#### Search for isoscalar axial vector $bc\bar{u}\bar{d}$ tetraquark bound states

# M. Padmanath



IMSc Chennai, India

**@** Lattice 2023, Fermilab  $31^{st}$  July, 2023 :ONLINE:





with A. Radhakrishnan and N. Mathur. Based on article arXiv:2307.14128

# Motivation from experiments, $T_{cc}^+$



☆ The doubly charmed tetraquark  $T_{cc}^+$ , I = 0 and favours  $J^P = 1^+$ . Nature Phys., Nature Comm. 2022 Striking similarities with the longest known heavy exotic, X(3872).

- ☆ No features observed in  $D^0 D^+ \pi^+$ : possibly not I = 1.
- \* Many more exotic tetraquark candidates discovered recently,  $T_{cs}$ ,  $T_{c\bar{s}}$ , X(6900).  $T_{bc}$  likely most important in next 5-10 years. Polyakov, Hadron 2023
- 2 Doubly heavy tetraquarks: theory proposals date back to 1980s.

c.f. Ader&Richard PRD25(1982)2370

## Motivation from lattice, $T_{bb}$ and $T_{cc}$



✿ Isoscalar axialvector channel  $I(J^P) = 0(1^+)$ .

- m cm Deeper binding in doubly bottom tetraquarks  $\mathcal{O}(100 MeV)$ . Fig: Hudspith&Mohler PRD 2023
- Shallow bound state in doubly charm tetraquarks  $\mathcal{O}(100 keV)$ . Fig: HALQCD 2023 [Aoki Mon 1410] On cut off effects for lattice estimates of  $T_{cc}$ , see [Jeremy Mon 1330] Relevance of diquark-antidiquark operators for  $T_{cc}$ , see [Emmanuel Mon 1350]
- \* No conclusive results in the bottom-charm tetraquark sector.

Meinel et al PRD 2022, Hudspith et al PRD 2020

bcūd bound tetraquarks M. Padmanath The Institute of Mathematical Sciences Chennai (3 of 14)

## Lattice setup



**\$** MILC dynamical ensembles with  $N_f = 2 + 1 + 1$  HISQ fields.

- ✿ Valence quark fields with masses ranging from light to charm: overlap action
- ✿ Bottom quark evolution using a NRQCD Hamiltonian. tuned using kinetic mass of 1S bottomonium spin averaged  $\overline{M}^{\overline{b}b}$  Mathur *et al* Lattice 2016

## Valence light quark masses studied



- $\ensuremath{\mathfrak{O}}$  One quark mass at the charm point ( $M_{ps} \sim 3.0 \text{ GeV}$ ).Basak *et al* Lattice 2014tuned using kinetic mass of 1S charmonium spin averaged  $\overline{M}^{\bar{c}c}$
- ☆ Another at the strange point  $(M_{ps} \sim 0.7 \text{ GeV})$ . Chakraborty *et al* PRD 2015 tuned using the fictituous pseudoscalar  $\bar{s}s$
- ☆ Three other quark masses approximately corresponding to pseudoscalar masses,  $M_{ps} \sim 0.5, \ 0.6, \ and \ 1.0 \ GeV.$

bcūd bound tetraquarks M. Padmanath The Institute of Mathematical Sciences Chennai (5 of 14)

#### Correlation functions and Interpolators

**‡** Focus on the  $T_{1g}$  finite volume irrep in the rest frame.

 $\clubsuit$  Two point correlations computed as

$$\mathcal{C}_{ij}(t) = \sum_{\mathbf{x}} \left\langle \mathcal{O}_i(\mathbf{x}, t) \mathcal{O}_j^{\dagger}(0) \right\rangle = \sum_n \frac{Z_i^n Z_j^{n\dagger}}{2E^n} e^{-E^n t},$$

with wall smearing for quark fields at source.

 $\clubsuit$  Focus only on the ground state energy splitting. Relevant low lying two meson thresholds

| $DB^* \ [included]:$    | $E_{et}^{phys} \sim 7$  | V.190 GeV |
|-------------------------|-------------------------|-----------|
| $BD^*$ [included] :     | $E_{it1}^{phys} \sim 7$ | 7.290 GeV |
| $D^*B^*$ $[excluded]$ : | $E_{it2}^{phys} \sim 7$ | V.334 GeV |

🏚 Local 2 two-meson-like interpolators and one diquark-antidiquark-like interpolator

$$\begin{aligned} \mathcal{O}_1(x) &= [\bar{u}\gamma_i b][\bar{d}\gamma_5 c](x) - [\bar{d}\gamma_i b][\bar{u}\gamma_5 c](x), \\ \mathcal{O}_2(x) &= [\bar{u}\gamma_5 b][\bar{d}\gamma_i c](x) - [\bar{d}\gamma_5 b][\bar{u}\gamma_i c](x), \\ \mathcal{O}_3(x) &= [(\bar{u}^T \Gamma_5 \bar{d} - \bar{d}^T \Gamma_5 \bar{u})(b\Gamma_i c)](x). \end{aligned}$$

#### Spectrum extraction

- $\mathcal{C}_{ij}(t) \text{ are solved for the generalized eigenvalue problem [GEVP]} \\ \mathcal{C}(t)v^n(t) = \lambda^n(t)\mathcal{C}(t_0)v^n(t)$
- ☆ Fits to the eigenvalue correlators  $[\lambda^n]$  and the ratio of eigenvalue correlators with a non-interacting correlator  $[R^n(t) = \frac{\lambda^n(t)}{C_{m_1}(t)C_{m_2}(t)}]$ . MP *et al* Lattice 2021

☆ Fits to the ground state in the finest ensemble with  $M_{ps} \sim 0.7$  GeV in terms of energy splittings from  $M_{B^*} + M_D$ .

$$\Delta E^0 = E^0 - M_{B^*} - M_D$$

☆  $t_{min}$  dependence of energy estimates from fits to  $R^0(t)$  and  $\lambda^0(t) \rightarrow$ 



## Finite volume spectrum



- Similar excited state pattern for all ensembles, for any given pseudoscalar mass.
- Statistically significant negative energy shifts: attractive interaction between the mesons involved.

 $\clubsuit$  Not yet accounted for the additive energy corrections inherent to NRQCD.

bcūd bound tetraquarks M. Padmanath The Institute of Mathematical Sciences Chennai (8 of 14)

## Operator state overlaps and operator basis dependence



- ✿ Ground state very well determined by the  $DB^*$ -like operator  $\mathcal{O}_1$ .
- $\label{eq:components} \texttt{$\widehat{r}$} \text{ Excited states shows dominant two-meson and diquark-antidiquark Fock components.} \\ \text{Decreasing diquark-antidiquark Fock component with increasing $m_{u/d}$.} \\ \text{Consistent with phenomenological expectations.} \\ \texttt{$\widehat{r}$} \text{ and $\widehat{r}$} \text{ and $\widehat{r}$}$

Junnarkar&Mathur&MP PRD 2018, Hudspith  $et\ al$  PRD 2020

- Consistent negative energy shift for ground state from full basis.Similar negative energy shift observed for first excited state in the full basis.
- $\clubsuit$  Example shown for the case:  $M_{ps}\sim 0.7~{\rm GeV}$  in the large volume ensemble.

## The reconstructed ground state spectrum





bcud bound tetraquarks M. Padmanath

The Institute of Mathematical Sciences Chennai (10 of 14)

## Finite volume analysis and continuum extrapolation



☆ Elastic  $DB^*$  scattering: finite volume analysis à la Lüscher. Briceño PRD 2014 Only ground states used and only scattering length in an ERE.  $[kcot\delta_0 \sim -1/a_0]$ 

- A linear lattice spacing dependence assumed for the fitted amplitude.
- ☆ Determined  $DB^*$  scattering length in the continuum limit for all  $M_{ps}$ . Results indicate attractive interaction between D and  $B^*$  mesons at all  $M_{ps}$ .

bcūd bound tetraquarks M. Padmanath The Institute of Mathematical Sciences Chennai (11 of 14)

## $M_{ps}$ dependence of $DB^*$ scattering length



**\$** Light quark mass  $(m_{u/d} \text{ or } M_{ps})$  dependence.

 $f_l(M_{ps}) = \alpha_c + \alpha_l M_{ps}, \quad f_s(M_{ps}) = \beta_c + \beta_s M_{ps}^2, \text{ and } f_q(M_{ps}) = \theta_c + \theta_l M_{ps} + \theta_s M_{ps}^2.$ indicates a real bound state at physical pion mass.

 $\therefore DB^*$  scattering length and binding energy in the continuum limit

 $a_0^{phys} = 0.57(^{+4}_{-5})(17) \text{ fm} \text{ and } \delta m_{T_{bc}} = -43(^{+6}_{-7})(^{+14}_{-24}) \text{ MeV}$ 

 $\therefore$  The critical  $M_{ps}$  at which  $T_{bc}$  becomes unbound

$$M_{ps}^* = 2.73(21)(14) \text{ GeV}$$

bcud bound tetraquarks M. Padmanath The Institute of Mathematical Sciences Chennai (12 of 14)

## Summary

- $\therefore$  Simulate  $DB^*$ - $BD^*$  scattering on the lattice and determine  $DB^*$  scattering length.
- **\*** Transparent evidence for negative energy shifts and hence attractive interaction between D and  $B^*$  mesons.
- $\ensuremath{\mathfrak{s}}$  Scattering length from rigorous finite volume analysis à la Lüscher and continuum extrapolation.
- ✿ Studied light quark mass  $(m_{u/d} \text{ or } M_{ps})$  dependence from  $M_{ps} \sim 0.5$  to ~ 3.0 GeV.
- Real bound state with binding energy

$$\delta m_{T_{bc}} = -43(^{+6}_{-7})(^{+14}_{-24}) \text{ MeV}$$

 $\therefore$  The critical  $M_{ps}$  at which  $T_{bc}$  becomes unbound

$$M_{ps}^* = 2.73(21)(14) \text{ GeV}$$

We ignored effects from higher partial wave mixing and left hand cuts in our analysis.
c.f. talks on Thu. 1330 to 1430

Thank you