On the Baryon Octet: Sigma Terms in the continuum limit from $N_{\mathrm{f}}=2+1$ QCD with Wilson fermions

Pia Leonie Jones Petrak
Gunnar Bali, Sara Collins, Jochen Heitger, Simon Weishäupl

Why determine the sigma terms?

- quark mass contributions
\rightarrow decomposition of the hadron mass
- investigate flavour symmetry breaking in the baryon octet \Rightarrow nucleon N , lambda Λ, sigma Σ and xi Ξ (in our setup $m_{\mathrm{u}}=m_{\mathrm{d}}$)
- WIMP-nucleon scattering cross-sections (e.g. XENON1T)
- discrepancies between results for the nucleon pion sigma term from LQCD and phenomenology still to be resolved

- very few determinations for hyperons

How are the sigma terms defined?

$$
\sigma_{q B}=m_{q}\langle B| \bar{q} \mathbf{1} q|B\rangle
$$

We're interested in:

- strange sigma terms

$$
\sigma_{s B}
$$

- quark mass m_{q} and a scalar current inserted
- B refers to the ground state of a baryon B at rest.
- pion sigma terms

$$
\sigma_{\pi B}=\sigma_{u B}+\sigma_{d B}
$$

- renormalisation via normalisation factor r_{m} (determined by ALPHA, RQCD), the ratio of flavour non-singlet and singlet scalar density renormalisation parameters \rightarrow accounts for the mixing of quark flavours under renormalisation for Wilson fermions
[ALPHA 2101.10969], [RQCD 2211.03744]

How to access the matrix element

\rightarrow spectral decompositions

$$
C_{2 \mathrm{pt}}\left(t_{\mathrm{f}}\right)=\sum_{\vec{x}}\left\langle\mathcal{O}_{\text {snk }}\left(\vec{x}, t_{\mathrm{f}}\right) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle=\sum_{n}\left|Z_{n}\right|^{2} e^{-E_{n} t_{\mathrm{f}}}
$$

where $Z_{n}=\langle\Omega| \mathcal{O}_{\text {snk }}|n\rangle$ (vacuum state Ω) is the overlap of the interpolator $\mathcal{O}_{\text {snk }}$ onto the state n

$$
\begin{aligned}
C_{3 \mathrm{pt}}\left(t_{\mathrm{f}}, t\right) & =\sum_{\vec{x}, \vec{y}}\left\langle\mathcal{O}_{\mathrm{snk}}\left(\vec{x}, t_{\mathrm{f}}\right) J(\vec{y}, t) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle-\sum_{\vec{x}, \vec{y}}\langle J(\vec{y}, t)\rangle\left\langle\mathcal{O}_{\mathrm{snk}}\left(\vec{x}, t_{\mathrm{f}}\right) \overline{\mathcal{O}}_{\mathrm{src}}(\overrightarrow{0}, 0)\right\rangle \\
& =\sum_{n, n^{\prime}} Z_{n^{\prime}} Z_{n}^{*}\left\langle\mathbf{n}^{\prime}\right| \mathbf{J}|\mathbf{n}\rangle e^{-E_{n} t} e^{-E_{n^{\prime}}\left(t_{\mathrm{f}}-t\right)}
\end{aligned}
$$

t_{f} is the source-sink separation $\& t$ is the insertion time of the current

Connected and disconnected contributions

How to access the scalar matrix element

ratio method (cannot resolve \mathbf{c}_{11} (excited-to-excited) so far)

$$
R\left(t_{\mathrm{f}}, t\right)=\frac{C_{3 \mathrm{pt}}\left(t_{\mathrm{f}}, t\right)}{C_{2 \mathrm{pt}}\left(t_{\mathrm{f}}\right)}=g_{S}^{q}+c_{0 \leftrightarrow 1}\left(\mathrm{e}^{-\Delta E_{1} \cdot t}+\mathrm{e}^{-\Delta E_{1} \cdot\left(t_{\mathrm{f}}-t\right)}\right)+\ldots
$$

summation method (only have access to a large number of insertion times for $R^{\text {dis }}$)

$$
\begin{aligned}
\sum_{t=c}^{t_{\mathrm{f}}-c} R\left(t_{\mathrm{f}}, t\right)=g_{S}^{q}\left(t_{\mathrm{f}}-2 c+1\right) & +\frac{2 c_{0 \leftrightarrow 1}}{1-\mathrm{e}^{\Delta E_{1}}}\left(\mathrm{e}^{\Delta E_{1}\left(c-t_{\mathrm{f}}\right)}-\mathrm{e}^{\Delta E_{1}(1-c)}\right) \\
& +c_{11}\left(t_{\mathrm{f}}-2 c+1\right) \mathrm{e}^{-\Delta E_{1} t_{\mathrm{f}}}+\ldots
\end{aligned}
$$

linear limit
$\Delta E_{1}=E_{1}-E_{0}$

$$
\sum_{t=c}^{t_{\mathrm{f}}-c} R\left(t, t_{\mathrm{f}}\right) \rightarrow g_{S}^{q}\left(t_{\mathrm{f}}-2 c+1\right)+\text { constant }
$$

$c_{0 \leftrightarrow 1}: B_{0} \leftrightarrow B_{1}$ energy gap matrix elements of transitions between the ground and first excited state

Numerical setup - CLS ensembles

Lüscher-Weisz gluon action and the Sheikholeslami-Wohlert fermion action with $N_{\mathrm{f}}=2+1$

Numerical Setup

Quark mass plane

- around 25 out of 32 ensembles (final set)
- do not yet use the more precise sequential data for the nucleon
- for some ensembles not all configurations used yet (especially disconnected)
- six different lattice spacings
- High statistics: error estimation in the analysis via the Γ-method
[Wolff: arXiv:hep-lat/0306017]
[Ramos: arXiv:1809.01289]
pyerrors python package
[Joswig et al.: arXiv:2209.14371]

Numerical setup

Connected \& Disconnected Three-Point Functions

- connected
- $\boldsymbol{m}_{\boldsymbol{l}}=\boldsymbol{m}_{\boldsymbol{s}}$ ensembles:
one measurement at $t_{\mathrm{f}} / a=11$, two at $t_{\mathrm{f}} / a=[14,16]$ and four at $t_{\mathrm{f}} / a=19$
- otherwise:
two measurements (forward and backward direction) for each t_{f} on every configuration
- four different source-sink separations typically corresponding to $t_{\mathrm{f}} \approx[0.7 \mathrm{fm}, 0.9 \mathrm{fm}, 1 \mathrm{fm}, 1.2 \mathrm{fm}]$
- disconnected
- correlate a quark loop with a baryon two-point function
- 20 different spatial source positions on every configuration of the two-point function (different for $\boldsymbol{m}_{\boldsymbol{l}}=\boldsymbol{m}_{\boldsymbol{s}}$ ensembles e.g. N202: $26, \mathrm{~J} 500: 27$)
- A reasonable signal is obtained for t_{f} up to around 1.22 fm .

Simultaneous fits to connected \& disconnected ratios

insertion time $t / a-t_{\mathrm{f}} / 2 a$

source-sink separation t_{f} / a

insertion time $t / a-t_{\mathrm{f}} / 2 a$

source-sink separation t_{f} / a

- $\boldsymbol{\Xi}$ baryon at $a=0.076 \mathrm{fm}$
- $\boldsymbol{m}_{\pi}=352 \mathrm{MeV}$ (S400)
- simultaneous fit:
$\rightarrow \chi^{2} / \chi_{\exp }^{2} \approx 0.6$
$\rightarrow \Delta \approx 720 \mathrm{MeV}$
- top:
$\rightarrow \bar{u} u$ current (left)
$\rightarrow \bar{s} s$ current (right)
- bottom:
$\rightarrow \bar{l} l$ current (left)
$\rightarrow \bar{s} s$ current (right)

Two-state fits

'Octet baryon isovector charges
from $N_{\mathrm{f}}=2+1$ LQCD' $^{\prime}$
[RQCD 2305.04717]

$$
\begin{aligned}
R\left(t_{\mathrm{f}}, t\right)=g_{S}^{q} & +c_{0 \leftrightarrow 1}\left(\mathrm{e}^{-\Delta E_{1} \cdot t}+\mathrm{e}^{-\Delta E_{1} \cdot\left(t_{\mathrm{f}}-t\right)}\right) \\
& +c_{0 \leftrightarrow 2}\left(\mathrm{e}^{-\Delta E_{2} \cdot t}+\mathrm{e}^{-\Delta E_{2} \cdot\left(t_{\mathrm{f}}-t\right)}\right)
\end{aligned}
$$

- set prior for ΔE_{1} to $\boldsymbol{B}(\mathbf{1}) \pi(-1)$ (lower green bars)
\rightarrow set prior for ΔE_{2} to a mean of the results for $\boldsymbol{\Delta} \boldsymbol{E}_{\mathbf{2}}$ from simultaneous fits to the four channels $J \in\{A, S, T,(V)\}$ setting a prior for ΔE_{1} to the lowest multi-particle state (orange points)

Comparison with Octet Baryon Isovector Scalar Charges

- performed one- \& two-state fits
- consistency with baryon isovector charges from [RQCD 2305.04717]
- for now: used stochastic data for the nucleon (less precise)
- isovector ground-state matrix element consistent irrespective of a one- or two-state fit being performed

PROCEDURE

> Perform extrapolation for different fitting methods to estimate systematics arising from any residual excited state contamination in the final physical sigma terms.

Chiral Perturbation Theory and Cut-off Effects

$$
\begin{aligned}
\sigma_{\pi}^{B} \approx & \left(1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathrm{M}}^{2}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right) \\
& \cdot \mathbb{M}_{\pi}^{2}\left\{\frac{2}{3} \overline{\mathrm{~b}}-\delta \mathbb{\mathrm { b }}_{B}+\frac{\mathbb{m}_{0}^{2}}{2\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, \pi}}{\mathbb{M}_{\pi}} f^{\prime}\left(\frac{\mathbb{M}_{\pi}}{\mathbb{m}_{0}}\right)+\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{m_{0}}\right)\right]\right\}
\end{aligned}
$$

$$
\sigma_{s}^{B} \approx\left(1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathrm{M}}^{2}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right)
$$

$$
\cdot\left(2 \mathbb{M}_{\mathbb{K}}{ }^{2}-\mathbb{M}_{\pi}^{2}\right)\left\{\frac{2}{3} \overline{\mathrm{~b}}+2 \delta \mathfrak{b}_{B}+\frac{\mathrm{m}_{0}^{2}}{\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{2 g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{\mathbb{m}_{0}}\right)\right]\right\}
$$

Cut-off effects are modelled as $\mathrm{O}\left(a^{2}\right)$ here as $\mathrm{O}(a)$ improvement term (g_{S} neglected in sigma term determination) expected to be small ($a^{-3} e_{S}\left(g_{0}^{2}\right)$ drops out when performing the vacuum subtraction):

$$
\left(S_{\mathrm{I}}\right)^{0}(x)=S^{0}(x)+\frac{1}{\sqrt{2 N_{\mathrm{f}}}} a^{-3} e_{S}\left(g_{0}^{2}\right) \mathbb{1}+\frac{1}{\sqrt{2 N_{\mathrm{f}}}} a g_{s}\left(g_{0}^{2}\right) \widetilde{\operatorname{Tr}}\left[F_{\mu \nu}(x) F_{\mu \nu}(x)\right]
$$

Chiral Perturbation Theory and Cut-off Effects

$$
\begin{aligned}
\sigma_{\pi}^{B} \approx & \left(1+\mathrm{a}^{2}\left(c+\bar{c}_{\mathbb{M}^{2}}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right) \\
& \cdot \mathbb{M}_{\pi}^{2}\left\{\frac{2}{3} \overline{\mathrm{~b}}-\delta \mathfrak{b}_{B}+\frac{\mathrm{m}_{0}^{2}}{2\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, \pi}}{\mathbb{M}_{\pi}} f^{\prime}\left(\frac{\mathbb{M}_{\pi}}{\mathbb{m}_{0}}\right)+\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{m_{0}}\right)\right]\right\}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{s}^{B} \approx & \left(1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathbb{M}}^{2}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right) \\
& \cdot\left(2 \mathbb{M}_{\mathbb{K}}^{2}-\mathbb{M}_{\pi}^{2}\right)\left\{\frac{2}{3} \overline{\mathrm{~b}}+2 \delta \mathfrak{b}_{B}+\frac{\mathrm{m}_{0}^{2}}{\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{2 g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{\mathbb{m}_{0}}\right)\right]\right\}
\end{aligned}
$$

BaryonChPT

[Lehnhart et al.: arXiv:hep-ph/0412092]
$-F_{0}=$ pion decay constant in the chiral limit

- couplings $g=$ combinations of LO low energy coupling constants $F \& D: \boldsymbol{F}+\boldsymbol{D}=\boldsymbol{g}_{\mathrm{A}}$
- \boldsymbol{f}^{\prime} derivative of the loop function \boldsymbol{f} in covariant BChPT in the extended on-mass-shell scheme [Bernard et al.: Nucl. Phys. B 388 (1992) 315; Gasser et al.: Nucl. Phys. B 307 (1988) 779]

Chiral Perturbation Theory and Cut-off Effects

$$
\begin{aligned}
\sigma_{\pi}^{B} \approx & \left(1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathbf{M}}^{2}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right) \\
& \cdot \mathbb{M}_{\pi}^{2}\left\{\frac{2}{3} \overline{\mathrm{~b}}-\delta \mathrm{b}_{B}+\frac{\mathfrak{m}_{0}^{2}}{2\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, \pi}}{\mathbb{M}_{\pi}} f^{\prime}\left(\frac{\mathbb{M}_{\pi}}{\mathbb{m}_{0}}\right)+\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{m_{0}}\right)\right]\right\}
\end{aligned}
$$

$$
\sigma_{s}^{B} \approx\left(1+\mathrm{a}^{2}\left(c+\bar{c} \overline{\mathrm{M}}^{2}+\delta c_{B} \delta \mathbb{M}^{2}\right)\right)
$$

$$
\cdot\left(2 \mathbb{M}_{\mathbb{K}}{ }^{2}-\mathbb{M}_{\pi}^{2}\right)\left\{\frac{2}{3} \overline{\mathrm{~b}}+2 \delta \mathbb{b}_{B}+\frac{\mathrm{m}_{0}^{2}}{\left(4 \pi \mathbb{F}_{0}\right)^{2}}\left[\frac{g_{B, K}}{2 \mathbb{M}_{K}} f^{\prime}\left(\frac{\mathbb{M}_{K}}{\mathbb{m}_{0}}\right)+\frac{2 g_{B, \eta}}{3 \mathbb{M}_{\eta}} f^{\prime}\left(\frac{\mathbb{M}_{\eta}}{\mathbb{m}_{0}}\right)\right]\right\}
$$

- all dimensionful quantities need to be rescaled
- lattice spacings are rescaled by $t_{0}^{*}, \mathrm{a}=\frac{a}{\sqrt{8 t_{0}^{*}}}$
- parameters 'in the chiral limit' are rescaled by $t_{0, \text { ch }}$, e.g. $\mathbb{F}_{0}=\sqrt{8 t_{0, \text { ch }}} F_{0}$
- the rest of the parameters are rescaled by t_{0}, e.g. $\mathrm{M}_{\pi}=\sqrt{8 t_{0}} M_{\pi}$

Preliminary Extrapolation - Pion Mass Dependence

based on Two-state fits
$\chi^{2} /$ d.o.f. $=0.9$

Preliminary Extrapolation - Cut-off Effects

based on Two-state fits

$$
\chi^{2} / \text { d.o.f. }=0.9
$$

Preliminary Physical results for the Sigma Terms

based on two-state fit (with priors) vs. one-state fit (rough error estimation!)

$\sigma(\mathrm{MeV})$	N	Λ	Ξ	Σ
pion-baryon	$35(3)$	$26(2)$	$20(2)$	$13(2)$
	$39(3)$	$28(2)$	$23(2)$	$13(1)$
	$43.9(4.7)(4.7)$	$28.2(4.3)(5.4)$	$25.9(3.8)(6.1)$	$11.2(4.5)(6.4)$
strange-baryon	$50(6)$	$159(11)$	$209(17)$	$299(20)$
	$53(5)$	$155(10)$	$213(14)$	$291(17)$
	$16(58)(68)$	$144(58)(76)$	$229(65)(70)$	$311(72)(83)$

[RQCD 2211.03744] (indirect determination via Feynman-Hellman theorem)

Preliminary Low Energy Constants

LECs	two-state fit	one-state fit	[RQCD 2211.03744]
\boldsymbol{F}	$0.335(65)$	$0.259(100)$	$0.34(4)(5)$
\boldsymbol{D}	$0.729(51)$	$0.684(54)$	$0.57(5)$
$\boldsymbol{F} / \boldsymbol{D}$	$0.460(98)$	$0.379(161)$	$0.612(14)(12)$

Summary and outlook

- variations of summation and ratio methods to cross-check whether we control excited state contributions sufficiently

1. one- and two-state fits
2. priors for the first and second excited state
3. correlated fits

- chiral extrapolation to the physical pion mass accounting for cut-off effects \checkmark
- preliminary physical results for the baryon octet sigma terms
to do:
- error estimation: statistical \& systematic (model averaging - Akaike information Criterion)
- extrapolation for different fits (one-/two-state fits ..)
- include finite-volume effects
- use all available configurations/ensembles - final set of 32 ensembles
- use sequential data available for the nucleon (more precise)
- further investigation of the excited states on this larger set of ensembles

