^{+}_{\mu}(x_{\mu}) \delta_{x+\hat{\mu},y} - B^{-}_{\mu}(x_{\mu}) \tilde{U}^{\dagger}_{\mu}(x) \gamma_{\mu} \delta_{x-\hat{\mu},y} \right] + m \delta_{x,y}$$

$$\begin{pmatrix} U_{\mu}(x) & 0 \\ 0 & U^{*}_{\mu}(x) \end{pmatrix}$$

- Use of two-flavor operator **doubles the cost** of applying Dirac op.
- HMC even more expensive: $det(\mathcal{M}^{\dagger}\mathcal{M})$ is a 4-flavor determinant!
 - 2f light quarks requires square-root of determinant (RHMC or "EOFA" [for DWF])
 - 1f heavy quark requires fourth root (RHMC)
 - Overheads of these algorithms also limit tuning opportunities (e.g. Hasenbusch)

Gauge field generation **very** expensive Strong motivation for improved algorithms

Complex conjugate relation

$$X = C\gamma^5 \implies X^{-1}\gamma_{\mu}^*X = \gamma_{\mu}$$

$$\sigma_2 \tilde{U}^*_{\mu} \sigma_2 = \tilde{U}_{\mu}$$

$$\begin{pmatrix} U_{\mu}(x) & 0 \\ 0 & U^*_{\mu}(x) \end{pmatrix}$$

- X relates gamma-matrices to their complex conjugates
- σ₂ relates (G-parity) gauge links to their complex conjugates

$$\Xi = -i\sigma_2 X \quad \Longrightarrow \quad \Xi^{-1}\mathcal{M}^*(x,y)\Xi = \mathcal{M}(x,y)$$

Makes E Hermitian

ullet

E relates Dirac matrix to its complex conjugate! a curious property – useful?

Flavor structure

$$\mathcal{M} = \Xi^{-1} \mathcal{M}^* \Xi$$
$$\begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ \mathcal{M}_{21} & \mathcal{M}_{22} \end{pmatrix} = \begin{pmatrix} X^{-1} \mathcal{M}_{22}^* X & -X^{-1} \mathcal{M}_{21}^* X \\ -X^{-1} \mathcal{M}_{12}^* X & X^{-1} \mathcal{M}_{11}^* X \end{pmatrix}$$

Equate lower rows

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ -X^{-1}\mathcal{M}_{12}^*X & X^{-1}\mathcal{M}_{11}^*X \end{pmatrix}$$

Dirac matrix rows are related by complex conjugation! Does this imply some kind of "degeneracy"?

A real-ly interesting relation

$$\mathcal{M} = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ -X^{-1}\mathcal{M}_{12}^*X & X^{-1}\mathcal{M}_{11}^*X \end{pmatrix}$$

phase
$$R = \frac{\alpha}{\sqrt{2}} \begin{pmatrix} -X & i \\ -1 & iX \end{pmatrix}$$

$$X^2 = -1$$

$$\Xi = -RR^T$$

$$R^{\dagger}\mathcal{M}R = \begin{pmatrix} -\operatorname{Re}(X\mathcal{M}_{11}X + X\mathcal{M}_{12}) & -\operatorname{Im}(X\mathcal{M}_{11} + X\mathcal{M}_{12}X) \\ -\operatorname{Im}(\mathcal{M}_{11}X + \mathcal{M}_{12}) & \operatorname{Re}(\mathcal{M}_{11} + \mathcal{M}_{12}X) \end{pmatrix} = \mathcal{M}_{\mathrm{re}}$$

The G-parity Dirac operator can be rotated with a unitary matrix into a real matrix!

Can we exploit this?

Real-ly big savings?

$$\begin{aligned} \underbrace{\operatorname{Standard pseudofermion integral}}_{\operatorname{det}(\mathcal{M}^{\dagger}\mathcal{M}) &= \int [d\phi_{r}][d\phi_{i}] \exp\left(-\phi^{\dagger}(\mathcal{M}^{\dagger}\mathcal{M})^{-1}\phi\right) \\ &= \int [d\phi_{r}'][d\phi_{i}'] \exp\left(-\phi^{\prime}(\mathcal{M}^{\dagger}_{\operatorname{re}}\mathcal{M}_{\operatorname{re}})^{-1}\phi^{\prime}\right) \\ &= \int [d\phi_{r}'][d\phi_{i}'] \exp\left(-\phi_{r}'^{T}(\mathcal{M}^{\dagger}_{\operatorname{re}}\mathcal{M}_{\operatorname{re}})^{-1}\phi_{r}' - \phi_{i}'^{T}(\mathcal{M}^{\dagger}_{\operatorname{re}}\mathcal{M}_{\operatorname{re}})^{-1}\phi_{i}'\right) \\ &= \left[\int [d\phi_{r}'] \exp\left(-\phi_{r}'^{T}(\mathcal{M}^{\dagger}_{\operatorname{re}}\mathcal{M}_{\operatorname{re}})^{-1}\phi_{r}'\right)\right]^{2} \\ \end{aligned}$$
G-parity squared-operator determinant is an exact square!
$$\underbrace{\operatorname{det}(\mathcal{M}^{\dagger}\mathcal{M})^{1/2} = \int [d\phi_{r}'] \exp\left(-\phi_{r}'^{T}(\mathcal{M}^{\dagger}_{\operatorname{re}}\mathcal{M}_{\operatorname{re}})^{-1}\phi_{r}'\right)}_{\operatorname{Two-flavor determinant}} \end{aligned}$$

No need for EOFA / RHMC for light quarks!

X-conjugate vectors

 \mathcal{M}_{re} is a complicated operator that is hard to implement Transform to a more convenient form!

$$-\phi_r'^T (\mathcal{M}_{\rm re}^{\dagger} \mathcal{M}_{\rm re})^{-1} \phi_r' = -\phi_r'^T R^{\dagger} (\mathcal{M}^{\dagger} \mathcal{M})^{-1} R \phi_r'$$
$$= -\chi^{\dagger} (\mathcal{M}^{\dagger} \mathcal{M})^{-1} \chi$$

Choose $\alpha = 1$

$$\chi \equiv R\phi'_r = \frac{1}{\sqrt{2}} \begin{pmatrix} -X\phi'_{r,1} + i\phi'_{r,2} \\ -\phi'_{r,1} + iX\phi'_{r,2} \end{pmatrix} = \begin{pmatrix} \chi_1 \\ -X\chi_1^* \end{pmatrix}$$
 "X-conjugate vector"

 $\left(\begin{array}{c}\phi_{r,1}'\\\phi_{r,2}'\end{array}\right)$

Write in terms of new, complex fields but with half as many complex degrees of freedom as a standard pseudofermion due to "X-conjugacy"

X-conjugate Dirac operator

$$\psi = \mathcal{M}\chi = \begin{pmatrix} \mathcal{M}_{11} & \mathcal{M}_{12} \\ -X^{-1}\mathcal{M}_{12}^*X & X^{-1}\mathcal{M}_{11}^*X \end{pmatrix} \begin{pmatrix} \chi_1 \\ -X\chi_1^* \end{pmatrix}$$
$$= \begin{pmatrix} \mathcal{M}_{11}\chi_1 - \mathcal{M}_{12}X\chi_1^* \\ -X\left[\mathcal{M}_{11}\chi_1 - \mathcal{M}_{12}X\chi_1^*\right]^* \end{pmatrix} = \begin{pmatrix} \psi_1 \\ -X\psi_1^* \end{pmatrix}$$

- Dirac operator preserves X-conjugacy –
- Need only solve for ψ_1 , reconstruct $-X\psi_1^*$ afterwards

Acts only between "bulk" sites Acts only across boundary
$$\psi_1 = \mathcal{M}_{11}\chi_1 - \mathcal{M}_{12}X\chi_1^*$$
$$\equiv \mathcal{M}_X\chi_1$$

Looks like a new (unflavored) Dirac operator with "X-conjugate" BCs!

$$\hat{T}^{-1}\psi(L-1)\hat{T} = -X\psi^*(0)$$

X-ceptional gains!

$$\det(\mathcal{M}^{\dagger}\mathcal{M})^{1/2} = \int [d\phi_{r}'] \exp\left(-\phi_{r}'^{T}(\mathcal{M}_{\mathrm{re}}^{\dagger}\mathcal{M}_{\mathrm{re}})^{-1}\phi_{r}'\right)$$
$$= \int [d\chi_{1,r}][d\chi_{1,i}] \exp\left(-\chi_{1}^{\dagger}(\mathcal{M}_{X}^{\dagger}\mathcal{M}_{X})^{-1}\chi_{1}\right)$$

- X-conjugate Dirac op easy to implement, just a new BC
- As an unflavored operator, application cost ½ of regular GPBC operator
- Evaluation of 2f determinant same as regular 2f determinant
 - No need for square-root!

Dramatic reduction in evolution cost!

40ID ensemble

- $40^3 \times 64$ DWF+Iwasaki-DSDR ensemble
 - $a^{-1} = 1.73 \text{ GeV vs } 1.38 \text{ GeV previous}$
 - Same physical volume, physical masses
- Evolving on Perlmutter GPU
- Switched to X-conjugate action and retuned evolution:

- Original: 4.36hrs (32 nodes) 139.5 node-hrs
- New : 1.12hrs (32 nodes) 35.8 node-hrs
 - : 1.61hrs (16 nodes) 25.76 node-hrs

5.4x (or 3.9x) reduction in cost, 2.7x (or 3.9x) speedup

>1300 trajectories generated in ~1 month (avg ~45/day)

~ 1/5(?) of target statistics!

Eigenvectors of Hermitian Dirac Op

$$\mathcal{M}^{\dagger}\mathcal{M}\psi = \lambda\psi \qquad \longrightarrow \qquad R^{\dagger}\mathcal{M}^{\dagger}\mathcal{M}R(R^{\dagger}\psi) = \lambda(R^{\dagger}\psi)$$
$$\longrightarrow \qquad \mathcal{M}_{\mathrm{re}}^{T}\mathcal{M}_{\mathrm{re}}(R^{\dagger}\psi) = \lambda(R^{\dagger}\psi)$$
$$\underbrace{(R^{\dagger}\psi)}_{v_{r}}$$

• $\mathcal{M}_{\mathrm{re}}^T \mathcal{M}_{\mathrm{re}}$ is real, symmetric:

• evecs v_r can be chosen to be real vectors

$$\psi \equiv Rv_r = \frac{1}{\sqrt{2}} \begin{pmatrix} -Xv_{r,1} + iv_{r,2} \\ -v_{r,1} + iv_{r,2} \end{pmatrix} = \begin{pmatrix} \psi_1 \\ -X\psi_1^* \end{pmatrix}$$

- Evecs ψ can be expressed as X-conjugate vectors!
- Possible to solve for using X-conjugate Dirac op

2x cost reduction in generating evecs!2x reduction in memory and disk footprint for storing!

Conclusions and Outlook

- Improving lattice calculation of ϵ' requires addressing sys. errors.
- Continuum limit will reduce/eliminate a dominant, 12% error. Expensive due to G-parity BCs.
- Exploiting properties of the G-parity Dirac op, re-expressed fermion determinant in terms of a cheaper, "X-conjugate" op.
- Achieve 4x speed-up on same hardware for finer, "40ID" ensemble (2.7x for more efficient job layout)
- Sufficient trajectories for repeat analysis expected to be completed this year as a result!
- 2x speed-up also achieved in eigenvector generation for measurements.

