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 A walkthrough of the large-momentum effective theory (LaMET) process for a high-
precision calculation of hadron GPDs.
• Xiangdong Ji. PRL, 110, 262002, 2013
• Ji et. al. RMP, 93, 035005, 2021

 Preliminary results.

1) Renormalization data.

• RI/MOM data or 𝑃! =
0 matrix elements for 
LaMET operators.

2) Remove linear 
divergence.

• Determine the 
exponential decay of 
the renormalization 
data from previous 
step.

3) Remove renormalon 
ambiguity.

• Ensure that the data 
at short distances 
agree with the 
Wilson coefficient for 
the corresponding 
operator.

• WCs can be 
improved with RGR 
and/or LRR.

4) Renormalize large 
momentum MEs in 
coordinate space.

• Use the hybrid-
RI/MOM or hybrid-
ratio scheme to fully 
renormalize the 
large momentum 
data.

5) Remove unphysical 
oscillations from the 
Fourier transform.

• Extrapolate the  
coordinate space 
qGPD to infinite 
distance.

6) Determine qGPD in 
momentum space.

• Fourier 
transformation.

7) Match qGPD to the 
lightcone.

• NNLO (fixed order or 
RGR). Unpolarised,  
hybrid-ratio only.

• NLO (fixed order or 
RGR). All 
polarisations. Both 
hybrid-ratio and 
hybrid-RI/MOM.
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Large momentum 
qGPD data for LaMET
calculation

• Matrix elements 
for the relevant 
LaMET operator 
boosted to large 
momentum.

Input

Transform to momentum 
space

Match to lightconeHigh quality renormalization



 GPDs encode information about the internal- and spin-structure of a hadron. They 
are a hybrid of parton distribution functions (PDFs), form factors and distribution 
amplitudes. All of these serve as inputs to scattering experiments and theoretical 
calculations.

 A precise calculation of GPDs is, thus, of great interest.

 Methods of renormalization group resummation (RGR) have been applied to the 
pion PDF
 Su, JH et. al. NPB, 991, 116201, 2023

 RGR and leading renormalon resummation (LRR) have been applied to the pion 
DA.
 JH et. al. NPB, 993, 116282, 2023

 We apply these methods to GPDs.
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 Lattice configurations from the MILC collaboration.
 Bazavov et. al. PRD, 87, 054505. 2013. 

 Lattice matrix elements:
!ℎ! 𝑧, 𝜉, 𝑡 = 𝑃" 𝜓 0 ΓW 0, z 𝜓 𝑧 𝑃# .

𝑧$ = 0,0,0, 𝑧 $

 Define the quantities:
 Δ! = P"

! − P#
! , “momentum transfer”, 𝑡 = Δ$,

𝜉 =
%!
"&%#

"

%!
"'%#

", “(quasi-)skewness”

 When 𝜉 = 0, GPDs reduce to the more familiar PDFs.

 We use the symmetric frame.
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• Lattice spacing, 𝑎 = 0.09 fm.
• Volume = 64(×96.
• 2+1+1 flavors of highly 

improved staggered quarks.
• One-loop Symanzik improved 

gauge action.
• One step of HYP smearing on 

gauge links.
• Physical pion mass.
• ~500,000 matrix elements from 

~1000 configurations.



 We renormalize our data using the hybrid-RI/MOM scheme.
 Ji et. al. NPB, 964, 115311. 2021

 At short distances (𝑧 ≲ 0.2 fm), we use the familiar RI/MOM scheme:

 !ℎ/ 𝑧, 𝜉, 𝑡 ~
01! 2,3,4

5 2,6,7"89
.

 At large distances (𝑧 ≳ 0.2 fm), we remove the linear divergence and renormalon 
ambiguity:

!ℎ/ 𝑧, 𝜉, 𝑡 = 𝑒 :;<;# 2 !ℎ= 𝑧, 𝜉, 𝑡 .
(Impose continuity at 𝑧 = 𝑧%.)
The parameters 𝛿𝑚 and 𝑚& must be determined carefully.
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1) Renormalization 
data.

RI/MOM data or 
𝑃) = 0 matrix 
elements for 
LaMET operators.



Z(z,a,Pz=0)

Ae-δm×z
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RI/MOM data. z=[6a, 15a]. δm=0.670(15) GeV

 The parameter 𝛿𝑚 accounts for the 
linear divergence that occurs in the 
Wilson line, 𝑊(0, 𝑧).

 Fit the data to 𝐴𝑒$%&×(.
 Ji et. al. NPB, 964, 115311, 2021

 We select the value 𝛿𝑚 = 0.670(15) GeV.
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2) Remove linear 
divergence.

•Determine the 
exponential 
decay of the 
renormalization 
data from 
previous step.



 We demand that our renormalized matrix elements agree with the operator 
product expansion (OPE) for 𝑧 ≤ 0.3 fm.

 The functions are Wilson coefficients at distance 𝑧 and energy scale 𝜇: 𝐶)(𝑧, 𝜇)
 Yao Ji et. al. arXiv:2212.14415.

𝐶) 𝑧, 𝜇 = 1 +
𝛼* 𝜇 𝐶+
2𝜋

3
2
ln

𝑧,𝜇,𝑒,-$
4

+
5
2

𝐶) 𝑧, 𝜇 ~𝑒 %&.&% (𝑍 𝑧, 𝑎, 𝑃( = 0
 We improve 𝑚) calculation using leading renormalon resummation (LRR).

 Zhang et. al. PLB, 844, 138081
 Yushan Su’s talk. “Leading power accuracy in lattice calculations of parton distribution 

functions.” 1st Aug, 16:20 CDT.
 Jianhui Zhang’s talk. “Renormalons in the renormalization of quasi-PDF matrix elements.” 3rd

Aug, 11:00 CDT.
 Andreas Kronfeld’s talk. “More minimal renormalon subtraction.” 3rd Aug, 13:50 CDT. 7

3) Remove the 
renormalon 
ambiguity.

•Ensure that the 
data at short 
distances agree 
with the Wilson 
coefficient for 
the 
corresponding 
operator.



 The 𝑚* parameter determined

from the linear fit

in the range of 𝑧-values [𝑧, 𝑧 + 𝑎]. 𝐼* is a 
constant from the renormalization group.

 Zhang et. al. PLB, 844, 138081.

 Error bars are obtained by varying the 
energy scale 𝜇 = 1 → 4 GeV.

 RGR alone, makes the error bars too large. 
Need leading renormalon resummation.

 Data follow same trend as in ibid.
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3) Remove the 
renormalon 
ambiguity.

•Ensure that the 
data at short 
distances agree 
with the Wilson 
coefficient for 
the 
corresponding 
operator.

(Points shifted slightly to improve readability.)

NLO

NLO+RGR

NLO+RGR+LRR
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m0. Range [z, z+a]. δm=0.670(15) GeV

Preliminary

𝑚*𝑧 + 𝐼* = ln
𝑒&+,×)𝐶* 𝑧, 𝜇
𝑍 𝑧, 𝑎, 𝑝. = 0



 Different 𝛿𝑚 values yield different 𝑚& 
values.

 Their sum 𝛿𝑚' = 𝛿𝑚 +𝑚& used in the 
final renormalization remains the same.

 𝑚& determined with NLO+RGR+LRR
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3) Remove the 
renormalon 
ambiguity.

•Ensure that the 
data at short 
distances agree 
with the Wilson 
coefficient for 
the 
corresponding 
operator.

m0 (GeV)
δm+m0 (GeV)
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 The full renormalization of !ℎ!(𝑧, 𝜉, 𝑡) is

!ℎ( 𝑧, 𝜉, 𝑡 =
!ℎ! 𝑧, 𝜉, 𝑡

𝑍 𝑧, 𝑎, 𝑝( = 0 𝜃 𝑧% − 𝑧 +
𝑒 )*+*! ,-," !ℎ! 𝑧, 𝜉, 𝑡

𝑍 𝑧%, 𝑎, 𝑝( = 0 𝜃(𝑧 − 𝑧%)

We choose 𝑧% = 3𝑎 = 0.27 fm.

10

4) Renormalize large 
momentum MEs in 
coordinate space.

•Use the hybrid-
RI/MOM or hybrid-
ratio scheme to fully 
renormalize the large 
momentum data.

Large momentum 
ME for LaMET
calculation

•Matrix elements for the 
relevant LaMET operator 
boosted to large 
momentum.



 With a view to Fourier transforming to

momentum space, we extrapolate to infinite distance. 

 !ℎ( 𝑧, 𝑃, → ./
#$%
&'

0 (  as 𝜆 → ∞.
 Ji et. al. NPB, 964, 115311. 2021

 We then Fourier transform to momentum space:
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5) Remove unphysical 
oscillations from the 
Fourier transform. •Extrapolate the  

coordinate space 
qGPD to infinite 
distance.

6) Determine qPDF in 
momentum space. •Fourier 

transformation.
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H(λ). Extrapolation to large λ. q2=0.37 GeV2. ξ=0.1

Preliminary

N𝐹 𝑥, 𝜉, 𝑡 = Q
&/

/ 𝑃)𝑑𝑧
2𝜋 𝑒#0)%" Nℎ. 𝑧, 𝜉, 𝑡



 The qGPD can be matched to the

lightcone via

𝐹 𝑥, 𝜉, 𝑡 = D
$/

/ 𝑑𝑦
𝑦
𝒞$0 𝑥, 𝑦, 𝜇, 𝑃( H𝐹 𝑦, 𝜉, 𝑡 + 𝒪

Λ123,

𝑥,𝑃(,
,

Λ123,

1 − 𝑥 ,𝑃(,

 𝒞$0(𝑥, 𝑦, 𝜇, 𝑃() is the matching kernel.
 Yao Ji, et. al. arXiv:2212.14415.

 We improve the matching process with renormalization group 
resummation.
 Su, JH et. al. NPB, 991, 116201. 2023
 Chen et. al. 2208.08008. Lattice parton collaboration
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7) Match qGPD to 
the lightcone.

•NNLO (fixed order or RGR). 
Unpolarised,  hybrid-ratio 
only.
•NLO (fixed order or RGR). 
All polarisations. Both 
hybrid-ratio and hybrid-
RI/MOM.



quasi-E(x,ξ,t)

E(x,ξ,t) NLO

E(x,ξ,t) NLO+RGR matching
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Preliminary

quasi-H(x,ξ,t)

H(x,ξ,t) NLO

H(x,ξ,t) NLO+RGR matching
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Preliminary  Top: 𝐻(𝑥, 𝜉, 𝑡). Bottom: 𝐸(𝑥, 𝜉, 𝑡).
 𝑞1 = 0.37 𝐺𝑒𝑉1, 𝜉 = 0.
  LaMET expansion breaks down in the small- and 

large-𝑥 regions: 𝑥 → 0 and 𝑥 → 1 “endpoint 
regions”.

 Corrections are 𝒪
2)*+
,

3',4 5-4 ,

 Braun et. al. PRD, 99, 014013. 2019
 Gao, JH et. al. PRD, 107, 074509. 2023

 Systematic errors are taken as 10% to reflect 
preliminary plots.
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 Top: 𝐻(𝑥, 𝜉, 𝑡). Bottom: 𝐸(𝑥, 𝜉, 𝑡).
 𝑞1 = 0.37 GeV2, 𝜉 = 0.1. 

 LaMET expansion breaks down in the small- and 
large-𝑥 regions: 𝑥 → 0 and 𝑥 → 1 “endpoint 
regions”.

 Corrections are 𝒪
2)*+
,

3',4 5-4 ,

 Braun et. al. PRD, 99, 014013. 2019
 Gao, JH et. al. PRD, 107, 074509. 2023

 Systematic errors are taken as 10% to reflect 
preliminary plots.
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quasi-E(x,ξ,t)

E(x,ξ,t) NLO

E(x,ξ,t) NLO+RGR matching
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 Sharper tools applied to pion PDF and DA calculations are applied to GPDs.
 Resummation of large logarithms.
 Improved handling of renormalon ambiguity.

 LRR process greatly reduces uncertainty in 𝑚& parameter.

 RGR matching process makes sense (greater modification at small-𝑥).

 Check LRR modification to matching kernel.

 Use of 𝑃, = 0 data as opposed to RI/MOM for comparison of systematic errors.
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 Set 𝜇 = 1/#-.
,

≡ 𝑧&-5 so the logarithms disappear. Then evolve to the desired energy 
scale using the renormalization group.

 𝐶& 𝑧, 𝜇 = 1 + 6 $ 7/
18

9
1
ln ,,$,/,-.

:
+ ;
1

 𝐶& 𝑧, 𝑧&-5 = 1 + 6 ,!#0 7/
18

;
1


<7! ,,$
< >?($,)

= 𝛾 𝜇 𝐶&(𝑧, 𝜇). 

 𝛾 𝜇  is the anomalous dimension.
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 We modify the “naïve” Wilson coefficients with the LRR method.

 𝐶&B(( 𝑧, 𝑧&-5 = 𝐶& 𝑧, 𝑧&-5 + 2𝑒-C.𝑁*(𝐶& 𝑧, 𝑧&-5 3D − ∑# 𝛼%E+5 𝑧&-5 𝑟#)

𝐶& 𝑧, 𝑧&-5 3D =
4𝜋
𝛽&
W
&,3D

F
𝑑𝑢 𝑒

-:8G
6 ,!#0 H!

1
1 − 2𝑢 5+I (1 + 𝑐5 1 − 2𝑢 +⋯)

 Zhang, JH et. al. PLB, 884, 138081. 2023

 Then evolve from 𝑧&-5 to 𝜇 with the RG.
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 Large logarithms infect the matching kernel, too.

 The method of RGR matching combines fixed order matching with the DGLAP 
evolution equation:

<𝒞#0 1
2,$

<>? $,
= ∫4

5 <,
,
𝑃 𝑧, 𝜇 +𝒞-5

4
,K
, 𝜇 .  𝑃(𝑧, 𝜇) is the DGLAP kernel.

 We apply the method of RGR matching.
 Su, JH et. al. NPB, 991, 116201. 2023
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Fig.7 of JH et. al. NPB, 993, 116282, 2023 Fig. 4 of Su, JH et. al. NPB, 991, 116201, 2023
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Preliminary

 Bottom image: calculation of 𝑚&
performed with pion PDF matrix 
elements.
 Fig. 2 of Zhang et. al. PLB, 844, 138081

 Values of 𝑚& follow the same trend 
between the two calculations.
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