Trace anomaly form factors of the pion and the nucleon from lattice QCD

Bigeng Wang

Collaborators: Fangcheng He, Gen Wang, Yi-Bo Yang, Jian Liang, Terrence Draper, Keh-Fei Liu (χ QCD collaboration)

Department of Physics and Astronomy University of Kentucky

Lattice 2023 July 31– August 4, 2023

Energy momentum tensor (EMT)

$$T_{\mu\nu} = \frac{1}{4} \overline{\psi} \gamma_{(\mu} \overleftrightarrow{D}_{\nu)} \psi + G_{\mu\alpha} G_{\nu\alpha} - \frac{1}{4} \delta_{\mu\nu} G^2$$
 (1)

• Pion mass can be obtained from the trace of the EMT:

$$m_{\pi} = \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \left[\frac{\beta(g)}{2g} G^{2} + \sum_{f} \gamma_{m}(g) m_{f} \overline{\psi}_{f} \psi_{f} \right] | \pi \rangle}{\langle \pi | \pi \rangle}}_{\text{conformal symmetry breaking} \leftrightarrow \text{trace anomaly ME}} + \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} | \pi \rangle}{\langle \pi | \pi \rangle}}_{\sigma \text{ term, } \frac{1}{2} m_{\pi} \propto \sqrt{m_{q}}}$$
(2)

1st order in the chiral symmetry breaking:

$$m_{\pi} \propto \sqrt{m_q}$$
, for $m_q = m_u = m_d$ (3)

¹Based on the Gellmann-Oakes-Renner relation and the Feynman-Hellman theorem.

• Does the trace anomaly matrix element keep itself proportional to $\sqrt{m_q}$ as $m_q \to 0$? F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

$$m_{\pi} = \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \left[\frac{\beta(g)}{2g} G^{2} + \sum_{f} \gamma_{m}(g) m_{f} \overline{\psi}_{f} \psi_{f} \right] | \pi \rangle}{\langle \pi | \pi \rangle}}_{\text{conformal symmetry breaking} \leftrightarrow \text{trace anomaly ME}} + \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} | \pi \rangle}{\langle \pi | \pi \rangle}}_{\sigma \text{ term, } \frac{1}{2} m_{\pi} \propto \sqrt{m_{q}}^{2}}$$
(4)

• Does the trace anomaly matrix element keep itself proportional to $\sqrt{m_q}$ as $m_q \to 0$? F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

$$m_{\pi} = \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \left[\frac{\beta(g)}{2g} G^{2} + \sum_{f} \gamma_{m}(g) m_{f} \overline{\psi}_{f} \psi_{f} \right] | \pi \rangle}{\langle \pi | \pi \rangle}}_{\text{conformal symmetry breaking} \leftrightarrow \text{trace anomaly ME}} + \underbrace{\frac{\langle \pi | \int d^{3}\vec{x} \sum_{f} m_{f} \overline{\psi}_{f} \psi_{f} | \pi \rangle}{\langle \pi | \pi \rangle}}_{\sigma \text{term}, \frac{1}{2} m_{\pi} \propto \sqrt{m_{q}}^{2}}$$
(4)

This is a suggestion that the conformal (scale) symmetry breaking in the pion is linked to the chiral symmetry breaking. K.F. Liu arXiv:2302.11600

Bigeng Wang (University of Kentucky)

trace anomaly form factors

3/15

• How does the trace anomaly matrix element keep itself proportional to $\sqrt{m_q}$ as $m_q \to 0$?

F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

Calculate a denity function

 $\rho_H(r)$:

• How does the trace anomaly matrix element keep itself proportional to $\sqrt{m_q}$ as $m_q \to 0$?

F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

Calculate a denity function $\rho_H(r)$:

As $m_q \rightarrow 0$, the density function changes sign.

• How does the trace anomaly matrix element keep itself proportional to $\sqrt{m_q}$ as $m_q \to 0$?

F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

Calculate a denity function $\rho_H(r)$:

As $m_q \rightarrow 0$, the density function changes sign.

 Will the form factors changes sign as well? (if they are connected by some sort of Fourier transform)

Definition of the trace anomaly form factors

Normalization convention:

$$1 = \int \frac{d^3p}{(2\pi)^3} |p\rangle \frac{m}{E_p} \langle p|, \quad |p\rangle = \sqrt{\frac{E_p}{m}} a_p^{\dagger} |\Omega\rangle$$
 (6)

- ② Define a dimensionless trace anomaly form factor $G_{\rm H}(Q^2)$, where $Q^2 = -(P'-P)^2$:
 - for spin- $\frac{1}{2}$ particle like proton:

$$\langle P'|T^{\mu}_{\mu}|P\rangle = m_{\mathcal{N}}G_{\mathcal{N}}(Q^2)\bar{u}(P')u(P), \tag{7}$$

for spin-0 particle like pion:

$$\langle P'|T^{\mu}_{\mu}|P\rangle = m_{\pi}G_{\pi}(Q^2). \tag{8}$$

• $G_H(Q^2=0)$ is the contribution to the total mass of hadron H.

Renormalization of the trace anomaly form factors

The trace anomaly terms need renormalization:

$$\langle \pi | \int d^3 \vec{x} \gamma \left[\frac{\beta(g)}{2g} G^2 + \sum_f \gamma_m(g) m_f \overline{\psi}_f \psi_f \right] | \pi \rangle \tag{9}$$

Renormalization method F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942):

- $\frac{\beta(g)}{2g}$ and $\gamma_m(g)$ are independent of the hadron state
- Solve the mass sum-rule equations for pseudo-scalar(π) and vector meson(ρ) at one mass $m_{\rm v}a=0.3$:

$$\begin{split} M_{\mathrm{PS}} - (1 + \gamma_m) \langle H_m \rangle_{\mathrm{PS}} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\mathrm{PS}} &= 0, \\ (10) \\ M_{\mathrm{V}} - (1 + \gamma_m) \langle H_m \rangle_{\mathrm{V}} - \frac{\beta(g)}{2g} \langle F^2 \rangle_{\mathrm{V}} &= 0, \\ (11) \end{split}$$

and obtain the bare γ_m and $\frac{\beta(g)}{2g}$.

 Verify the assumption: sum rule satisfied for other masses

$$R_{H} = \left[(1+\gamma_{m})\langle H_{m} \rangle_{H} + \frac{\beta(g)}{2g} \langle F^{2} \rangle_{H} \right] / m_{H}$$

Calculation of glue trace anomaly FF using two- and three-point correlators, with grid source and low-mode substitution (LMS)

- \bullet For proton, the σ term is small, and glue trace anomaly dominates
- For pion, trace anomaly $\sim \frac{1}{2}m_{\pi}$ and γ_m is not very large.
- \rightarrow calculate <code>glue</code> trace anomaly form factors

Three-point correlators:

Two-point correlators:

Need large statistics for various momentum transfer values:

Add source and sink momenta using phase factors(no need for extra inversions)

$$C_{N}^{\mathcal{G}}(\vec{p}_{i}, \vec{p}_{f}, t) = \frac{1}{n} \sum_{i}^{n} e^{i\vec{p}_{i} \cdot \vec{w}_{i}} C_{N}^{\mathcal{G}, \vec{w}_{i}}(\vec{p}_{f}, t) + C_{N}^{\mathcal{G}, H}(\vec{p}_{i}, \vec{p}_{f}, t)$$
(13)

G. Wang, Y.-B. Yang, J. Liang, T. Draper, and K.-F. Liu, Phys., Rev. D 106, 014512 (χ QCD)

Calculation of **glue** trace anomaly FF using two- and three-point correlators, with **grid source** and **low-mode substitution** (LMS)

Three-point correlators:

Two-point correlators:

Taking ratios of the 3pt and 2pt (using pion as an example):

$$R_{\pi}^{S_{i}S_{f}}(t,\tau;\vec{p}_{i},\vec{p}_{f}) = \frac{C_{\pi,3pt}^{S_{i}S_{f}}(t,\tau;\vec{p}_{i},\vec{p}_{f})}{C_{\pi,2pt}^{S_{f}}(t;\vec{p}_{f})} \sqrt{\frac{C_{\pi,2pt}^{S_{i}}(t-\tau;\vec{p}_{i})C_{\pi,2pt}^{S_{f}}(t;\vec{p}_{f})C_{\pi,2pt}^{S_{f}}(\tau;\vec{p}_{f})}{C_{\pi,2pt}^{S_{f}}(t-\tau;\vec{p}_{f})C_{\pi,2pt}^{S_{i}}(t;\vec{p}_{i})C_{\pi,2pt}^{S_{i}}(\tau;\vec{p}_{i})}} \xrightarrow{t \gg \tau \gg 0} \frac{m_{\pi}^{2}}{\sqrt{E_{\pi,\vec{p}_{i}}E_{\pi,\vec{p}_{f}}}} G_{\pi}(Q^{2}) + C_{1}'e^{-\Delta E_{i}^{1}\tau} + C_{2}'e^{-\Delta E_{f}^{1}(t-\tau)} + C_{3}'e^{-\Delta E_{i}^{1}\tau-\Delta E_{f}^{1}(t-\tau)} = 0$$

Results using grid-source propagators and LMS preliminary

Overlap fermions on DWF at near-physical pion mass:

				m_π (MeV)	$N_{ m conf}$	$N_{ m src}$
241	$24^{3} \times 64$	0.1105(3)	2.65	340	783	64 × 2

Three different momentum transfer scenarios, up to $\sim O(100)$ source-sink momentum combinations (with same Q^2 averaged)

source at rest:

$$|ec{p}_{
m i}|=0$$
 with $ec{q}=ec{p}_{
m f}$

back-to-back:

$$|\vec{p}_{\rm i}|=0 \text{ with } \vec{q}=\vec{p}_{\rm f} \qquad \qquad \vec{p}_{\rm f}=-\vec{p}_{\rm i} \text{ with } \vec{q}=2\vec{p}_{\rm f} \qquad \qquad \vec{p}_{\rm f}\neq -\vec{p}_{\rm i}, \ \vec{p}_{\rm f} \ \& \ -\vec{p}_{\rm i} \ \sim \vec{q}/2$$

near-back-to-back:

$$\vec{p}_{\mathrm{f}} \neq -\vec{p}_{\mathrm{i}}, \ \vec{p}_{\mathrm{f}} \& -\vec{p}_{\mathrm{i}} \sim \vec{q}/2$$

Results using grid-source propagators and LMS preliminary

• source at rest:

$$|\vec{\rho}_{\rm i}|=0$$
 with $\vec{q}=\vec{\rho}_{\rm f}$

• back-to-back:

$$ec{
ho}_{
m f} = -ec{
ho}_{
m i}$$
 with $ec{q} = 2ec{
ho}_{
m f}$

• near-back-to-back: $\vec{p}_f \neq -\vec{p}_i$, $\vec{p}_f \& -\vec{p}_i \sim \vec{q}/2$

Results for the pion preliminary

• source at rest: $|\vec{p}_1| = 0$ with $\vec{q}_1 = 0$

$$|\vec{p}_{\rm i}|=0$$
 with $\vec{q}=\vec{p}_{\rm f}$

• back-to-back:

$$ec{\emph{p}}_{\mathrm{f}} = -ec{\emph{p}}_{\mathrm{i}}$$
 with $ec{\emph{q}} = 2ec{\emph{p}}_{\mathrm{f}}$

• near-back-to-back: $\vec{p}_{\rm f} \neq -\vec{p}_{\rm i}, \ \vec{p}_{\rm f} \ \& \ -\vec{p}_{\rm i} \sim \vec{q}/2$

Results for the pion preliminary

Current work: form factors

Previous results: density functions F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

- positive at $Q^2 = 0 \text{ GeV}^2$ (contribution to the pion mass from glue)
- sign change of glue trace anomaly form factors for pion, consistent with the density function.
- \bullet form factor calculated up to $\mathit{Q}^2 \sim 4.3 \ \mathrm{GeV}^2$

Results for the nucleon preliminary

Current work: form factors

Previous results: density functions F. He, P. Sun and Y.B. Yang (χ QCD) (PRD 2021, 2101.04942)

- \bullet positive at $\mathit{Q}^2=0~\mathrm{GeV}^2(\text{contribution to the proton mass from glue})$
- NO sign change, monotonically decreasing, consistent with the density function.

Summary and Outlook

- pion mass puzzle (motivation):
 - trace anomaly matrix element is proportional to $\sqrt{m_q}$ as $m_q \to 0$. This is a suggestion that the **conformal** (scale) symmetry breaking in the **pion** is linked to the **chiral** symmetry breaking. K.F. Liu arXiv:2302.11600
 - glue trace anomaly density has a sign change to achieve this.

Summary and Outlook

- pion mass puzzle (motivation):
 - trace anomaly matrix element is proportional to $\sqrt{m_q}$ as $m_q \to 0$. This is a suggestion that the **conformal** (scale) symmetry breaking in the **pion** is linked to the **chiral** symmetry breaking. K.F. Liu arXiv:2302.11600
 - glue trace anomaly density has a sign change to achieve this.
- glue trace anomaly form factors of the EMT(preliminary):
 - consistent with hadron mass contribution at $Q^2 = 0 \text{ GeV}^2$.
 - UNIQUE: sign change of glue trace anomaly form factor for pion.
 - form factor calculated up to $Q^2 \sim 4.3 \, {\rm GeV}^2$

Summary and Outlook

- pion mass puzzle (motivation):
 - trace anomaly matrix element is proportional to $\sqrt{m_q}$ as $m_q \to 0$. This is a suggestion that the **conformal** (scale) symmetry breaking in the **pion** is linked to the **chiral** symmetry breaking. K.F. Liu arXiv:2302.11600
 - glue trace anomaly density has a sign change to achieve this.
- glue trace anomaly form factors of the EMT(preliminary):
 - consistent with hadron mass contribution at $Q^2 = 0 \text{ GeV}^2$.
 - UNIQUE: sign change of glue trace anomaly form factor for pion.
 - form factor calculated up to $Q^2 \sim 4.3 \, \mathrm{GeV}^2$

Outlook

- Extract radius of trace anomaly form factors for π , ρ , and N.
- We expect the calculation on the 48I ensemble will give a prediction of the trace anomaly form factors at physical pion mass.

Thanks for your attention!