Srimoyee Sen and <u>Semeon Valgushev</u>

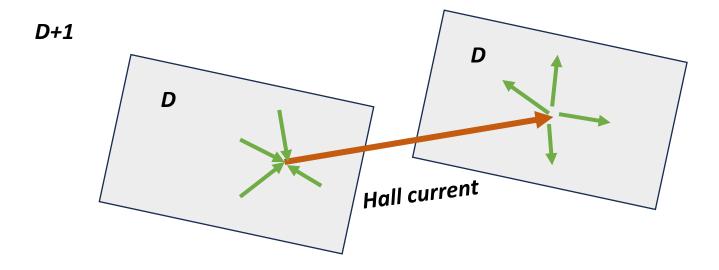
Iowa State University

Lattice 2023 Fermilab, 2 August 202

Based on arXiv:2307.04792

Massless modes on defects and Hall current

Domain wall fermions in odd dimensions: massless modes on defects produce an anomaly



Can one say anything about massless modes on defects in even dimensions or for theories without chiral symmetry?

Can one say more about massless modes on defect?

- Yessss D. Kaplan and S. Sen arXiv:2112.06954

Fermion index:
$$I = \lim_{M \to 0} \mathcal{I}(M)$$

 $\mathcal{I}(M) = \operatorname{Tr} \left(\frac{M^2}{\mathcal{D}^{\dagger} \mathcal{D} + M^2} - \frac{M^2}{\mathcal{D} \mathcal{D}^{\dagger} + M^2} \right)$
 $= \operatorname{Tr} \Gamma_{\chi} \frac{M}{K+M},$

Looks like a propagator of some new theory:

$$S = \int d^{d+1}x \,\overline{\Psi}(K+M)\Psi$$
$$K = \begin{pmatrix} 0 & -\mathcal{D}^{\dagger} \\ \mathcal{D} & 0 \end{pmatrix}, \, \Gamma_{\chi} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \, \{K, \Gamma_{\chi}\} = 0$$

So the index become:

$$\mathcal{I}(M) = -M \int d^{d+1}x \left\langle \overline{\Psi}(x) \Gamma_{\chi} \Psi(x) \right\rangle$$

0

$$= \mathcal{I}(\mathbf{x}) - \frac{1}{2} \int d^{d+1}x \,\partial_{\mu} \langle \overline{\Psi} \Gamma_{\mu} \Gamma_{\chi} \Psi \rangle$$

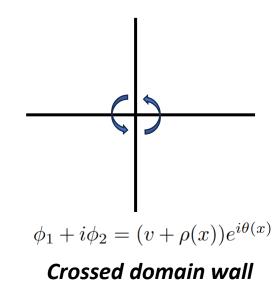
(div of) Generalized Hall Current

Simple example

1+1d fermion and a domain wall with a zero mode:

$$\mathcal{L}_M = \frac{1}{2} \psi^T C \left(i \partial \!\!\!/ - m \right) \psi$$

In Euclidean space:



$$\mathcal{D} = \left(\partial \!\!\!/ + \phi_1 + i\phi_2 \gamma_\chi \right)$$

Diagnostic field to make zeromode normalizable, switch it off in the end

Generalized Hall current and index:

$$\mathcal{J}_{\mu} = -\nu_p \frac{\epsilon_{\mu\nu} \partial_{\nu} \vartheta}{\pi} ,$$

$$\mathcal{I}(0) = \nu_p \nu_\phi$$

Manifestly topological

Challenge: how to study effects of interactions?

First step: study realization of Generalized Hall current on the lattice

1+1d fermion and a crossed domain wall: 4 vortices due to periodic BC!

In finite volume zero modes are almost zero...

Wilson-like operator:

$$\mathcal{D}_1 = \sum_{\mu} \gamma_{\mu} \nabla_{\mu} + \frac{R}{2} \nabla_1^2 + i \gamma_{\chi} \frac{R}{2} \nabla_0^2$$

Exact zero modes can be analytically found even in finite volume for certain fine tuned parameters

Wilson operator:

$$\mathcal{D}_2 = \sum_\mu \gamma_\mu
abla_\mu + rac{R}{2} \sum_\mu
abla_\mu^2$$

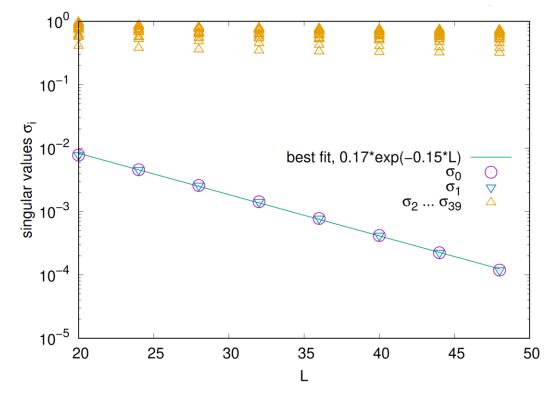
Almost zero modes

Take infinite volume limit?

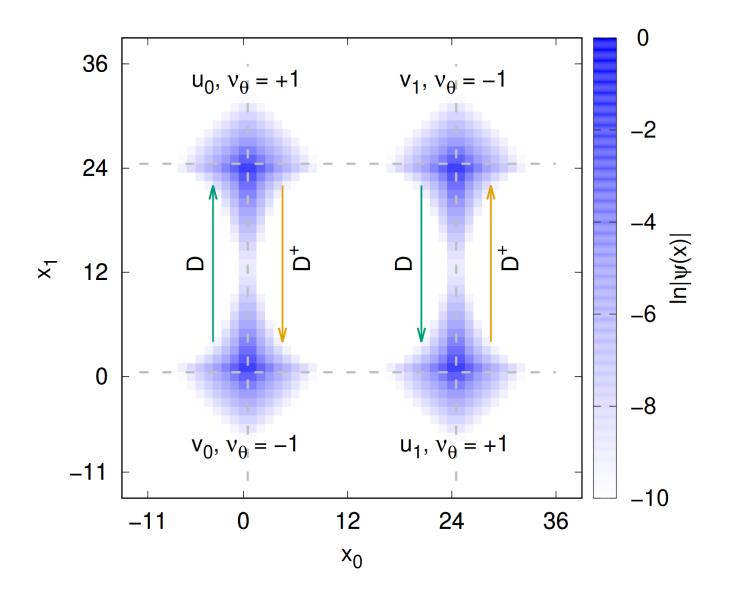
Wilson-* operators are not normal. Finite dimensional eigenvectors do not necessarily converge to true zero modes

Consider SVD instead: $\mathcal{D}\mathcal{D}^{\dagger}u_{i} = \sigma_{i}^{2}u_{i},$ $\mathcal{D}^{\dagger}\mathcal{D}v_{i} = \sigma_{i}^{2}v_{i}$

Smallest singular value yields minimum of $|\mathcal{D}v'|$ and $|\mathcal{D}^{\dagger}u'|$.



Almost zero modes

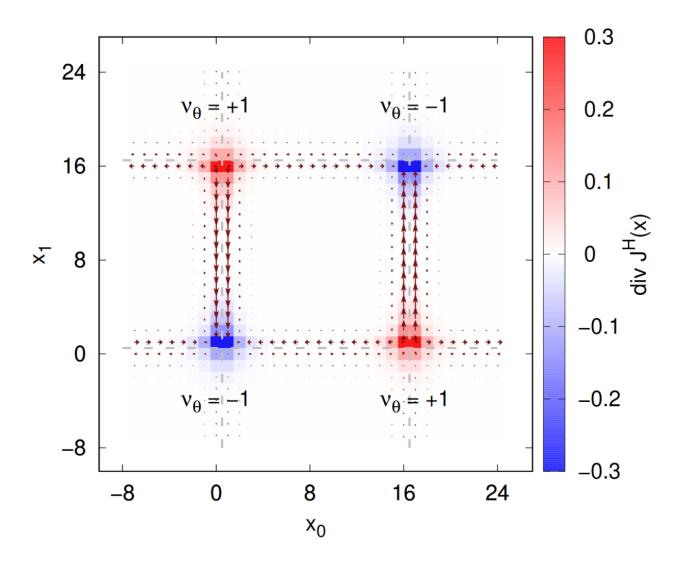


We define it analogously to continuum formula:

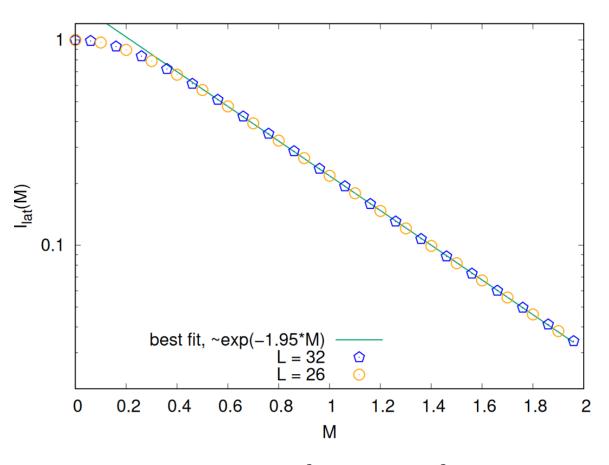
$$J^{H}_{\mu}(x) = \bar{\Psi}\tilde{\Gamma}_{\mu}(x)\Gamma_{\chi}\Psi \qquad \qquad \tilde{\Gamma}_{\mu}(x) = -i\left.\frac{\delta K(A_{\mu}(x))}{\delta A_{\mu}(x)}\right|_{A_{\mu}(x)=0}$$

Divergence:
$$\nabla^B_{\mu} J^H_{\mu}(x) = \sum_{\mu=0,1} \left(J^H_{\mu}(x - a_{\mu}) - J^H_{\mu}(x) \right)$$

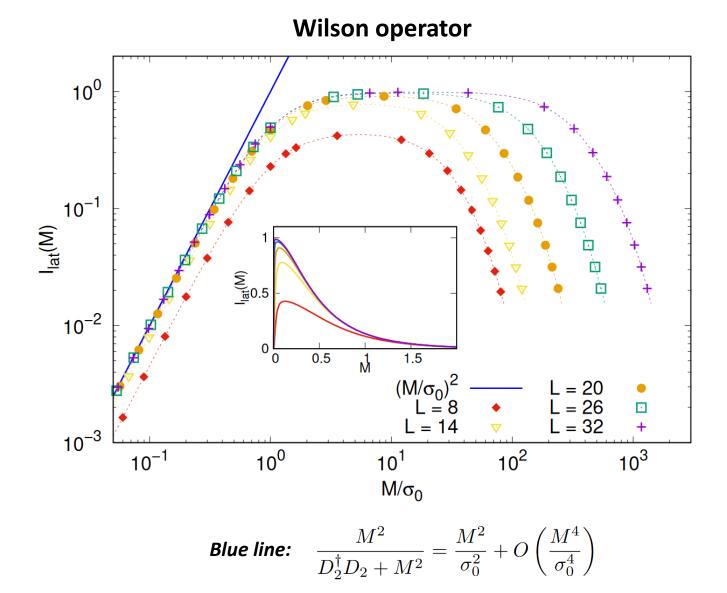
"Index":
$$I_{lat} = -\frac{1}{2} \sum_{x \in S} \nabla^B_\mu J^H_\mu(x)$$
 (•) (•)



Wilson-like operator + fine tuning (= exact zero mode)



$$\mathcal{I}(M) = \frac{M^2}{M^2 + \mathcal{D}^{\dagger}\mathcal{D}} - \frac{M^2}{\mathcal{D}\mathcal{D}^{\dagger} + M^2}$$



Conclusions

- 1. We studied realization of Generalized Hall current on the lattice
- 2. We successfully reproduced the infinite volume index
- 3. Intricate finite volume analysis was required due to lattice geometry
- 4. Future work: higher-dimensional theories, interactions and non-perturbative effects