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Basic concepts

Change of variables Z = /dU e ¥ = /dV g5 tlog|J]|

Trivializing map condition — S + log|J| = 0 minimizes relative entropy (Kullback-

Leibler divergence) w.r.t. Haar measure — full thermodynamic integration

Less ambitious: — S + log|J| = —S' — partial thermodynamic integration
S’ = Sgefect — restoration of topological ergodicity (cf. Dan Hackett’s talk)

S’ = Sy, — renormalization group interpretation (cf. backup slides)
LiUscher [arXiv:0907.5491]

(f) Renormalization group. By composing the trivializing map U = F;(V) in the
Wilson theory with its inverse at another value of the gauge coupling, one obtains a

group of transformations whose only effect on the action is a shift of the coupling.
The locality properties of these transformations are not transparent, however, and
could be quite different from the ones of a Wilsonian “block spin” transformation.




Wilson vs Kadanoft

Huang, Statistical Mechanics

Real space

Fig. 18.5 Coarse-graining in momentum space and in real
space. In the former, one effectively lowers the cutoff. In
the latter, one blots out finer details, enlarging the effective
lattice spacing.
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Recursion equations in gauge field theories

A. A. Migdal

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences
(Submitted April 28, 1975)
Zh. Eksp. Teor. Fiz. 69, 810-822 (September 1975)

An approximate recursion equation is formulated, describing the scale transformation of the effective action
of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it
reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the B-function. In the strong-
coupling region the B-function remains negative and this results in an asymptotic prison in the infrared
region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.

PACS numbers: 11.10.Np

Phase transitions in gauge and spin-lattice systems

A. A. Migdal

L. D. Landau Theoretical Physics Institute, USSR Academy of Sciences
(Submitted June 11, 1975)
Zh. Eksp. Teor. Fiz. 69, 1457-1465 (October 1975)

A simple recursion equation giving an approximate description of critical phenomena in lattice systems is
proposed. The equations for a d-dimensional spin system and a 2 d-dimensional gauge system coincide. An
interesting consequence is the zero transition temperature in the two-dimensional Heisenberg model and
four-dimensional Yang-Mills model; this corresponds to asymptotic freedom in field theory.

Notes on Migdal’s Recursion Formulas*

Leo P. KADANOFF!

The James Franck Institute, The University of Chicago, Chicago, Illinois 60637
Received March 24, 1976

A set of renormalization group recursion formulas which were proposed by Migdal
are rederived, reinterpreted, and critically analyzed. The new derivation shows the con-
nection between these formulas and previous work on renormalization via decimation

MIGDAL-KADANOFF RECURSION RELATIONS IN SU(2) AND
SU(3) GAUGE THEORIES

Michael NAUENBERG

Physics Department, University of California, Santa Cruz, California 95060 and
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Doug TOUSSAINT

Physics Department and Institute for Theoretical Physics, University of California, Santa Barbara,
California 93106, USA

Received 23 October 1980

We study the Migdal recursion relations and the reformulation due to Kadanoff for SU(2)
and SU(3) lattice gauge theory, using analytic approximations for large and small couplings and
numerical methods for all couplings. In SU(2) we obtain the beta function and the expectation
value of the plaquette, which is compared with recent Monte Carlo results. In analogy to U(1), we
find that a Villain form (periodic gaussian) for the exponential of the plaquette action is a good
approximation to the result of the Migdal renormalization transformation. We also perform some
calculations in SU(3) and find that its behavior is similar to SU(2).

As above, the integration is carried out independently
in each plane, and joining 2D L-cubes into one 2L-cube,

we obtain
Zo= [T X} 7 @ dsts (0ue(z)),

u<v x,i p

(38)
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GROUP INTEGRATION FOR LATTICE GAUGE THEORY AT
LARGE N AND AT SMALL COUPLING*

Richard C. BROWER and Michael NAUENBERG
Physics Department, University of California, Santa Cruz, California 94064, USA

Received 15 July 1980

We consider the fundamental SU(N) invariant integrals encountered in Wilson’s lattice
QCD with an eye to analytical results for N— oc and approximations for small g2 at fixed N. We
develop a new semiclassical technique starting from the Schwinger-Dyson equations cast in
differential form to give an exact solution to the single-link integral for N — o0o0. The third-order
phase transition discovered by Gross and Witten for two-dimensional QCD occurs here for any




Trivializing maps, the Wilson flow and
the HMC algorithm

Martin Liischer

Equivariant flow-based sampling for lattice gauge theory

Gurtej Kanwar,! Michael S. Albergo,? Denis Boyda,! Kyle Cranmer,? Daniel C. Hackett,!
Sébastien Racaniere,® Danilo Jimenez Rezende,® and Phiala E. Shanahan'

Tackling critical slowing down using global correction steps with equivariant flows:
the case of the Schwinger model

Jacob Finkenrath!

Use of Schwinger-Dyson equation in constructing an
approximate trivializing map
Decimation Map in 2D for accelerating HMC

Sampling using SU(N) gauge equivariant flows

Denis Boyda,!" * Gurtej Kanwar,!: T Sébastien Racaniere,> ¥ Danilo Jimenez Rezende,?:
Michael S. Albergo,® Kyle Cranmer,® Daniel C. Hackett,! and Phiala E. Shanahan!

Flow-based sampling in the lattice Schwinger model at criticality

Michael S. Albergo,! Denis Boyda,>* 4 Kyle Cranmer,! Daniel C. Hackett,*? Gurtej Kanwar,> 34
Sébastien Racaniere,® Danilo J. Rezende,® Fernando Romcro—Lépozf" 4 Phiala E. Shanahan,®* and Julian M. Urban”

Gauge-equivariant flow models for sampling in lattice field theories with
pseudofermions

Ryan Abbott,'2 Michael S. Albergo,® Denis Boyda,* 2 Kyle Cranmer,?
Daniel C. Hackett,'? Gurtej Kanwar,> 12 Sébastien Racaniere,® Danilo J. Rezende,®
Fernando Romero-Lépez,*:? Phiala E. Shanahan,'? Betsy Tian,! and Julian M. Urban”

Monday, 16:00

Pe &2 Izubuchi,”¢ Luchang Jin,? Chulwoo Jung,” Christoph Lehner,*
Nobuyuki Matsumoto®) and Akio Tomiya/

Sampling QCD field configurations with gauge-equivariant
flow models

Ryan Abbott,"” Michael S. Albergo,* Aleksandar Botev,® Denis Boyda,* "¢
Kyle Cranmer,““ Daniel C. Hackett,”” Gurtej Kanwar,””-/ Alexander G. D.
G. Matthews,® Sébastien Racaniére,® Ali Razavi,’ Danilo J. Rezende,®

Fernando Romero-Lépez,”” Phiala E. Shanahan®”* and Julian M. Urban“-"""

Learning Irivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,! Pan Kessel,%3 Stefan Schaefer,* and Lorenz Vaitl?

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Ryan Abbott,2 Michael S. Albergo,® Aleksandar Botev,* Denis Boyda,'? Kyle Cranmer,”
Daniel C. Hackett,"? Gurtej Kanwar,% 2 Alexander G.D.G. Matthews,? Sébastien Racaniere,* Ali
Razavi,* Danilo J. Rezende,* Fernando Romero-Lépez,'*? Phiala E. Shanahan,'? and Julian M. Urban':?2




(Un-)trivializing (1+1)d U(1) LGT

or € 10,2m), S = —6003(

3

k=1

o)

3

b2

P4

>’

¢k))



(Un-)trivializing (1+1)d U(1) LGT
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(Un-)trivializing (1+1)d U(1) LGT
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or € [0,2m), S = —Bcos (Zqﬁk) 3 D1 i H (/ dqbk) exp(—S(Zqﬁk))
k=1 b4 k=1 \/0 k=1
- Change of variables: x(¢1) = ¢1 + Z o1 € [Z Ok, 2T + Z qﬁk) X X % =1

X 0 27
. G= / dx / dpadgsdey exp (Bcos(x)) = / dxdg2desdes exp (B cos(x))
X 0 0

Z(x) L

- Trivialization: Z(n) = /On dz exp (Bcos(z)), x' = 27TI(27T) " By I exp (B cos(x))
2m o' —1 T(2 2
— Z= /0 dx'dg2dgzdes a’; exp (Bcos(x)) = (2:) /0 dx'de2dg3des




(Un-)trivializing (1+1)d U(1) LGT
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(Un-)trivializing (1+1)d U(1) LGT
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change of variables: gauge fields (links) <— invariants (plaquettes)
\ J
4 )

(un-)trivialization via (inverse) cumulative distribution function

N /
4 )

change of variables: invariants (plaquettes) «+— gauge fields (links)
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(Un-)trivializing (1+1)d U(1) LGT
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— inverse transform sampling the von Mises distribution

rejection sampling inverse CDF




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)
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l.l

+1

cos(x)

.
o



(Un-)trivializing (1+1)d U(1) LGT

-1
cos(x)



(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT

+1

cos(x)




(Un-)trivializing (1+1)d U(1) LGT
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Denis Boyda

Thursday, 14:50




acceptance rate

(independence
sampling)

(Un-)trivializing (1+1)d U(1) LGT

16 x 16
Metropolizing defect:
baseline

\ 1st order improvement
\ (effective 2 x 1 loop action)
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(Un-)trivializing (1+1)d U(1) LGT

16 x 16, B =8

— trivialization @ —— heatbath

0 2000 4000 6000 8000 10000

H#sweeps

9



(Un-)trivializing (1+1)d SU(3) LGT

U,

Uy, € SU(3), § = —gRe Tr(ﬁUk) U, U, 7= | </dUk> eXp(—S(; Uk))

[
»

Uy
4
- Change of variables: P(U;) = U; H U, — Z= /deUszgdU4 exp(—S(P))
k=2

- Weyl integration formula for compact connected Lie group G in terms of a maximal torus 7T :

pifm _ gitn

/Gde(U) = /Td,LL(H) F(6) with du(8) = H

m>n

Hd9k7
k

where f is a class function, i.e. f(U) = f(QUQ') (conjugation-invariant),

and €' are unique eigenvalues (N — 1 for SU(N)).

— reduces the eight-dim. map for the complete parameterization of SU(3)

to a two-dim. map for the unique eigenvalue angles 6,

10



(Un-)trivializing (1+1)d SU(3) LGT
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(Un-)trivializing (1+1)d SU(3) LGT

Haar

11



(Un-)trivializing (1+1)d SU(3) LGT

Approximate solution with tractable Jacobian using differentiable quadrature:

— acceptance rate ~ 0.15at 16 x 16, 8 =06

12



Higher dimensions?




(Un-)trivializing (n4+1)d SU(3) LGT with ML

Abbott et al [arXiv:2305.02402]

Replace local conditional CDF with rational quadratic spline (RQS)

finite interval with fixed endpoints — compactness
monotonicity — invertibility

differentiability — Jacobian

bounded derivative — stability

Locally compute spline parameters from surrounding features using neural networks

Global invertibility from alternating masking patterns — coupling layers

- Variational optimization by minimizing reverse Kullback-Leibler divergence

14



Neural RQS eigenvalue flow

Choose suitable parameterization of canonical cell, e.g. 2m
polar coordinates — best results so far
B
Choose set of features preserving gauge covariance, e.g. loops:
plaquette 2x1 chair crown ¢
62 -
o / 4 ' 0 ]

location coupling in (2+1)d

Choose local coupling geometry, e.g.

direction coupling location coupling
- - h - - -t -— -
a p a p
- i .- --- -
a p E a




Masking pattern algorithm

Flexible parameterization for automated construction of suitable masks in (n+1)d

Simple alternation scheme via cyclic permutations of parameters

—— cover all links in one cycle to avoid blind spots

Iterate over loop orientations — cover all plaquettes

4 Wiy

Full implementation and interactive visualizations in supplementary jupyter notebook

[arXiv:2305.02402]

16



Training and evaluation

- Variance reduction in gradient estimates using path gradients + control variates

— standard control variates
Estimated Sample Size (ESS) 0.8
2
N ol
(% D k1 'w(Uk)) 1 e
T LyD ;- [N’ 1] A 0.4 1
N Ekzl w(Uk) i
with IV model samples U, ~ q(Uy) 0.2
exp(—S(Uy)) | . | | |
and w(Uy) = q(Us) : o 0 200 400 600 800 1000

training step

- Easy target (84, B = 1), testing heatbath prior with 0 < Bpeatbath < Btarget

prior
ESS =0 B=0.5
spectral 0.75 0.82
flow
residual 0.09 0.18

17



Summary

(14+1)d LGT can be trivialized almost trivially with (semi-)analytic methods

Proof-of-principle results for machine-learned maps applied to (3+1)d SU(3) LGT

Outlook

(Gauge invariants represent only the most basic data features

from the perspective of geometric deep learning

—>

—

— mneed covariant information to achieve expressivity

Naive (un-)trivialization in (341)d leads to proliferation of

defects due to the geometric properties of Wilson loop actions

— need hierarchical / multi-scale architectures

Machine-learned maps are already capable of partial triviali-

zation / thermodynamic integration on small volumes

—— practical applications are within reach

18
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Wilsonian RG interpretation (smoothing)

- Regularized stochastic quantization (Langevin equation): — = —— + 7, (A)7n

0
- Corresponding Fokker-Planck equation: pgb, ™) = / d% i (5—5 +ra(A) d )P(¢a T)
T

- 0;p=0 — pr(¢) xexp(—S — ASy) with ASy = %/ddp P(p)A* (’I“Aélp2) - 1) ¢(p)

1

- Sharp cutoff: TA(p2) = 9(A2 —P2) — rA(A)n(fE) — (27T)2

/ d’p e **n(p)§(A* — p*)

Pawlowski et al [arXiv:1705.06231]



Wilsonian RG interpretation (smoothing)

Gies [arXiv:hep-ph/0611146]

The functional RG combines this functional approach with the RG idea
of treating the fluctuations not all at once but successively from scale to
scale [9, 10]. Instead of studying correlation functions after having averaged
over all fluctuations, only the change of the correlation functions as induced
by an infinitesimal momentum shell of fluctuations is considered. From a

structural viewpoint, this allows to transform the functional structure
of standard field theory formulations into a functional |differential}structure

[11, 12, 13, 14]. This goes along not only with a better analytical and nu-
merical accessibility and stability, but also with a great flexibility of devising
approximations adapted to a specific physical system. In addition, structural
investigations of field theories from first principles such as proofs of renormal-
izability can more elegantly and efficiently be performed with this strategy
[13, 15, 16, 17].

Cotler et al [arXiv:2202.11737]

One of our main results is that Polchinski’s equation can be written as

d | . .
—A—+ PA[9] = =V, S(PA[9] [ Qa[¢]) (1.2)

where Vyy, is a gradient with respect to a functional generalization of the Wasserstein-2 metric,
S(P|| Q) := [[do|P[¢]log(P[d]/Q|d)) is a functional version of the relative entropy, and Qx[¢)] is

a background probability functional which essentially defines our RG scheme. We emphasize that



Kadanoffian RG interpretation (blocking)

Huang, Statistical Mechanics

Fig. 18.1 Block-spin transformation: averaging the spins in a block,
and then rescaling the lattice to the original size. In more than one
dimension, the indirect interaction between B and C gives rise to
next-to-nearest-neighbor interactions of the block spins.

N
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