

TOWARD A PRECISION CALCULATION OF GENERALIZED PARTON DISTRIBUTION FUNCTIONS.

Jack Holligan, Huey-Wen Lin. Michigan State University. $3^{\text {rd }}$ Aug 2023.

OUTLINE

- A walkthrough of the large-momentum effective theory (LaMET) process for a highprecision calculation of hadron GPDs.
- Xiangdong Ji. PRL, 110, 262002, 2013
- Ji et. al. RMP, 93, 035005, 2021

High quality renormalization

Transform to momentum space

- Preliminary results.

WHY STUDY GPDS?

- GPDs encode information about the internal- and spin-structure of a hadron. They are a hybrid of parton distribution functions (PDFs), form factors and distribution amplitudes. All of these serve as inputs to scattering experiments and theoretical calculations.
- A precise calculation of GPDs is, thus, of great interest.
- Methods of renormalization group resummation (RGR) have been applied to the pion PDF
- Su, JH et. al. NPB, 991, 116201,2023
- RGR and leading renormalon resummation (LRR) have been applied to the pion DA.
- JH et. al. NPB, 993, 116282,2023
- We apply these methods to GPDs.

LATTICE DATH

- Lattice configurations from the MILC collaboration.
- Bazavov et. al. PRD, 87, 054505. 2013.
- Lattice matrix elements:

$$
\begin{gathered}
\tilde{h}^{B}(z, \xi, t)=\left\langle P_{f}\right| \bar{\psi}(0) \Gamma \mathrm{W}(0, \mathrm{z}) \psi(z)\left|P_{i}\right\rangle . \\
z^{\mu}=(0,0,0, z)^{\mu}
\end{gathered}
$$

- Define the quantities:
- $\Delta^{\mu}=\mathrm{P}_{f}^{\mu}-\mathrm{P}_{i}^{\mu}$, 'momentum transfer", $t=\Delta^{2}$,
$\xi=\frac{P_{f}^{Z}-P_{i}^{Z}}{P_{f}^{Z}+P_{i}^{Z}}, "(q u a s i-)$ skewness"
- When $\xi=0$, GPDs reduce to the more familiar PDFs.
- We use the symmetric frame.
- Lattice spacing, $a=0.09 \mathrm{fm}$.
- Volume $=64^{3} \times 96$.
- $2+1+1$ flavors of highly improved staggered quarks.
- One-loop Symanzik improved gauge action.
- One step of HYP smearing on gauge links.
- Physical pion mass.
- ~500,000 matrix elements from
~ 1000 configurations.

RENORMALIZHTION DATA

- We renormalize our data using the hybrid-RI/MOM scheme.
- Ji et. al. NPB, 964, 115311.2021
- At short distances ($z \lesssim 0.2 \mathrm{fm}$), we use the familiar RI/MOM scheme:

$$
\tilde{h}^{R}(z, \xi, t) \sim \frac{\widetilde{h}^{B}(z, \xi, t)}{Z\left(z, a, p_{R}=0\right)}
$$

- At large distances ($z \gtrsim 0.2 \mathrm{fm}$), we remove the linear divergence and renormalon ambiguity:

$$
\tilde{h}^{R}(z, \xi, t)=e^{\left(\delta m+m_{0}\right) z} \tilde{h}^{B}(z, \xi, t)
$$

(Impose continuity at $z=z_{s}$.)
The parameters δm and m_{0} must be determined carefully.

REMOVE LINEAR DIVERGENCE (δm)

RI/MOM data. $z=[6 a, 15 a] . \delta m=0.670(15) \mathrm{GeV}$

- Determine the exponential decay of the renormalization data from previous step.
- The parameter δm accounts for the linear divergence that occurs in the Wilson line, $W(0, z)$.
- Fit the data to $A e^{-\delta m \times z}$.
- Ji et. al. NPB, 964, 115311, 2021
- We select the value $\delta m=0.670(15) \mathrm{GeV}$.

REMOVE RENORMALON AMBIGUITY (m_{0})

3) Remove the renormalon

- We demand that our renormalized matrix elements agree with the operator product expansion (OPE) for $z \leq 0.3 \mathrm{fm}$.
-Ensure that the data at short distances agree with the Wilson coefficient for the corresponding operator.
- The functions are Wilson coefficients at distance z and energy scale $\mu: C_{0}(z, \mu)$
- Yao Ji et. al. arXiv:2212.14415.

$$
\begin{gathered}
C_{0}(z, \mu)=1+\frac{\alpha_{S}(\mu) C_{F}}{2 \pi}\left(\frac{3}{2} \ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}}}{4}\right)+\frac{5}{2}\right) \\
C_{0}(z, \mu) \sim e^{\left(\delta m+m_{0}\right) z} Z\left(z, a, P_{z}=0\right)
\end{gathered}
$$

- We improve m_{0} calculation using leading renormalon resummation (LRR).
- Zhang et. al. PLB, 844, 138081
- Yushan Su", talk. "Leading power accuracy in lattice calculations of parton distribution functions." $1^{\text {st }}$ Aug, 16:20 CDT.
- Jianhui Zhang's talk. "Renormalons in the renormalization of quasi-PDF matrix elements." $3^{\text {rd }}$ Aug, 11:00 CDT.
- Andreas Kronfeld’s talk. "More minimal renormalon subtraction." 3rd Aug, 13:50 CDT.

REMIOVE RENORMALON AMBIGUITY $\left(m_{0}\right)$

- The m_{0} parameter determined from the linear fit

$$
m_{0} z+I_{0}=\ln \left(\frac{e^{-\delta m \times z} C_{0}(z, \mu)}{Z\left(z, a, p_{R}=0\right)}\right)
$$

-Ensure that the data at short distances agree with the Wilson coefficient for the corresponding operator.
in the range of z-values $[z, z+a] . I_{0}$ is a constant from the renormalization group.

- Zhang et. al. PLB, 844, 138081.
- Error bars are obtained by varying the energy scale $\mu=1 \rightarrow 4 \mathrm{GeV}$.
- RGR alone, makes the error bars too large. Need leading renormalon resummation.
- Data follow same trend as in ibid.
(Points shifted slightly to improve readability.)

REMOVE RENORMALON AMBIGUITY (m_{0})

3) Remove the
-Ensure that the data at short distances agree with the Wilson coefficient for the corresponding operator.

- Different δm values yield different m_{0} values.
- Their sum $\delta m^{\prime}=\delta m+m_{0}$ used in the final renormalization remains the same.
- m_{0} determined with NLO+RGR+LRR

RENORMALIZP LARGE MOMENTUM QGPD

Large momentum ME for LaMET
calculation

4) Renormalize large momentum MEs in coordinate space.
-Use the hybridRI/MOM or hybridratio scheme to fully renormalize the large momentum data.

- The full renormalization of $\tilde{h}^{B}(z, \xi, t)$ is

$$
\tilde{h}^{R}(z, \xi, t)=\frac{\tilde{h}^{B}(z, \xi, t)}{Z\left(z, a, p_{R}=0\right)} \theta\left(z_{S}-z\right)+\frac{e^{\left(\delta m+m_{0}\right)\left(z-z_{S}\right)} \tilde{h}^{B}(z, \xi, t)}{Z\left(z_{S}, a, p_{R}=0\right)} \theta\left(z-z_{S}\right)
$$

We choose $z_{s}=3 a=0.27 \mathrm{fm}$.

EXTRAPOLATE AND FOURIER TRANSFORM

- With a view to Fourier transforming to momentum space, we extrapolate to infinite distance.
- $\tilde{h}^{R}\left(z, P_{z}\right) \rightarrow \frac{A e^{-\frac{m \lambda}{P_{z}}}}{|\lambda|^{d}}$ as $\lambda \rightarrow \infty$.
- Ji et. al. NPB, 964, 115311. 2021
- We then Fourier transform to momentum space:

$$
\tilde{F}(x, \xi, t)=\int_{-\infty}^{\infty} \frac{P_{z} d z}{2 \pi} e^{i x z P_{z} \tilde{h}^{R}(z, \xi, t)}
$$

6) Determine qPDF in momentum space.
-Fourier transformation.
$H(\lambda)$. Extrapolation to large $\lambda . q^{2}=0.37 \mathrm{GeV}^{2} . \xi=0.1$

Lichicone Matching

- The qGPD can be matched to the
lightcone via
-NNLO (fixed order or RGR).
Unpolarised, hybrid-ratio only.
-NLO (fixed order or RGR). All polarisations. Both hybrid-ratio and hybridRI/MOM.

$$
F(x, \xi, t)=\int_{-\infty}^{\infty} \frac{d y}{|y|} \mathcal{C}^{-1}\left(x, y, \mu, P_{z}\right) \tilde{F}(y, \xi, t)+\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{x^{2} P_{z}^{2}}, \frac{\Lambda_{Q C D}^{2}}{(1-x)^{2} P_{z}^{2}}\right)
$$

- $\mathcal{C}^{-1}\left(x, y, \mu, P_{z}\right)$ is the matching kernel.
- Yao Ji, et. al. arXiv:2212.14415.
- We improve the matching process with renormalization group resummation.
- Su, JH et. al. NPB, 991, 116201.2023
- Chen et. al. 2208.08008. Lattice parton collaboration

PRELIMINARY RESULTS

- Top: $H(x, \xi, t)$. Bottom: $E(x, \xi, t)$.
- $q^{2}=0.37 \mathrm{GeV}^{2}, \xi=0$.
- LaMET expansion breaks down in the small- and large- x regions: $x \rightarrow 0$ and $|x| \rightarrow 1$ "endpoint regions".
- Corrections are $\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{P_{z}^{2} x(1-x)^{2}}\right)$
- Braun et. al. PRD, 99, 014013. 2019
- Gao, JH et. al. PRD, 107, 074509. 2023
- Systematic errors are taken as 10\% to reflect preliminary plots.

Nucleon isovector unpolarised GPD. $q^{2}=0.37 \mathrm{GeV}^{2} . ~ \xi=0.1$

Nucleon isovector unpolarised GPD. $q^{2}=0.37 \mathrm{GeV}^{2} . \xi=0.1$

PRELIMINARY RESULTS

- Top: $H(x, \xi, t)$. Bottom: $E(x, \xi, t)$.
- $q^{2}=0.37 \mathrm{GeV}^{2}, \xi=0.1$.
- LaMET expansion breaks down in the small- and large- x regions: $x \rightarrow 0$ and $|x| \rightarrow 1$ "endpoint regions".
- Corrections are $\mathcal{O}\left(\frac{\Lambda_{Q C D}^{2}}{P_{Z}^{2} x(1-x)^{2}}\right)$
- Braun et. al. PRD, 99,014013. 2019
- Gao, JH et. al. PRD, 107, 074509. 2023
- Systematic errors are taken as 10\% to reflect preliminary plots.

CONCLUSION AND POSSIBLE FUTURE STEPS

- Sharper tools applied to pion PDF and DA calculations are applied to GPDs.
- Resummation of large logarithms.
- Improved handling of renormalon ambiguity.
- LRR process greatly reduces uncertainty in m_{0} parameter.
- RGR matching process makes sense (greater modification at small- x).
- Check LRR modification to matching kernel.
- Use of $P_{z}=0$ data as opposed to RI/MOM for comparison of systematic errors.

THANK YOU

RGR WLLSON COEFFICIENT

- Set $\mu=\frac{2 e^{-\gamma_{E}}}{z} \equiv z_{0}^{-1}$ so the logarithms disappear. Then evolve to the desired energy scale using the renormalization group.
- $C_{0}(z, \mu)=1+\frac{\alpha(\mu) C_{F}}{2 \pi}\left(\frac{3}{2} \ln \left(\frac{z^{2} \mu^{2} e^{2 \gamma_{E}}}{4}\right)+\frac{5}{2}\right)$
- $C_{0}\left(z, z_{0}^{-1}\right)=1+\frac{\alpha\left(z_{0}^{-1}\right) C_{F}}{2 \pi} \frac{5}{2}$
- $\frac{d C_{0}(z, \mu)}{d \ln \left(\mu^{2}\right)}=\gamma(\mu) C_{0}(z, \mu)$.
- $\gamma(\mu)$ is the anomalous dimension.

LRR WILSON COEFPICIENT

- We modify the "naïve" Wilson coefficients with the LRR method.
- $C_{0}^{L R R}\left(z, z_{0}^{-1}\right)=C_{0}\left(z, z_{0}^{-1}\right)+2 e^{-\gamma_{E}} N_{m}\left(C_{0}\left(z, z_{0}^{-1}\right)_{P V}-\sum_{i} \alpha_{S}^{n+1}\left(z_{0}^{-1}\right) r_{i}\right)$

$$
C_{0}\left(z, z_{0}^{-1}\right)_{P V}=\frac{4 \pi}{\beta_{0}} \int_{0, P V}^{\infty} d u e^{\frac{-4 \pi u}{\alpha\left(z_{0}^{-1}\right) \beta_{0}}} \frac{1}{(1-2 u)^{1+b}}\left(1+c_{1}(1-2 u)+\cdots\right)
$$

- Zhang; JH et. al. PLB, 884, 138081. 2023
- Then evolve from z_{0}^{-1} to μ with the RG.

RGR MATCHING

- Large logarithms infect the matching kernel, too.
- The method of RGR matching combines fixed order matching with the DGLAP evolution equation:

$$
\frac{d \mathcal{C}^{-1}\left(\frac{x}{y} \mu\right)}{d \ln \left(\mu^{2}\right)}=\int_{x}^{1} \frac{d z}{|z|} P(z, \mu)_{+} \mathcal{C}^{-1}\left(\frac{x}{z y}, \mu\right) \cdot P(z, \mu) \text { is the DGLAP kernel. }
$$

- We apply the method of RGR matching.
- Su, JH et. al. NPB, 991, ll6201. 2023

RGR MATCHING APPLIED TO PION

Fig. 7 of JH et. al. NPB, 993, 1 16282, 2023

Fig. 4 of Su, JH et. al. NPB, 991, 116201, 2023

COMPUTATION OF m_{0}

- Bottom image: calculation of m_{0} performed with pion PDF matrix elements.
- Fig. 2 of Zhang et. al. PLB, 844, 138081
- Values of m_{0} follow the same trend between the two calculations.

