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Introduction

The hadronic tensor W µν is a field-theoretic quantity that encodes

the hadronic response to an external current in inclusive scattering

processes. This makes it useful for calculating cross-sections, as the

differential cross section goes as

dσ ∝ LµνW µν,

where Lµν is the leptonic tensor, calculable perturbatively in the

electroweak theory[1]. The hadronic tensor is defined for a given
hadronic state |H〉 at momentum p = (p0, p) and external current
Jµ via the QCD correlation function:

W µν(p, q) ∝
∫

d4xeiqx〈H, p|Jµ(x)Jν(0)|H, p〉.

For low-energy scattering, it is natural to calculate this quantity non-

perturbatively using Lattice QCD. This presents a unique challenge:

in order to carry out lattice calculations, it is necessary to perform a

Wick rotation from Minkowski to Euclidean spacetime to avoid the

numeric instabilities of the sign problem, but after conducting the

calculation on the lattice theWick rotation back toMinkowski space-

time is an ill-posed problem

WEuc.
µν (q2, τ ) =

∫
dωe−ωτWµν(q2, ω).

Numerical reconstruction methods such as Bayesian

Reconstruction[2][3], the Maximum Entropy Method[3][4], and
linear inverse methods like Backus-Gilbert [4][5][6] have been pro-
posed as possible solutions to the inverse problem.

OurWork

Here we present our preliminary investigation of the electromag-

netic hadronic tensor of the pion (|H〉 = |π〉, Jµ = 2
3ūγµu − 1

3d̄γµd)
using a modification of Backus-Gilbert developed by Hansen, Lupo,

and Tantalo which wewill refer to as theHLTmethod[6]. This project
is a proof-of-concept and our hope is to refine the reconstruction

process to apply to more sophisticated systems, such as neutrino-

nucleon scattering.

Correlation functions

Calculation on the lattice requires the correlation functions

C4-ptµν (q, τ ) = lim
ti→−∞

lim
tf→∞

∑
xf

∑
x1,x2

e−iq(̇x2−x1)

〈0|χπ(xf )Jµ(x2)Jν(x1)χ̄π(xi)|0〉, τ = t2 − t1,
(1)

C2-pt = lim
ti→−∞

lim
tf→∞

∑
xf

〈0|χπ(xf )χ̄π(xi)|0〉, (2)

with χπ being an interpolating operator that couples to the pion. The

ratio of (1) and (2) gives us the Euclidean hadronic tensor:

WEuc.
µν (q, τ ) ∼

C4-ptµν (q, τ )
C2-pt

. (3)

On a finite lattice, we take tf � t2, t1 � ti to ensure exponentially
supressed excited states and that the current couples to the appro-

priate hadronic states. The distinct topologies of the four-point cor-

relation function can be seen in Fig.1.

Numerical details

Ensemble information: Computations were performed on two

MILC ensembles using 2 + 1 + 1 flavors of dynamical quarks with
physical masses, one-loop Symanzik-improved gauge action, and

HISQ fermion action[7][8]. For the valence quarks we again use
the HISQ action. The configurations are as follows:

L3 × T a (fm) q tsep Nlow Nhigh #conf
323 × 48 0.15 [0,0,0] 8a 4000 144 30

483 × 64 0.12 { [0,0,0], 10a 4000 192 47

[±1,0,0],
[±1,±1,0]
[±2,0,0]}

Table 1. Configuration paramters for the two lattices used. Because we

compute on a finite lattice, tsep = tf − t2 = t1 − ti defines our working

asymptotic region where excited states are exponentially supressed and our

current couple to the desired hadronic states.

All-to-All: As seen in Fig. 1 the four-point function consists of

both connected and disconnected diagrams and three time

separations. In order to extract as much information from the

hadronic spectrum as we can, we use the all-to-all method for

quark propagators, as implemented in Grid and its management
workflow system Hadrons[9][10][11].

D−1
A2A(x, y) =

Nlow∑
l=1

vl(x)w†
l (y) +

Ntotal∑
h=Nlow+1

vh(x)w†
h(y),

vl(x) = φl(x), wl(x) = φl(x)/λl.

(4)

From these low- and high-modes we can construct spatially

summed meson fields

Πij(tx; Γ) ≡
∑

x
w

†
i Γvj(x), (5)

such that correlation functions are matrix multiplications of the

appropriate meson fields. For example, the pseudoscalar

two-point function is computed as

C2-pt(tf − ti) =
∑
jk

Πjk(tf ; γ5 ⊗ γ5)Πkj(tf ; γ5 ⊗ γ5).

We have developed a contraction code in Python to maximize

efficiency on Fermilab LQ cluster.

Figure 1. Topologically distinct quark-flow diagrams contributing to the hadron

tensor. The ⊗ represents an insertion of the electromagnetic current, and the
shaded circles the pion interpolating fields.

The HLTMethod

The HLT method is a modification of the Backus-Gilbert method

and as such works much the same way, producing coefficients g =
(g0, ..., gt, ...gtmax) to a regularized smearing function constructed
from a set of basis functions b(ω, t) that approaches a delta func-
tion in the limit of zero smearing width. Hansen, Lupo, and Tantalo’s

modification consists of altering the minimization functional in such

a way to include a smearing function ∆σ(E∗, E) as an input so that

the minimization occurs on the L2-norm of the input and output

smearing functions

A[g] =
∫ ∞

E0
dEeαE

∣∣∣∣∣
tmax∑
t=1

gt(E∗)b(E, t + 1) − ∆σ(E∗, E)

∣∣∣∣∣
2

. (6)

In reality, however, since our correlator data contains uncertainties,

the actual minimization occurs on a weighted sum of the A[g] func-
tional and a covariance term, with the weighting parameter chosen

in such a way that balances the systematic errors and the statistical

errors

W [λ, g] = (1 − λ)A[g] + λ
B[g]

C(0)2)
, B[g] = gT Cov g. (7)

Our implementation of the HLTmethod was done in C++ in order to

take advantage of the Eigen library for the extended-precision ma-

trix computations necessary to generate the g coefficients. We use
a Gaussian as the input smearing function. As a check of our imple-

mentation, we have replicated the three-peak “toy model” as well as

the two-particle term of their exact “benchmark model” below.

Figure 2. Top: the toy model of three delta-peaks. Bottom: Benchmark system

corresponding to [4]. Errors are systematic only.

Preliminary Findings

Application of the HLT method to the two-point pseudoscalar

correlation function is performed as a sanity check. In the

reconstruction the higher-statistics lattice shows a strong peak at

mπ with a possible feature at the π(1300) state.
A preliminary spectral analysis of the vector two-point functions

has been carried out using standard multi-exponential fits.

Present work is underway to obtain stable spectral

reconstructions using the HLT method. An interesting technical

complication arises due to the use of staggered fermions: the

even and odds sites correspond to different spectral densities.

The connected four-point functions are shown on the bottom in

Fig. 4. The region relevant for the spectral reconstruction on the

hadronic tensor is on the left-hand side, aτ = [0, 44).

Figure 3. Top: Raw data of the pseudoscalar two-point function. Fitting is done

on a multi-cosh on the interval aτ = [7, 18]and returns the pion mass within
errors. Bottom: HLT reconstruction using C2-pt(τ ) as input; aτ = [0, 20]
σ = mπ/2, λ = 0.3; errors follow the convention of [6]

Figure 4. Top: Raw data of the vector two-point function. Even and odd

timeslices are differentiated to highlight the result of using staggered fermions.

Bottom: The connected diagrams (A and B) of Fig.1. For both an improvement in

statistics is needed

FutureWork

We are investigating an alternate method using conformal

mappings and Nevanlinna interpolation. For more information

see [12] and Dr. Jay’s Parallel Talk.
We have started runs to improve statistics on our 483 × 64,
a = 0.12 fm dataset, where we aim to increase the number of
configurations from 47 to 175.
With sufficient compute time we will proceed to a 483 × 64,
a = 0.15 fm lattice in order to study the infinite-volume limit.

After further analysis, we intend to begin a treatment of the

hadronic tensor of the nucleon.

With the hadronic tensor of the nucleon, we would calculate

neutrino-nucleon cross sections.
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