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Trivializing Map Overview

▶ A map can be used to connect two distinct
probability distributions to each other.

▶ Trivializing Map is a bijective map between a
trivial distribution and one that is difficult to
sample.

▶ Typical methods for sampling these ‘difficult‘
distributions is via Markov Chain Monte
Carlo. MCMC has its own issues, long
autocorrelation times

▶ With a trivializing map, it would then be
possible to sample the trivial distribution to
generate unique uncorrelated samples from
the target distribution

Trivial Case

ψ ∼ N (0, 1) ↔ ϕ ∼ N (100, 1)

Thus we define a map, F : ϕ→ ψ

ψ = F(ϕ) = ϕ− 100

which is bijective

ϕ = F−1(ψ) = ψ + 100
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Trivializing Flow

A trivializing flow, is a trivializing map defined by a solution to a differential equation
defined by a generating functional, S̃.

ϕ̇(x, y) = ∂xS̃(ϕ(t)) ∂x ≡
∂

∂ϕ(x)

We may then consider 2 probability distributions, p(ϕ), q(ψ), given by:

p(ϕ) ≡
e−S(ϕ)

Z
q(ψ) ≡

e−S0(ψ)

Z0

After applying the flow, which is a change of variables, where J(ϕ) is the determinate
of the Jacobian matrix, Jxy .

q(ψ)Dψ = q(F(ϕ))J (ϕ)Dϕ

Thus our matching condition is that this is equal to our trivial distribution.

p(ϕ) = q(F(ϕ))J (ϕ)

e−S(ϕ)

Z
=
e−S0(F(ϕ))

Z0

S(ϕ) = S0(F(ϕ))− ln[J (ϕ)] + ln[
Z0

Z
]
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Time Dependent Flow

Consider a time-dependent flow such that, ϕ(t) ≡ F−1
t (ψ, t) must satisfy a

time-dependent probability distribution, pt(ϕ(t), t). Where,

pt(ϕ(t), t) =
e−St(ϕ(t),t)

Zt(t)

Here the time-dependent map, Ft(ϕ, t), is defined such that at t = 1, the distribution
is trivial and at t = 0 is our target distribution.

pt(ϕ(1), 1) = q(ψ) pt(ϕ(0), 0) = p(ϕ)

Ft(ϕ(1), 1) = F(ϕ) = ψ F−1
t (ϕ(0), 0) = ϕ

St(ϕ(1), 1) = S0(ψ) St(ϕ(0), 0) = S(ϕ)
Zt(1) = Z0 Zt(0) = Z

This construction leads to the same condition as before, now with time-dependent
pieces.

St(ϕ(t), t) = S(F(ϕ(t), t))− ln[J (ϕ)] + C(t)

As Z and Zt(t) are independent of the fields, we may replace them with a
time-dependent constant, C(t). Note C(0) = 0
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Time Dependent Flow
Consider the full time derivative of the previous equation.

d

dt

[
St(ϕ(t), t) = S(F(ϕ(t), t))− ln[J (ϕ)] + C(t)

]
∑
x

∂xSt(ϕ(t), t)ϕ̇(x, t)+∂tSt(ϕ(t), t) =
∑
x

∂xS(F(ϕ(t), t))ϕ̇(x, t)−
d ln[J (t)]

dt
+Ċ(t)

The Jacobian Term can be simplified,

d ln(J (t))

dt
=Tr

[
J−1
xy J̇yx

]
=

∑
x,y

[(
∂ϕ(y, t)

∂ϕ(x)

)−1 ∂ϕ̇(y, t)

∂ϕ(x)

]

=
∑
x,y

[
∂ϕ(x)

∂ϕ(y, t)

∂ϕ̇(y, t)

∂ϕ(x)

]
=

∑
y

∂ϕ̇(y, t)

∂ϕ(y, t)

=
∑
y

∂

∂ϕ(y, t)
ϕ̇(y, t) =

∑
y

∂

∂ϕ(y, t)
∂yS̃ =

∑
y

∂y∂yS̃

d ln(J (t))

dt
=∂2S̃

In which case the full equation is,

−∂2S̃ +
∑
x

∂xS ∂xS̃ −
∑
x

∂xSt ∂xS̃ = ∂tSt − Ċ(t)
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Model Freedom
At this point we have an equation related two unknown quantities, St and S̃. The
choice of one determines the other. Consider a choice of St that linear interpolates to
the trivial action.

St(ϕ(t), t) = S(ϕ(t)) + t

(
S0(ϕ(t))− S(ϕ(t))

)
Then using this form,

− ∂2S̃ +
∑
x

∂xS ∂xS̃ −
∑
x

∂x(S + t(S0 − S))∂xS̃ = ∂t(S + t(S0 − S))− Ċ(t)

− ∂2S̃ +
∑
x

∂xS ∂xS̃ −
∑
x

∂xS ∂xS̃ − t
∑
x

∂x(S0 − S)∂xS̃ = (S0 − S)− Ċ(t)

− ∂2S̃ − t
∑
x

∂x(S0 − S)∂xS̃ = S0 − S − Ċ(t)

As S0 is the trivial distribution, S0 = 0, as long as the elements are part of a compact
group.

− ∂2S̃ + t
∑
x

∂xS ∂xS̃ = −S − Ċ(t)
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Small Flow Time Expansion

By expanding S̃, Ċ in flow time,

S̃ ≡
∑
n

tnS(n) Ċ ≡
∑
n

tnĊ(n)

we may find a perturbative solution for S̃.

−∂2
( ∞∑
n=0

tnS(n)
)
+ t

∑
x

[
∂xS

(
∂x

( ∞∑
n=0

tnS(n)
))]

= −S −
∞∑
n=0

tnĊ(n)

∞∑
n=0

[
− tn∂2S(n) + tn+1

∑
x

(
∂xS ∂xS

(n)
)]

= −S −
∞∑
n=0

tnĊ(n)

Then collecting powers of t. There are 2 classes of functions.1

n = 0 : − ∂2S(0) = −S − Ċ(0)

n ≥ 1 : − ∂2S(n) +
∑
x

∂xS ∂xS
(n−1) = −Ċ(n)

1Luscher, “Trivializing maps, the Wilson flow and the HMC algorithm”.
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The O(3) Model

The O(3) model is defined by the 2D Euclidean
lattice action

S[s] = −
1

2
β
∑
x,µ̂

〈
sx

∣∣sx+µ̂〉
where s ∈ S2. Thus they have a probability
distribution defined by this action

p[s] =
e−S[s]

Z
, Z =

∫
Ds e−S[s]

and the integration measure, Ds, is over S2. Figure: Example distribution
(x,y,z) → (r,g,b)

1Bietenholz et al., “Topological susceptibility of the 2D O(3) model under gradient flow”.
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Defining a Flow Equation

When determining a gradient flow it is important to
choose dynamics that preserve properties of the
elements.

∀R ∈ SO(3) & ∀s ∈ S2

R ∗ s ∈ S2

Therefore, a general map that takes an S2 valued
vector field s and maps to an S2 valued vector field
σ, can be written as

σ(x) = R(x) s(x) ,

where R(x) is an element of SO(3) which is
determined up to an SO(2) rotation.

The quotient SO(3)/SO(2) subgroup of SO(3) is
diffeomorphic to the sphere S2 manifold.
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Unit Vectors to Rotations

By parameterizing the field with respect to rotation of a reference vector, s0,

sx = R(x)s0,x

the fields may be represented in the Lie algebra, so(3) of SO(3), which is isomorphic
to R3 with cross product. The Lie derivative, ∂ax , is well defined on these elements.

R(x) =
∑
α

ωαxTα

∂βyR(x) =
∑
α

ωαxTα δα,β δx,y

Using a scalar functional of the fields, S̃, whose gradient defines the generator of the
flow,

ṡ(x, t) = −
∑
a

Ta∂
α
x S̃[s(x, t)] sx,

we may preserve the symmetries of the system.
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0th Order
We want to solve:

−∂2S(0) = −S
with,

S =
−β
2

∑
x

∑
µ

⟨sx|sx+µ⟩ S(0) = γ0
∑
x

∑
µ

⟨sx|sx+µ⟩

Thus expanding on the Left Hand Side:

−∂2S(0) = −
∑
x

∑
a

∂ax∂
a
x

[
γ0

∑
y

∑
µ

⟨sy |sy+µ⟩
]

= −γ0
∑
x

∑
a

∂ax
[∑
y

∑
µ

−⟨sy |Ta |sy+µ⟩ δx,y + ⟨sy |Ta |sy+µ⟩ δx,y+µ
]

= −γ0
∑
x

∑
a

[∑
µ

⟨sx|TaTa |sx+µ⟩+ ⟨sx−µ|TaTa |sx⟩
]

= γ0
∑
x

[∑
µ

⟨sx|CF |sx+µ⟩+ ⟨sx−µ|CF |sx⟩
]

−∂2S(0) = 2CF γ0
∑
x

∑
µ

⟨sx|sx+µ⟩ = 2CFS
(0)

Therefore

S(0) =
β

8

∑
x

∑
µ

⟨sx|sx+µ⟩
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1st Order - Gradient Product
We want to solve

−∂2S(1) +
∑
x

∑
a

(
∂axS

)(
∂axS

(0)
)
= 0

First lets consider the term∑
x

∑
a

(
∂axS

)(
∂axS

(0)
)
=

−β2

16

∑
x,a

[(
∂ax

∑
y,µ

⟨sy |sy+µ⟩
)(
∂ax

∑
z,ν

⟨sz |sz+ν⟩
)]

=
−β2

16

∑
x,a

[(∑
µ

−⟨sx|Ta |sx+µ⟩+ ⟨sx−µ|Ta |sx⟩
)

(∑
ν

−⟨sx|Ta |sx+ν⟩+ ⟨sx−ν |Ta |sx⟩
)
)
]

=
−β2

16

∑
x,a

[(∑
µ

−2 ⟨sx|Ta |sx+µ⟩
)(∑

ν

−2 ⟨sx|Ta |sx+ν⟩
)]

=
−β2

4

∑
x,a

[∑
µ,ν

⟨sx|Ta |sx+µ⟩ ⟨sx|Ta |sx+ν⟩
]

=
−β2

4

∑
x

[∑
µ,ν

⟨sx|sx⟩ ⟨sx+µ|sx+ν⟩ − ⟨sx|sx+µ⟩ ⟨sx|sx+ν⟩
]

∑
x

∑
a

(
∂axS

)(
∂axS

(0)
)
=

−β2

4

∑
x

[∑
µ,ν

⟨sx|sx+µ+ν⟩ − ⟨sx|sx+µ⟩ ⟨sx|sx+ν⟩
]
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1st Order - Solution
Again we choose S(1) to be parameterized by terms we are trying to cancel.

S(1) = γ1Ψ
(2) + γ2Ψ̃

(1,1)

where,

Ψ(2) =
∑
x

∑
µ,ν

⟨sx|sx+µ+ν⟩ Ψ̃(1,1) =
∑
x

∑
µ,ν

⟨sx|sx+µ⟩ ⟨sx|sx+ν⟩

And applying the ∂2, we find a new term to arise,

= −
∑
x,a

∂ax∂
a
x

∑
y

∑
µ,ν

[
⟨sy |sy+µ⟩ ⟨sy |sy+ν⟩

]
− ⟨sy |sy+µ⟩ ⟨sy |Ta |sy+ν⟩ δx,y + ⟨sy |sy+µ⟩ ⟨sy |Ta |sy+ν⟩ δx,y+ν

]
= −

∑
x,a

∑
µ,ν

∂ax

[
⟨sx−µ|Ta |sx⟩ ⟨sx−µ|sx−µ+ν⟩+ ...

]
= −

∑
x,a

∑
µ,ν

[
⟨sx−µ|Ta |sx⟩ ⟨sx−µ|Ta |sx−µ+ν⟩ δx,x−µ+ν + ...

]
= −

∑
x

∑
µ

[
⟨sx−µ|sx−µ⟩ ⟨sx|sx⟩ − ⟨sx−µ|sx⟩ ⟨sx−µ|sx⟩+ ...

]
= −

∑
x

∑
µ

[
1− ⟨sx|sx+µ⟩2 + ...

]
=

∑
x

∑
µ

⟨sx|sx+µ⟩2 + ...
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Therefore, we can define this new term, and add it
to our parameterization of S(1).

Ψ(1,1f) =
∑
x

∑
µ

⟨sx|sx+µ⟩2

S(1) = γ1Ψ
(2) + γ2Ψ̃

(1,1) + γ3Ψ
(1,1f)

then including this term, we may find a solution,

S(1) =
β2

40

[
2Ψ(2) − Ψ̃(1,1) +

1

6
Ψ(1,1f)

]
Combining with the previous order,

S̃ =
β

8
Ψ(1)+

β2

40

[
2Ψ(2)−Ψ̃(1,1)+

1

6
Ψ(1,1f)

]
t+O(t2)
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2nd Order - Terms

Figure: Ψ(3)

Ψ(1) ≡
∑
x

∑
µ

⟨sx|sx+µ⟩

Ψ(3) ≡
∑
x

∑
µ,ν,λ

〈
sx

∣∣sx+µ+ν+λ〉
Ψ̃(2,1) ≡

∑
x

∑
µ,ν,λ

⟨sx|sx+µ+ν⟩ ⟨sx|sx+λ⟩

Ψ̃
(1,2)
disc ≡

∑
x

∑
µ,ν,λ

⟨sx|sx+µ⟩ ⟨sx+ν |sx+λ⟩

Ψ̃
(1,1,1)
branch ≡

∑
x

∑
µ,ν,λ

⟨sx|sx+µ⟩ ⟨sx|sx+ν⟩ ⟨sx|sx+λ⟩

Ψ̃
(1,1,1)
chain ≡

∑
x

∑
µ,ν,λ

⟨sx|sx+µ⟩ ⟨sx+µ|sx+µ+ν⟩
〈
sx+µ+ν

∣∣sx+µ+ν+λ〉
Ψ̃(1,2f) ≡

∑
x

∑
µ,ν

⟨sx|sx+µ⟩ ⟨sx|sx+µ+ν⟩

Ψ̃(1,1f,1) ≡
∑
x

∑
µ,ν

⟨sx|sx+µ⟩2 ⟨sx|sx+ν⟩

Ψ̃(1,1f,1f) ≡
∑
x

∑
µ

⟨sx|sx+µ⟩3
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2nd Order - Laplacians

−∂2Ψ(1) = 4Ψ(1)

−∂2Ψ(3) = 4Ψ(3)

−∂2Ψ̃(2,1) = 10Ψ̃(2,1) − 2Ψ(3)−16Ψ(1)

−∂2Ψ̃(1,2)
d = 8Ψ̃

(1,2)
d − 32Ψ(1) + 4Ψ̃(1,2f)

−∂2Ψ̃(1,1,1)
branch = 18Ψ̃

(1,1,1)
branch − 6Ψ̃

(1,2)
d − 24Ψ(1) + 6Ψ̃(1,1f,1)

−∂2Ψ̃(1,1,1)
chain = 16Ψ̃

(1,1,1)
chain − 16Ψ(1) + 8Ψ̃(1,1f,1) − 4Ψ̃(2,1) − 4Ψ̃(1,2f)

−∂2Ψ̃(1,2f) = 10Ψ̃(1,2f) − 12Ψ(1)

−∂2Ψ̃(1,1f,1) = 20Ψ̃(1,1f,1) − 20Ψ(1) − 4Ψ̃(1,2f) + 4Ψ̃(1,1f,1f)

−∂2Ψ̃(1,1f,1f) = 24Ψ̃(1,1f,1f) − 12Ψ(1)

Our goal is to solve,

−∂2S(1) +
∑
x

∑
a

(
∂axS

)(
∂axS

(0)
)
= 0

∂2S(1) =
∑
x

∑
a

(
∂axS

)(
∂axS

(0)
)

which can be translated to,

Âx⃗ = b⃗ =⇒ x⃗ = Â−1b⃗
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2nd Order - Solution

Solving the next order gives:

S(2) =
β3

72000

[
− 4467Ψ(1) + 1305Ψ(3) − 990Ψ̃(2,1) − 300Ψ̃

(1,2)
d + 200Ψ̃

(1,1,1)
branch

+ 225Ψ̃
(1,1,1)
chain + 246Ψ̃(1,2f) − 210Ψ̃(1,1f,1) + 35Ψ̃(1,1f,1f)

]
Procedure can be repeated to any order but this is where our analytic approach ends.
2nd Order has > 30 unique terms, 3rd Order has > 100 unique terms

S̃ =
β

8
Ψ(1) +

β2

40

[
2Ψ(2) − Ψ̃(1,1) +

1

6
Ψ(1,1f)

]
t +

β3

72000

[
− 4467Ψ(1) + 1305Ψ(3)

− 990Ψ̃(2,1) − 300Ψ̃
(1,2)
d + 200Ψ̃

(1,1,1)
branch + 225Ψ̃

(1,1,1)
chain + 246Ψ̃(1,2f)

− 210Ψ̃(1,1f,1) + 35Ψ̃(1,1f,1f)
]
t2 + O(t3)

By applying the flow, and observing the variance of the error between, the action and
our flowed ensemble, we may determine how well the flow preforms

∆S ≡ S(ϕ)−
[
S0(F(ϕ))− lnJ (ϕ)

]
+ C(Z,Z0)
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Scaling with Lattice Size
We observe linear scaling with the lattice side length
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Scaling with Beta
We observe quadratic scaling with beta with the method breaking as β > 1

18



Future Steps

It is worth noting S(0), appears in S(2), therefore all terms of S(1) will appear in S(3).
So a subset of the higher order terms is already known.

S(2n) =β2n+1
∑
a

γ
(2n)
a Ψaeven

S(2n+1) =β2(n+1)
∑
a

γ
(2n+1)
a Ψaodd

By non-perturbative tuning of the γa, it might be possible to increase performance
further with little cost to preforming the flow.
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Conclusion

▶ It is possible to solve the Luscher equation analytically

▶ Scaling with lattice volume is inevitable

▶ Non-perturbative tuning may still improve solution

▶ Preforming the flow may be just as computationally expensive as HMC
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