A status update of Fermilab/HPQCD/MILC Collaborations muon g-2 project

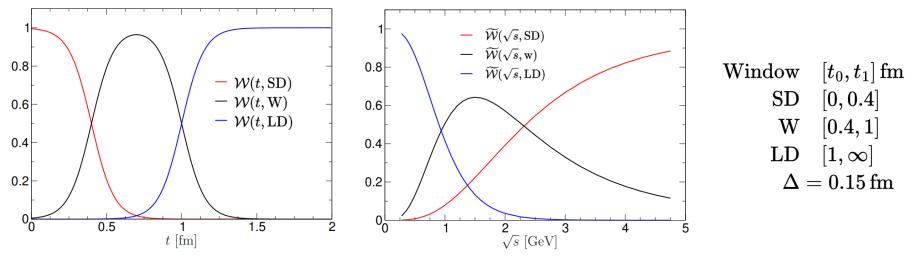
Lattice 2023, Fermilab.

Shaun Lahert, University of Utah

On behalf of the Fermilab Lattice, HPQCD and MILC Collaborations.

Outline

✤ Light quark connected.

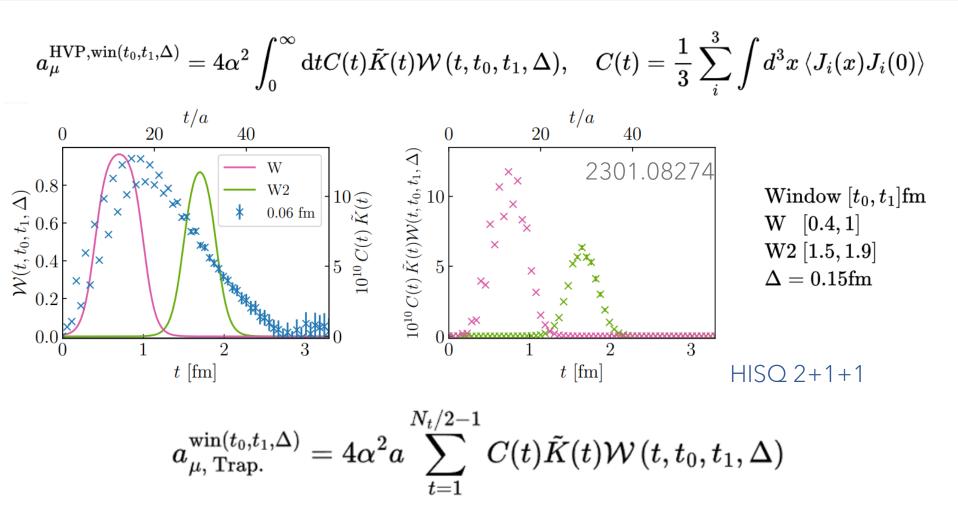

- ◆Low-mode improved data set.
- Preliminary results for long-distance observables.
- Sub-leading contributions to intermediate window.
 Strange and Charm
 Disconnected

Conclusions/Outlook

HVP contribution from the Lattice

$$a^{ ext{HVP,LO}}_{\mu} = 4lpha^2 \int_0^\infty dt ilde{K}(t) C(t), \quad C(t) = rac{1}{3} \sum_i^3 \int d^3x \left\langle J_i(x) J_i(0)
ight
angle$$
 $J_i(x) = Q_u ar{u}(x) \gamma_i u(x) + Q_d ar{d}(x) \gamma_i d(x) + Q_s ar{s}(x) \gamma_i s(x) + \dots$

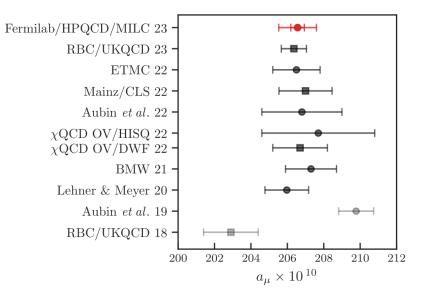
window function:
$$\mathcal{W}(t, t_0, t_1, \Delta) = \frac{1}{2} \left[\tanh\left(\frac{t - t_0}{\Delta}\right) - \tanh\left(\frac{t - t_1}{\Delta}\right) \right] + (t \to -t).$$

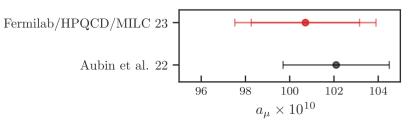


plots taken from 2205.12963

SD+W+LD=Full

Light-quark connected

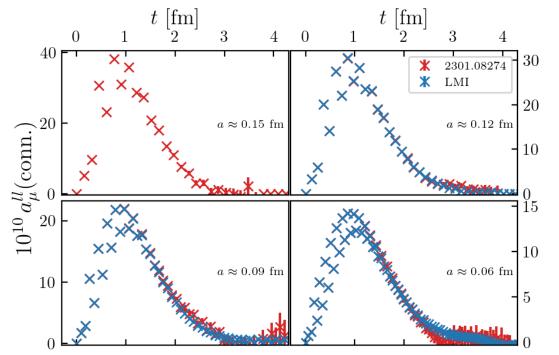

Intermediate windows


- Staggered temporal oscillations found to have a negligible effect.
- Integration scheme errors are similarly negligible.

Light-quark windows (2301.08274)

W [0.4, 1] fm

W2 [1.5, 1.9] fm

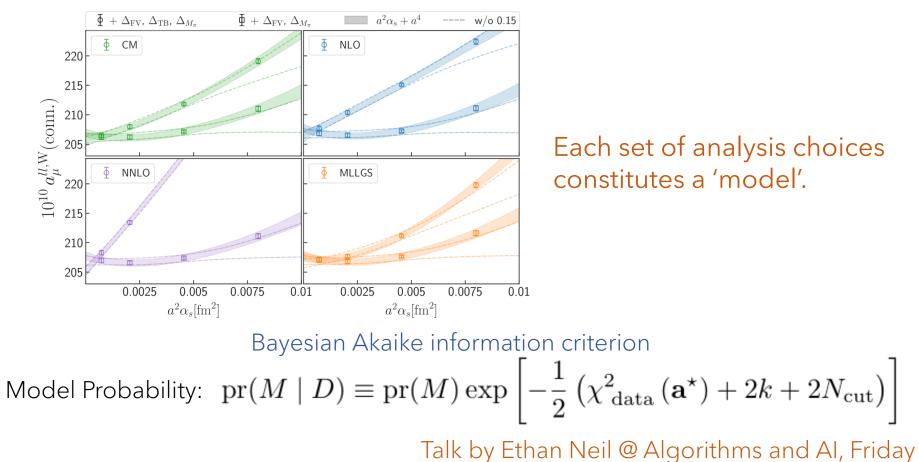

Dominant uncertainties:

- W: continuum extrap. (including TB)
- W2: statistical.

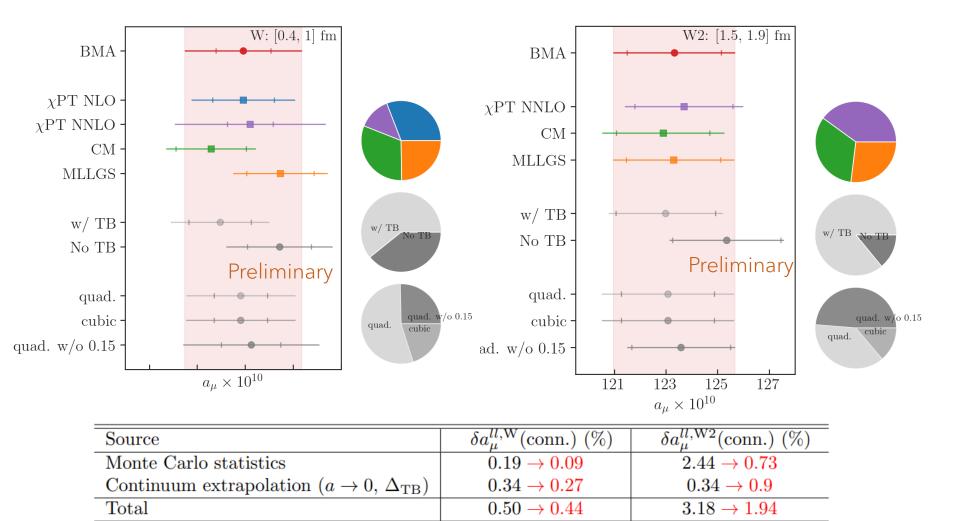
Source	$\delta a^{ll,W}_{\mu}(\text{conn.})$ (%)	$\delta a^{ll,W2}_{\mu}$ (conn.) (%)
Monte Carlo statistics	0.19	2.44
Continuum extrapolation $(a \rightarrow 0, \Delta_{\text{TB}})$	0.34	1.05
Finite-volume correction $(\Delta_{\rm FV})$	0.16	0.23
Pion-mass adjustment $(\Delta_{M_{\pi}})$	0.06	0.96
Scale setting $(w_0 \text{ (fm)}, w_0/a)$	0.21	1.28
Current renormalization (Z_V)	0.17	0.16
Total	0.50%	3.18%

Correlator data has significant StN issues at larger times.

Low-mode improved light-quark data

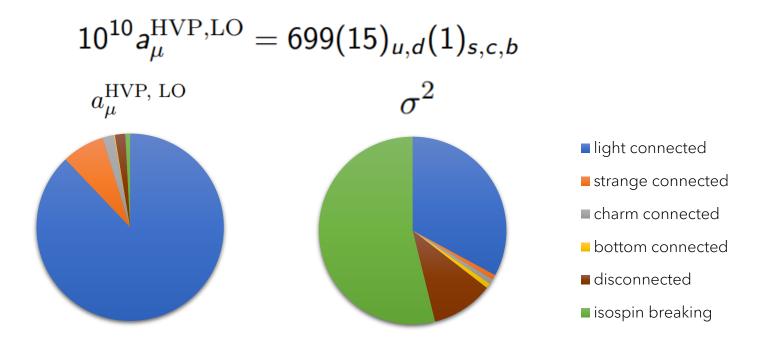

- LMI datasets at three finest ensembles.
- Re-tuned valence mass at 0.09 fm.
- Data generation ongoing at 0.06, 0.04, and retuned 0.09 fm ensemble.

$\approx a/\mathrm{fm}$	$L/{\rm fm}$	$N_s^3 \times N_t$	$am_l^{ m sea}/am_s^{ m sea}/am_c^{ m sea}$	$M_{\pi_5}/{ m MeV}$	$N_{ m conf}$	$N_{\rm eig}$	$N_{\rm src}$
0.15	4.85	$32^3 \times 48$	0.002426/0.0673/0.8447	134.73(71)	9362	0	48
0.12	5.83	$48^3 \times 64$	0.001907/0.05252/0.6382	134.86(71)	9637	0	64
0.12_{LMI}					1060	2000	
0.09	5.62	$64^3 \times 96$	0.00120/0.0363/0.432	128.34(68)	5384	0	48
0.09_{LMI}				135.07(71)	1000	2000	
0.06	5.46	$96^{3} \times 128$	0.0008/0.022/0.260	134.95(72)	2621	0	24
0.06_{LMI}					508	2000	96


LMI code-base and data generation: Michael Lynch @ Software Development and Machines at 5pm

Connected light-quark analysis strategy

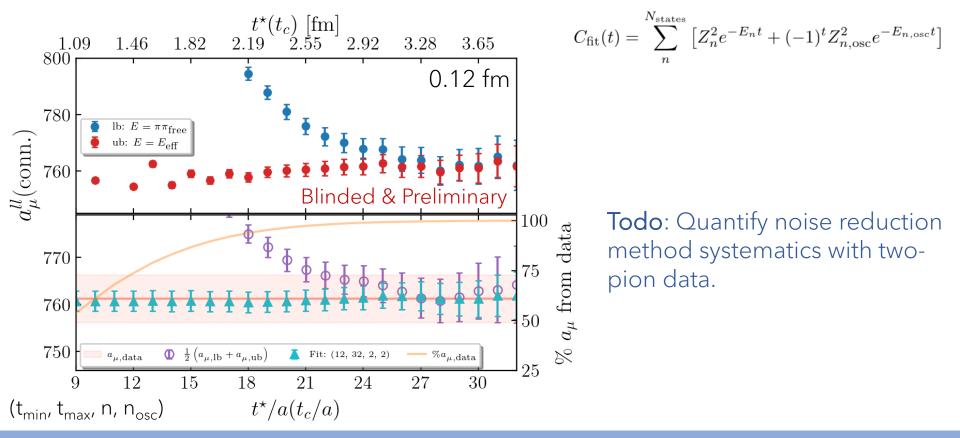
- ✤ (Software) blinded analysis.
- Incorporate different EFT-based correction schemes.
- Continuum extrapolation w/ and w/o taste-breaking corrections and powers of α_s .
- Systematics error estimates choices through Bayesian Model Averaging (BMA).



Updated light-quark windows

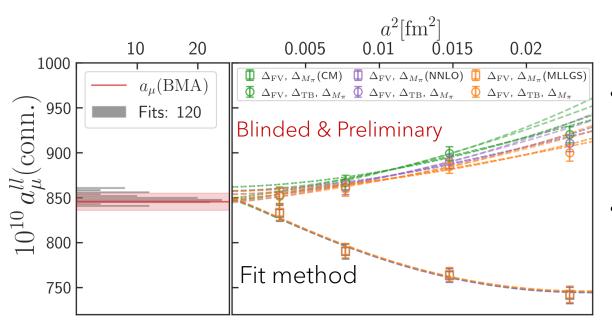
W: ~2x improvement in stat. uncertainty. W2: ~3x improvement in stat. uncertainty.

Full a_u (1902.04223)


Source	$a^{ll}_{\mu}(\text{conn.})$ (%)
Lattice-spacing (a^{-1}) uncertainty	0.8
Monte Carlo statistics	0.7
Continuum $(a \to 0)$ extrapolation	0.7
Finite-volume and discretization corrections	0.6
Current renormalization (Z_V)	0.1
Chiral (m_l) interpolation	0.1
Sea (m_s) adjustment	0.1
Total	1.4%

Light connected:

Light-quark noise reduction strategy


In absence of direct two-pion data, requires noise-reduction strategy:

- Bounding method: Bound energy-dependence of correlator after t_c with upper ($E_{eff.}$) and lower ($m_{\pi\pi}$) energies. a_μ determined when bounds meet. $E_{eff.} = \frac{1}{2} \operatorname{arccosh} \left[\frac{C(t+2) + C(t-2)}{2C(t)} \right]$
- Fit method: Fit correlator and replace after t* with fit reconstruction.

01-Aug-23

Full light-quark a_µ

Preliminary error budget

Source	$\delta a_{\mu}(\text{Fit})$ (%)	$\delta a_{\mu}(\text{Bound})$ (%)
Monte Carlo statistics	0.39	0.51
Continuum extrapolation $(a \rightarrow 0, \Delta_{\rm TB})$	0.48	0.51
Model correction $(\Delta_{\rm FV}, \Delta_{M_{\pi}})$	0.17	0.15
Scale setting $(w_0 \text{ (fm)}, w_0/a)$	0.91	0.9
Current renormalization (Z_V)	0.09	0.09
Total w/o scale uncertainty	0.66%	0.75%
Total	1.12%	1.17%

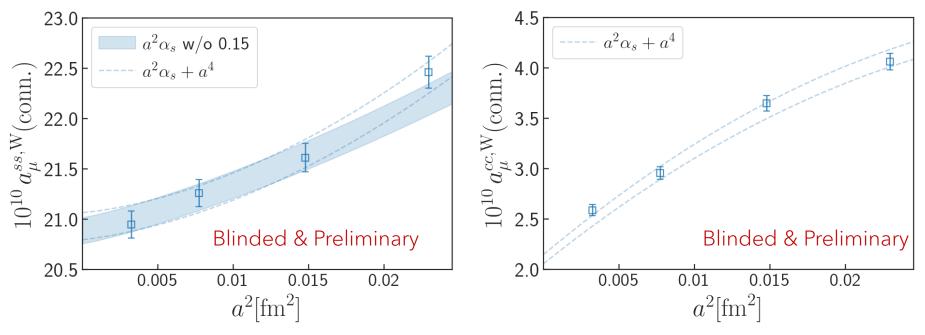
- Statistical uncertainty reduced ~50% from 1902.04223v2
- Dominant uncertainty from w₀ in fermi.

Scale-setting project: Alexei Bazavov, 2:30 @ SM parameters

 Ongoing: Further refine stat & cont. extrap. with more stats at 0.06 and new 0.042 fm data set.

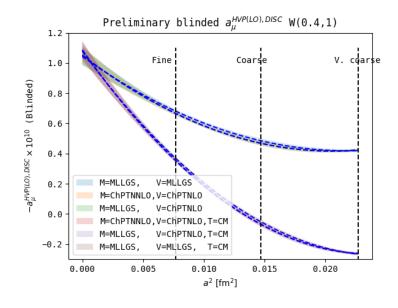
Sub-leading contributions

Near-term goal: Complete calculation of W to compare with R-ratio.

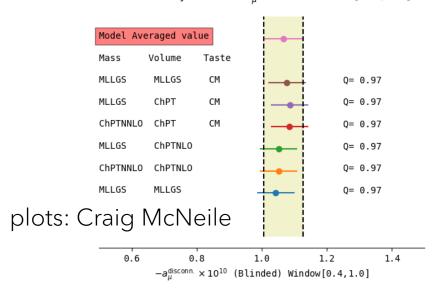

$$egin{aligned} a^W_\mu &= a^{ll,\,W}_\mu(ext{ conn. }) + a^{ss,\,W}_\mu(ext{ conn. }) + a^{cc,\,W}_\mu(ext{ conn. }) + \ldots \ &+ a^{lsc\ldots,\,W}_\mu(ext{ disc. }) \ &+ \Delta a^{ud,\,W}_\mu(ext{SIB}) + \Delta a^{ud,\,W}_\mu(ext{QED}) & ext{Isospin Breaking} \end{aligned}$$

Direct lattice calculations of all contributions

W: Strange and Charm connected


HISQ physical mass ensembles w/ random-wall sources (tsm).

$\approx a/{\rm fm}$	$N_{\rm conf, \ strange}$	$N_{\rm src, \ strange}$	$N_{\rm conf, \ charm}$	$N_{\rm src, \ charm}$
0.15	10019	48	10019	48
0.12	2985	64	2985	64
0.09	241	16	565	8
0.06	1424	24	1424	24



- Significant discretization effects in charm.
- Finalizing continuum extrap. but already at precision goals.

W: Disconnected Contribution

					-	
Preliminary	blinded	a,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Window	0.4	,1.	. 0

$\approx a/\mathrm{fm}$	$N_s^3 \times N_t$	$N_{ m conf}$
0.15	$32^3 \times 48$	1047
0.12	$48^3 \times 64$	562
0.09	$64^3 \times 96$	750

$$egin{aligned} a_{\mu}\left(L_{\infty},M_{\pi_{ ext{phya}}}
ight) &= a_{\mu}\left(L_{ ext{latt}}\,,M_{\pi_{ ext{lat}}\,,\xi_{1}},\cdots,M_{\pi_{ ext{lat}}\,,\xi_{16}}
ight) \ &+ \Delta_{ ext{FV}}+\Delta_{M_{\pi}}+\Delta_{ ext{TB}} \end{aligned}$$

$$\Delta a_\mu({
m disc.}) ~~= -rac{1}{10}\,\Delta a_\mu({
m conn.})$$

- BMA approach used.
- Investigating NLO ChPT result of -1/10 using lattice data to construct ratio of connected to disconnected.

Conclusion / Outlook

Light-quark connected

- > 2x reduction in statistical uncertainty on full a_{μ} with new data set, scale setting uncertainty now ~2x larger than all other sources. ~1.8 x δw_0
- Adding more statistics at 0.06 fm.
- ➢ Data generation @ 0.042 fm underway.
- ➢ Including second discretization (taste-singlet @ 4 lattice spacings).
- FV study on HISQ @ 0.09 fm with large volume lattice, L_{large}=11.2, to address model correction systematic.
- Complete NNLO ChPT taste-vector result in progress.
- > Ongoing two-pion project to improve control over long-time region.

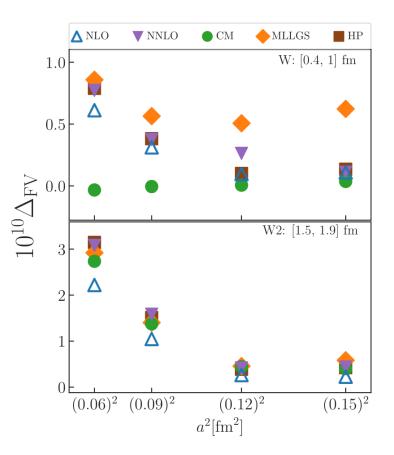
Sub-leading contributions.

- > Heavy flavor analysis already at precision goals.
- Disconnected, SIB (conn. + disc @ 3 lattice spacings) and QED analysis ongoing.

Finite Volume Effects

Lattice results corrected for FV, (TB) and pion mass mistuning before continuum extrapolation..

$$a_{\mu}\left(L_{\infty},M_{\pi_{ ext{phys}}}
ight)=a_{\mu}\left(L_{ ext{latt}}\,,M_{\pi_{ ext{lat}},\xi_{1}},\cdots,M_{\pi_{ ext{lat}},\xi_{16}}
ight)+\Delta_{ ext{FV}}+\Delta_{M_{\pi}}(+\Delta_{ ext{TB}})$$


FV effects from low energy two-pion physics.

- (N)NLO chiral perturbation theory.
 (Theory of pions + LECs) BMW, Aubin et. al.
- CM FHM, BMW, Aubin et. al.
 (ChPT + dynamical rho meson.)
- ✤ MLLGS ETMC, Mainz

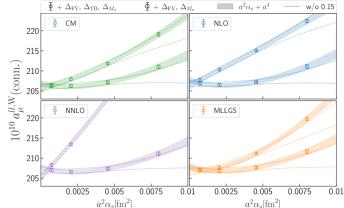
(IV scattering amplitude \iff FV energies and overlap amplitudes.)

(Non-perturbative re-summation of scalar QED)

Correction is 0.5% (3%) effect for W (W2).

BMA continuum fit function:

 $a_{\mu}^{ll}(a, \{m_f\}) = a_{\mu}^{ll} \left(1 + F^{\text{disc.}}(a) + F^m(\{\delta m_f\}) \right),$


Variations:

- Powers of the strong coupling
- Turning on/off the cubic term
- Turning on/off the mass term
- Dropping coarsest ensemble.

 $F^{\text{disc.}}(a) = C_{a^2,n} \left[(a\Lambda)^2 \alpha_s^n \right] + C_{a^4} (a\Lambda)^4 + C_{a^6} (a\Lambda)^6$ $F^m(\{\delta m_f\}) = C_{\text{sea}} \sum_{f=l,l,s} \delta m_f / \Lambda.$

Analysis Strategy

- ✤ (Software) blinded analysis.
- Considered all EFT-based correction schemes.
- Continuum extrapolation analysis including taste-breaking.
- Systematics from analysis choices through Bayesian Model Averaging (BMA).

Each set of analysis choices constitutes a 'model'.

Bayesian Akaike information criterion Model Probability: $\operatorname{pr}(M \mid D) \equiv \operatorname{pr}(M) \exp \left[-\frac{1}{2} \left(\chi^2_{\text{data}} \left(\mathbf{a}^{\star}\right) + 2k + 2N_{\text{cut}}\right)\right]$

BMA mean and variance.

$$\langle a_{\mu} \rangle = \sum_{i=1}^{N_{M}} \langle a_{\mu} \rangle_{i} \operatorname{pr} \left(M_{i} \mid D \right),$$

$$\sigma_{a_{\mu}}^{2} = \sum_{i=1}^{N_{M}} \sigma_{a_{\mu},i}^{2} \operatorname{pr} \left(M_{i} \mid D \right) + \sum_{i=1}^{N_{M}} \langle a_{\mu} \rangle_{i}^{2} \operatorname{pr} \left(M_{i} \mid D \right) - \left(\sum_{i=1}^{N_{M}} \langle a_{\mu} \rangle_{i} \operatorname{pr} \left(M_{i} \mid D \right) \right)^{2}.$$

Fitting the windows

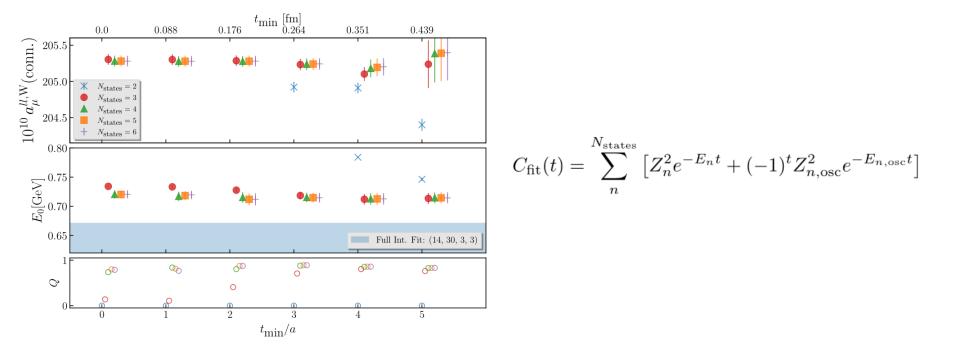


Table B.1: $a_{\mu}^{ll,W}(\text{conn.})$ and $a_{\mu}^{ll,W2}(\text{conn.})$ computed from the raw data (columns two and five), the fit reconstruction with oscillating states (columns three and six) and the correlated difference between them (columns four and seven).

$\approx a$	$a_{\mu}^{ll,W}(\text{conn.})$	$a_{\mu,\rm fit}^{ll,\rm W}({\rm conn.})$	$\Delta a^{ll,W}_{\mu}(\text{conn.})$	$a_{\mu}^{ll,W2}(\text{conn.})$	$a_{\mu,\rm fit}^{ll,\rm W2}({\rm conn.})$	$\Delta a_{\mu}^{ll,W2}(\text{conn.})$
0.15	211.01(79)	211.15(80)	-0.14(11)	80.3(1.7)	80.1(1.7)	0.20(19)
0.12	207.13(60)	207.16(60)	-0.025(29)	84.7(1.5)	84.6(1.5)	0.09(10)
0.09	206.56(55)	206.58(55)	-0.016(10)	92.7(1.8)	92.7(1.8)	-0.07(22)
0.06	206.22(61)	206.22(61)	0.003(61)	95.6(2.8)	95.5(2.7)	0.12(73)

Oscillation Removal

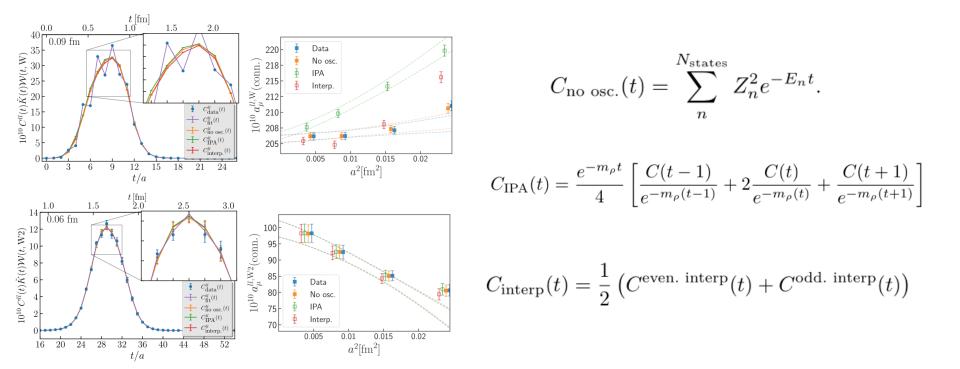
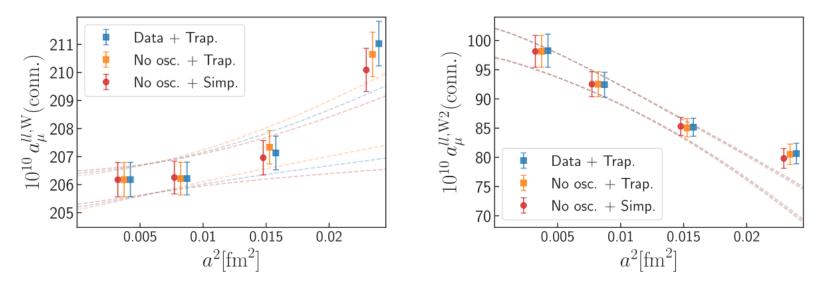
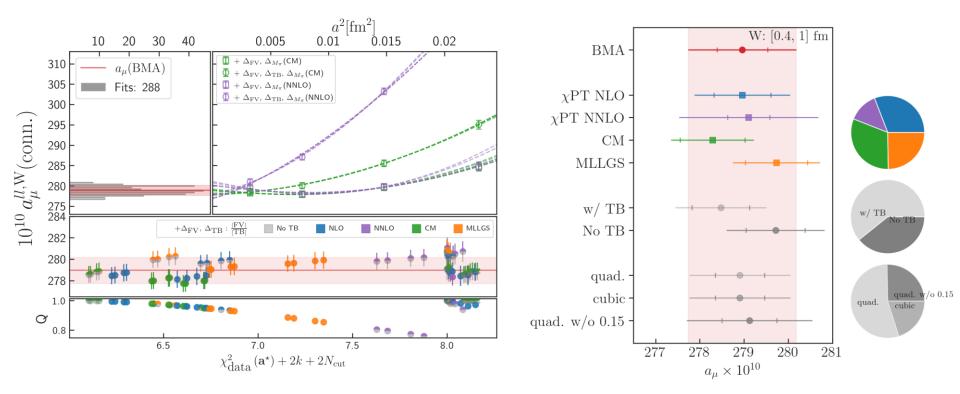


Table B.2: $a_{\mu}^{ll,W}(\text{conn.})$ and $a_{\mu}^{ll,W2}(\text{conn.})$ computed from the raw data (columns two and five), the fit reconstruction without oscillating states (columns three and six) and the correlated difference between them (columns four and seven).


$\approx a$	$a_{\mu}^{ll,W}(\text{conn.})$	$a_{\mu, \text{ No osc.}}^{ll, W}(\text{conn.})$	$\Delta a_{\mu}^{ll,W}(\text{conn.})$	$a_{\mu}^{ll,W2}(\text{conn.})$	$a_{\mu, \text{ No osc.}}^{ll, W2}$ (conn.)	$\Delta a_{\mu}^{ll,W2}(\text{conn.})$
0.15	211.01(79)	210.62(79)	0.39(20)	80.3(1.7)	80.2(1.7)	0.13(19)
0.12	207.13(60)	207.34(59)	-0.204(34)	84.7(1.5)	84.6(1.5)	0.10(11)
0.09	206.56(55)	206.56(55)	0.001(10)	92.7(1.8)	92.7(1.8)	-0.07(22)
0.06	206.22(61)	206.22(61)	0.003(60)	95.6(2.8)	95.5(2.7)	0.12(73)

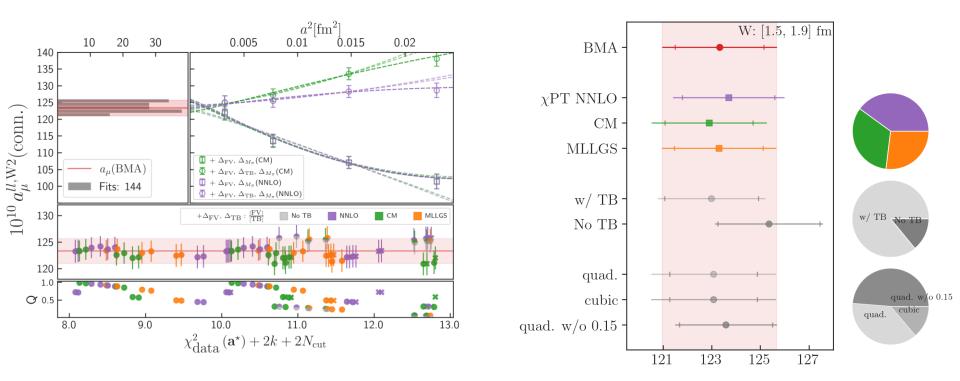
Integration Schemes

Trapezoidal versus Simpson's rule.


$$a^{ ext{win}(t_0,t_1,\Delta)}_{\mu, ext{ Trap.}} = 4lpha^2 a \sum_{t=1}^{N_t/2-1} C(t) ilde{K}(t) \mathcal{W}(t,t_0,t_1,\Delta), \quad a^{ ext{win}(t_0,t_1,\Delta)}_{\mu, ext{Simp}} = 4lpha^2 rac{a}{3} \left[\left(4\sum_{t\in\{t_{ ext{odd}}\}}^{N_t/2-1} + 2\sum_{t\in\{t_{ ext{even}}\}}^{N_t/2-1}
ight) C(t) ilde{K}(t) \mathcal{W}(t,t_0,t_1,\Delta)
ight]$$

Simpsons rule is formally a higher order integration scheme.

- Small differences on coarse ensembles for W.
- Oscillatory effects have died out for W2.
- Statistically equivalent continuum results.


Updated W Results

Source	$\delta a^{ll,W}_{\mu}(\text{conn.})$ (%)
Monte Carlo statistics	$0.19 \rightarrow 0.09$
Continuum extrapolation $(a \rightarrow 0, \Delta_{\rm TB})$	0.34 ightarrow 0.27
Total	$0.50 \rightarrow 0.44$

Factor of ~2 improvement in stat. uncertainty.

Updated W2 Results

Source	$\delta a^{ll,W2}_{\mu}$ (conn.) (%)
Monte Carlo statistics	2.44 ightarrow 0.73
Continuum extrapolation $(a \rightarrow 0, \Delta_{\rm TB})$	$0.34 \rightarrow 0.9$
Total	$3.18 \rightarrow 1.94$

Over a factor of ~3 improvement in stat. uncertainty.