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TWISTED GRADIENT FLOW COUPLING

THE GRADIENT FLOW
Renormalization procedure in which the gauge field  is replaced by a set of smooth, time-
dependent flow fields  driven by the so-called "flow equations” [arXiv:1101.0963]: 

Aμ(x)
Bμ(x)

∂tBμ(x, t) = DνGνμ(x, t) Bμ(x, t = 0) = Aμ(x) SMOOTHING THE GAUGE FIELDS IN A RANGE 8t

Gauge-invariant composite observables are automatically renormalized quantities for  t > 0

Renormalized couplings can be introduced trivially, e.g. with the energy density:

E(t) =
1
2

Tr (Gμν(x, t)Gμν(x, t))
THE COUPLING:    

λ(μ) = 𝒩 ⟨t2E (t)⟩
8t=μ−1
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IN ADDITION TO AND PECULIAR  GEOMETRY



THE GRADIENT FLOW

∂tBμ(x, t) = DνGνμ(x, t) Bμ(x, t = 0) = Aμ(x) SMOOTHING THE GAUGE FIELDS IN A RANGE 8t

E(t) =
1
2

Tr (Gμν(x, t)Gμν(x, t))
THE COUPLING:    

λ(μ) = 𝒩 ⟨t2E (t)⟩
8t=μ−1

3

IN ADDITION TO AND PECULIAR  GEOMETRY

TWISTED GRADIENT FLOW COUPLING

Renormalization procedure in which the gauge field  is replaced by a set of smooth, time-
dependent flow fields  driven by the so-called "flow equations” [arXiv:1101.0963]: 

Aμ(x)
Bμ(x)

Gauge-invariant composite observables are automatically renormalized quantities for  t > 0

Renormalized couplings can be introduced trivially, e.g. with the energy density:



GEOMETRY AND BOUNDARY CONDITIONS
The Twisted Gradient Flow (TGF) scheme is defined by introducing YM theories on an 
asymmetric hyperbox of size . [arXiv:2107.03747]

SU(N)
l2 × (Nl)2

SHORT DIRECTIONS: TWISTED BOUNDARY CONDITIONS

 


 

Aμ(x + l ̂ν) = ΓνAμ(x)Γ†
ν,  for ν = 1,2

Γ1Γ2 = Z12Γ2Γ1

LONG DIRECTIONS: PERIODIC BOUNDARY CONDITIONS

l̃ ≡ N × l

4

THE (TWISTED) GRADIENT FLOW

λTGF(μ) =
128π2t2

3N𝒜(πc2)
< E (t) >

8t=cl̃=μ−1
Characterising the scheme ( )c = 0.3
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The Twisted Gradient Flow (TGF) scheme is defined by introducing YM theories on an 
asymmetric hyperbox of size . [arXiv:2107.03747]

SU(N)
l2 × (Nl)2



THE (TWISTED) GRADIENT FLOW

λTGF(μ) =
128π2t2

3N𝒜(πc2)
< E (t) δQ >

< δQ >
8t=cl̃=μ−1
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Projection into the zero charge sector
[arXiv:1311.7304,1905.05147]
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Proposed for 2d models [arXiv:1706.04443,1911.03384], and recently implemented for 4d SU(N) 
pure-gauge theories [arXiv:2205.06190], it alienates open and periodic boundary conditions in a 
parallel tempered manner.

CPN−1

POSSIBLE SOLUTION: PARALLEL TEMPERING ON BOUNDARY CONDITIONS

PARALLEL TEMPERING ON BOUNDARY CONDITIONS 8

Implementation

• Consider  replicas of the r target lattice.


• The boundary conditions in each replica change ONLY along a hypercube: 

• Each replica is updated using a standard algorithm (a combination of heatbatch and 

overelaxation steps).

• After updates, propose swaps between configurations via Metropolis test, introducing new 

plausible topology fluctuations. 

• After swaps, update more frequently those links close to the defect (Hierarchical Updates) and 

move the defect randomly to improve performance. 

Nr

THE DEFECT 
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Implementation

Proposed for 2d CPN−1 models, and recently implemented for 4d SU(N) pure-gauge theories, it 
alienates open and periodic boundary conditions in a parallel tempered manner.

• Consider  replicas of the r target lattice.


• The boundary conditions in each replica change ONLY along a hypercube: 

• Each replica is updated using standard algorithm (Heatbatch/Overalaxtation combination).

• After updates, propose swaps among configurations via Metropolis test, introducing new 

plausible topology fluctuations. 

• After swaping, update more frequently those .links near to the defecó (Hierarchic updates) and 

move randomly the defect for improving performance. 

Nr

THE DEFECT THE DEFECT 

THE LINKS CLOSING THE DEFECT 
PICK A FACTOR  

INTERPOLATING BETWEEN

 AND 

β → βc(r)

c(0) = 1
c(Nr − 1) = 0
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alienates open and periodic boundary conditions in a parallel tempered manner.
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• The boundary conditions in each replica change ONLY along a hypercube: 

• Each replica is updated using standard algorithm (Heatbatch/Overalaxtation combination).
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• After swaping, update more frequently those .links near to the defecó (Hierarchic updates) and 

move randomly the defect for improving performance. 

Nr

THE DEFECT THE DEFECT 

THE LINKS CLOSING THE DEFECT 
PICK A FACTOR  

INTERPOLATING BETWEEN

 AND 

β → βc(r)

c(0) = 1
c(Nr − 1) = 0

The observables are calculated ONLY in the periodic 

replica.

PARALLEL TEMPERING ON BOUNDARY CONDITIONS



A FIRST EXPLORATION: FROZEN VS NON-FROZEN

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT? 11

We will test the parallel tempering in our setup by analyzing two cases, one well-sampled in the 
standard algorithm, and one suffering from topology freezing, corresponding to the same 
physical volume. 

Our simulations

L̃ = 24 and β = 6.4881 L̃ = 36 and β = 6.7790

•  replicas. 

• Defect of size  in lattice units.

• Acceptance probability for the Metropolis 

swapping steps of 20 %. [arXiv:2012.14000]

Nr = 18
d = 4

•  replicas. 

• Defect of size  in lattice units.

• Acceptance probability for the Metropolis 

swapping steps of 20 %. 

Nr = 32
d = 6
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L=24 L=24

L=36 L=36

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT?
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HISTOGRAMS EXHIBIT SMALL VALUE OF < Q2 >

Although PT improves the topology 
fluctuations,  configurations remain 
dominant, which has nothing to do with 
topology freezing, but with a dynamic 
reduction related to the small volume.

Q = 0

L=24 L=24

L=36 L=36

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT?
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SMALL VALUE OF < Q2 >

There are two problems of different nature 

TOPOLOGY FREEZING

CAN BE MITIGATED WITH PARALLEL 
TEMPERING ON BOUNDARY 

CONDITIONS

CAN BE MITIGATED, FOR INSTANCE, 
WITH MULTI CANONICAL 

APPROACHES

HISTOGRAMS EXHIBIT SMALL VALUE OF < Q2 >

L=24 L=24

L=36 L=36

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT?
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A FIRST EXPLORATION: FROZEN VS NON-FROZEN
Let us compare the coupling, computed in different projected sectors, and the value. < Q2 >

Algorithm
PT 34.09(32) 37.4(79)

nPT 34.97(20) 43.5(43)
PT 35.47(26) 149(31)

nPT 35.65(77) 550(274)

L̃
=

24
L̃

=
36

λTGF(All Q) τλ(All Q)

Algorithm
PT 31.87(30) 39.1(50)

nPT 32.17(11) 40.1(43)
PT 33.37(22) 100(19)

nPT 33.23(22) 88.7(84)

L̃
=

24
L̃

=
36

λTGF(Q = 0) τλ(All Q)

Algorithm
PT 42.45(52) 28(12)

nPT 42.91(25) 31(10)
PT 43.43(43) 348(165)

nPT 43.65(22) 250(118)

L̃
=

24
L̃

=
36

λTGF(Q = 1) τλ(Q = 1)

Algorithm
PT 0.192(17) 100(30)

nPT 0.163(17) 207(29)
PT 0.195(14) 401(91)

nPT 0.177(88) 2445(966)

< Q2 > τQ2

L̃
=

24
L̃

=
36

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT? YES!
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A FIRST EXPLORATION: FROZEN VS NON-FROZEN

PT NPT

PT IMPROVES λ(All Q)

FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT? YES!



CONCLUSIONS 20

THANK YOU FOR YOUR ATTENTION
QUESTIONS?

FURTHER STUDIES ARE NEEDED TO REPRODUCE THE RUNNING OF THE COUPLING AND TO EXTRACT THE PURE   PARAMETER.SU(3) Λ

• Parallel Tempering improves the autocorrelation time of the topological charge of our previous 
TGF calculations.


• At this stage, it appears that topological fluctuations are well sampled once the calculation of 
the coupling is projected into a specific charge sector.


• Although PT efficiently mitigates topology freezing,   configurations remain dominant 
because the mean  is small. This can be solved with other types of algorithms. 

Q = 0
< Q2 >



A FIRST EXPLORATION: TOPOLOGICAL SUSCEPTIBILITY

21FIRST EXPLORATION: DO WE GAIN SOMETHING USING PT?


