Trivializing Flow in 2D-O(3) Model

Christopher Chamness

in collaboration with Daniel Kovner and Kostas Orginos

William \& Mary

August 2023

Table of Contents

Trivializing Map Overview

The 2D-O(3) Model

Trivializing Flow for the 2D-O(3) model

Application

Trivializing Map Overview

- A map can be used to connect two distinct probability distributions to each other.
- Trivializing Map is a bijective map between a trivial distribution and one that is difficult to sample.
- Typical methods for sampling these 'difficult' distributions is via Markov Chain Monte Carlo. MCMC has its own issues, long autocorrelation times
- With a trivializing map, it would then be possible to sample the trivial distribution to generate unique uncorrelated samples from the target distribution

Trivial Case

$$
\psi \sim \mathcal{N}(0,1) \leftrightarrow \phi \sim \mathcal{N}(100,1)
$$

Thus we define a map, $\mathcal{F}: \phi \rightarrow \psi$

$$
\psi=\mathcal{F}(\phi)=\phi-100
$$

which is bijective

$$
\phi=\mathcal{F}^{-1}(\psi)=\psi+100
$$

Trivializing Flow

A trivializing flow, is a trivializing map defined by a solution to a differential equation defined by a generating functional, \tilde{S}.

$$
\dot{\phi}(x, y)=\partial_{x} \tilde{S}(\phi(t)) \quad \partial_{x} \equiv \frac{\partial}{\partial \phi(x)}
$$

We may then consider 2 probability distributions, $p(\phi), q(\psi)$, given by:

$$
p(\phi) \equiv \frac{e^{-S(\phi)}}{Z} \quad q(\psi) \equiv \frac{e^{-S_{0}(\psi)}}{Z_{0}}
$$

After applying the flow, which is a change of variables, where $J(\phi)$ is the determinate of the Jacobian matrix, $\mathcal{J}_{x y}$.

$$
q(\psi) \mathcal{D} \psi=q(\mathcal{F}(\phi)) \mathcal{J}(\phi) \mathcal{D} \phi
$$

Thus our matching condition is that this is equal to our trivial distribution.

$$
\begin{gathered}
p(\phi)=q(\mathcal{F}(\phi)) \mathcal{J}(\phi) \\
\frac{e^{-S(\phi)}}{Z}=\frac{e^{-S_{0}(\mathcal{F}(\phi))}}{Z_{0}} \\
S(\phi)=S_{0}(\mathcal{F}(\phi))-\ln [\mathcal{J}(\phi)]+\ln \left[\frac{Z_{0}}{Z}\right]
\end{gathered}
$$

Time Dependent Flow

Consider a time-dependent flow such that, $\phi(t) \equiv \mathcal{F}_{t}^{-1}(\psi, t)$ must satisfy a time-dependent probability distribution, $p_{t}(\phi(t), t)$. Where,

$$
p_{t}(\phi(t), t)=\frac{e^{-S_{t}(\phi(t), t)}}{Z_{t}(t)}
$$

Here the time-dependent map, $\mathcal{F}_{t}(\phi, t)$, is defined such that at $t=1$, the distribution is trivial and at $t=0$ is our target distribution.

$$
\begin{array}{ll}
p_{t}(\phi(1), 1)=q(\psi) & p_{t}(\phi(0), 0)=p(\phi) \\
\mathcal{F}_{t}(\phi(1), 1)=\mathcal{F}(\phi)=\psi & \mathcal{F}_{t}^{-1}(\phi(0), 0)=\phi \\
S_{t}(\phi(1), 1)=S_{0}(\psi) & S_{t}(\phi(0), 0)=\mathcal{S}(\phi) \\
Z_{t}(1)=Z_{0} & Z_{t}(0)=Z
\end{array}
$$

This construction leads to the same condition as before, now with time-dependent pieces.

$$
S_{t}(\phi(t), t)=S(\mathcal{F}(\phi(t), t))-\ln [\mathcal{J}(\phi)]+C(t)
$$

As Z and $Z_{t}(t)$ are independent of the fields, we may replace them with a time-dependent constant, $C(t)$. Note $C(0)=0$

Time Dependent Flow

Consider the full time derivative of the previous equation.

$$
\begin{gathered}
\frac{d}{d t}\left[S_{t}(\phi(t), t)=\mathcal{S}(\mathcal{F}(\phi(t), t))-\ln [\mathcal{J}(\phi)]+C(t)\right] \\
\sum_{x} \partial_{x} S_{t}(\phi(t), t) \dot{\phi}(x, t)+\partial_{t} S_{t}(\phi(t), t)=\sum_{x} \partial_{x} \mathcal{S}(\mathcal{F}(\phi(t), t)) \dot{\phi}(x, t)-\frac{d \ln [\mathcal{J}(t)]}{d t}+\dot{C}(t)
\end{gathered}
$$

The Jacobian Term can be simplified,

$$
\begin{aligned}
\frac{d \ln (\mathcal{J}(t))}{d t} & =\operatorname{Tr}\left[J_{x y}^{-1} \dot{J}_{y x}\right]=\sum_{x, y}\left[\left(\frac{\partial \phi(y, t)}{\partial \phi(x)}\right)^{-1} \frac{\partial \dot{\phi}(y, t)}{\partial \phi(x)}\right] \\
& =\sum_{x, y}\left[\frac{\partial \phi(x)}{\partial \phi(y, t)} \frac{\partial \dot{\phi}(y, t)}{\partial \phi(x)}\right]=\sum_{y} \frac{\partial \dot{\phi}(y, t)}{\partial \phi(y, t)} \\
& =\sum_{y} \frac{\partial}{\partial \phi(y, t)} \dot{\phi}(y, t)=\sum_{y} \frac{\partial}{\partial \phi(y, t)} \partial_{y} \tilde{S}=\sum_{y} \partial_{y} \partial_{y} \tilde{S} \\
\frac{d \ln (\mathcal{J}(t))}{d t} & =\partial^{2} \tilde{S}
\end{aligned}
$$

In which case the full equation is,

$$
-\partial^{2} \tilde{S}+\sum_{x} \partial_{x} \mathcal{S} \partial_{x} \tilde{S}-\sum_{x} \partial_{x} S_{t} \partial_{x} \tilde{S}=\partial_{t} S_{t}-\dot{C}(t)
$$

Model Freedom

At this point we have an equation related two unknown quantities, S_{t} and \tilde{S}. The choice of one determines the other. Consider a choice of S_{t} that linear interpolates to the trivial action.

$$
S_{t}(\phi(t), t)=\mathcal{S}(\phi(t))+t\left(S_{0}(\phi(t))-\mathcal{S}(\phi(t))\right)
$$

Then using this form,

$$
\begin{aligned}
& -\partial^{2} \tilde{S}+\sum_{x} \partial_{x} \mathcal{S} \partial_{x} \tilde{S}-\sum_{x} \partial_{x}\left(\mathcal{S}+t\left(S_{0}-\mathcal{S}\right)\right) \partial_{x} \tilde{S}=\partial_{t}\left(\mathcal{S}+t\left(S_{0}-\mathcal{S}\right)\right)-\dot{C}(t) \\
& -\partial^{2} \tilde{S}+\sum_{x} \partial_{x} \mathcal{S} \partial_{x} \tilde{S}-\sum_{x} \partial_{x} \mathcal{S} \partial_{x} \tilde{S}-t \sum_{x} \partial_{x}\left(S_{0}-\mathcal{S}\right) \partial_{x} \tilde{S}=\left(S_{0}-\mathcal{S}\right)-\dot{C}(t) \\
& -\partial^{2} \tilde{S}-t \sum_{x} \partial_{x}\left(S_{0}-\mathcal{S}\right) \partial_{x} \tilde{S}=S_{0}-\mathcal{S}-\dot{C}(t)
\end{aligned}
$$

As S_{0} is the trivial distribution, $S_{0}=0$, as long as the elements are part of a compact group.

$$
-\partial^{2} \tilde{S}+t \sum_{x} \partial_{x} \mathcal{S} \partial_{x} \tilde{S}=-\mathcal{S}-\dot{C}(t)
$$

Small Flow Time Expansion

By expanding \tilde{S}, \dot{C} in flow time,

$$
\tilde{S} \equiv \sum_{n} t^{n} S^{(n)} \quad \dot{C} \equiv \sum_{n} t^{n} \dot{C}^{(n)}
$$

we may find a perturbative solution for \tilde{S}.

$$
\begin{aligned}
-\partial^{2}\left(\sum_{n=0}^{\infty} t^{n} S^{(n)}\right)+t \sum_{x}\left[\partial_{x} \mathcal{S}\left(\partial_{x}\left(\sum_{n=0}^{\infty} t^{n} S^{(n)}\right)\right)\right] & =-\mathcal{S}-\sum_{n=0}^{\infty} t^{n} \dot{C}^{(n)} \\
\sum_{n=0}^{\infty}\left[-t^{n} \partial^{2} S^{(n)}+t^{n+1} \sum_{x}\left(\partial_{x} \mathcal{S} \partial_{x} S^{(n)}\right)\right] & =-\mathcal{S}-\sum_{n=0}^{\infty} t^{n} \dot{C}^{(n)}
\end{aligned}
$$

Then collecting powers of t. There are 2 classes of functions. ${ }^{1}$

$$
\begin{array}{lc}
n=0: & -\partial^{2} S^{(0)}=-\mathcal{S}-\dot{C}^{(0)} \\
n \geq 1: & -\partial^{2} S^{(n)}+\sum_{x} \partial_{x} \mathcal{S} \partial_{x} S^{(n-1)}=-\dot{C}^{(n)}
\end{array}
$$

[^0]
The $O(3)$ Model

The $O(3)$ model is defined by the 2D Euclidean lattice action

$$
\mathcal{S}[s]=-\frac{1}{2} \beta \sum_{x, \hat{\mu}}\left\langle s_{x} \mid s_{x+\hat{\mu}}\right\rangle
$$

where $s \in \mathcal{S}^{2}$. Thus they have a probability distribution defined by this action

$$
p[s]=\frac{e^{-\mathcal{S}[s]}}{\mathcal{Z}}, \quad \mathcal{Z}=\int \mathcal{D} s e^{-\mathcal{S}[s]}
$$

and the integration measure, $\mathcal{D} s$, is over \mathcal{S}^{2}.

Figure: Example distribution $(x, y, z) \rightarrow(r, g, b)$

[^1]
Defining a Flow Equation

When determining a gradient flow it is important to choose dynamics that preserve properties of the elements.

$$
\begin{array}{r}
\forall R \in S O(3) \quad \& \quad \forall s \in \mathcal{S}^{2} \\
R * s \in \mathcal{S}^{2}
\end{array}
$$

Therefore, a general map that takes an S^{2} valued vector field s and maps to an S^{2} valued vector field σ, can be written as

$$
\sigma(x)=R(x) s(x),
$$

where $R(x)$ is an element of $\mathrm{SO}(3)$ which is determined up to an SO(2) rotation.

The quotient $\mathrm{SO}(3) / \mathrm{SO}(2)$ subgroup of $\mathrm{SO}(3)$ is diffeomorphic to the sphere \mathcal{S}^{2} manifold.

Unit Vectors to Rotations

By parameterizing the field with respect to rotation of a reference vector, s_{0},

$$
s_{x}=R(x) s_{0, x}
$$

the fields may be represented in the Lie algebra, $\mathfrak{s o}(3)$ of $\mathrm{SO}(3)$, which is isomorphic to \mathbb{R}^{3} with cross product. The Lie derivative, ∂_{x}^{a}, is well defined on these elements.

$$
\begin{aligned}
R(x) & =\sum_{\alpha} \omega_{x}^{\alpha} T_{\alpha} \\
\partial_{y}^{\beta} R(x) & =\sum_{\alpha} \omega_{x}^{\alpha} T_{\alpha} \delta_{\alpha, \beta} \delta_{x, y}
\end{aligned}
$$

Using a scalar functional of the fields, \tilde{S}, whose gradient defines the generator of the flow,

$$
\dot{s}(x, t)=-\sum_{a} T_{a} \partial_{x}^{\alpha} \tilde{S}[s(x, t)] s_{x}
$$

we may preserve the symmetries of the system.

$0^{\text {th }}$ Order

We want to solve:

$$
-\partial^{2} S^{(0)}=-\mathcal{S}
$$

with,

$$
\mathcal{S}=\frac{-\beta}{2} \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle
$$

$$
S^{(0)}=\gamma_{0} \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle
$$

Thus expanding on the Left Hand Side:

$$
\begin{aligned}
-\partial^{2} S^{(0)} & =-\sum_{x} \sum_{a} \partial_{x}^{a} \partial_{x}^{a}\left[\gamma_{0} \sum_{y} \sum_{\mu}\left\langle s_{y} \mid s_{y+\mu}\right\rangle\right] \\
& =-\gamma_{0} \sum_{x} \sum_{a} \partial_{x}^{a}\left[\sum_{y} \sum_{\mu}-\left\langle s_{y}\right| T^{a}\left|s_{y+\mu}\right\rangle \delta_{x, y}+\left\langle s_{y}\right| T^{a}\left|s_{y+\mu}\right\rangle \delta_{x, y+\mu}\right] \\
& =-\gamma_{0} \sum_{x} \sum_{a}\left[\sum_{\mu}\left\langle s_{x}\right| T^{a} T^{a}\left|s_{x+\mu}\right\rangle+\left\langle s_{x-\mu}\right| T^{a} T^{a}\left|s_{x}\right\rangle\right] \\
& =\gamma_{0} \sum_{x}\left[\sum_{\mu}\left\langle s_{x}\right| C_{F}\left|s_{x+\mu}\right\rangle+\left\langle s_{x-\mu}\right| C_{F}\left|s_{x}\right\rangle\right] \\
-\partial^{2} S^{(0)} & =2 C_{F} \gamma_{0} \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle=2 C_{F} S^{(0)}
\end{aligned}
$$

Therefore

$$
S^{(0)}=\frac{\beta}{8} \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle
$$

$1^{\text {st }}$ Order - Gradient Product

We want to solve

$$
-\partial^{2} S^{(1)}+\sum_{x} \sum_{a}\left(\partial_{x}^{a} \mathcal{S}\right)\left(\partial_{x}^{a} S^{(0)}\right)=0
$$

First lets consider the term

$$
\begin{aligned}
& \sum_{x} \sum_{a}\left(\partial_{x}^{a} \mathcal{S}\right)\left(\partial_{x}^{a} S^{(0)}\right)= \frac{-\beta^{2}}{16} \sum_{x, a}\left[\left(\partial_{x}^{a} \sum_{y, \mu}\left\langle s_{y} \mid s_{y+\mu}\right\rangle\right)\left(\partial_{x}^{a} \sum_{z, \nu}\left\langle s_{z} \mid s_{z+\nu}\right\rangle\right)\right] \\
&=\frac{-\beta^{2}}{16} \sum_{x, a}\left[\left(\sum_{\mu}-\left\langle s_{x}\right| T^{a}\left|s_{x+\mu}\right\rangle+\left\langle s_{x-\mu}\right| T^{a}\left|s_{x}\right\rangle\right)\right. \\
&\left.\left.\left(\sum_{\nu}-\left\langle s_{x}\right| T^{a}\left|s_{x+\nu}\right\rangle+\left\langle s_{x-\nu}\right| T^{a}\left|s_{x}\right\rangle\right)\right)\right] \\
&= \frac{-\beta^{2}}{16} \sum_{x, a}\left[\left(\sum_{\mu}-2\left\langle s_{x}\right| T^{a}\left|s_{x+\mu}\right\rangle\right)\left(\sum_{\nu}-2\left\langle s_{x}\right| T^{a}\left|s_{x+\nu}\right\rangle\right)\right] \\
&=\frac{-\beta^{2}}{4} \sum_{x, a}\left[\sum_{\mu, \nu}\left\langle s_{x}\right| T^{a}\left|s_{x+\mu}\right\rangle\left\langle s_{x}\right| T^{a}\left|s_{x+\nu}\right\rangle\right] \\
&= \frac{-\beta^{2}}{4} \sum_{x}\left[\sum_{\mu, \nu}\left\langle s_{x} \mid s_{x}\right\rangle\left\langle s_{x+\mu} \mid s_{x+\nu}\right\rangle-\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x} \mid s_{x+\nu}\right\rangle\right]
\end{aligned}
$$

$$
\sum_{x} \sum_{a}\left(\partial_{x}^{a} \mathcal{S}\right)\left(\partial_{x}^{a} S^{(0)}\right)=\frac{-\beta^{2}}{4} \sum_{x}\left[\sum_{\mu, \nu}\left\langle s_{x} \mid s_{x+\mu+\nu}\right\rangle-\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x} \mid s_{x+\nu}\right\rangle\right]
$$

$1^{\text {st }}$ Order - Solution

Again we choose $S^{(1)}$ to be parameterized by terms we are trying to cancel.

$$
S^{(1)}=\gamma_{1} \Psi^{(2)}+\gamma_{2} \tilde{\Psi}^{(1,1)}
$$

where,

$$
\Psi^{(2)}=\sum_{x} \sum_{\mu, \nu}\left\langle s_{x} \mid s_{x+\mu+\nu}\right\rangle \quad \quad \tilde{\Psi}^{(1,1)}=\sum_{x} \sum_{\mu, \nu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x} \mid s_{x+\nu}\right\rangle
$$

And applying the ∂^{2}, we find a new term to arise,

$$
\begin{aligned}
= & -\sum_{x, a} \partial_{x}^{a} \partial_{x}^{a} \sum_{y} \sum_{\mu, \nu}\left[\left\langle s_{y} \mid s_{y+\mu}\right\rangle\left\langle s_{y} \mid s_{y+\nu}\right\rangle\right] \\
& \left.-\left\langle s_{y} \mid s_{y+\mu}\right\rangle\left\langle s_{y}\right| T^{a}\left|s_{y+\nu}\right\rangle \delta_{x, y}+\left\langle s_{y} \mid s_{y+\mu}\right\rangle\left\langle s_{y}\right| T^{a}\left|s_{y+\nu}\right\rangle \delta_{x, y+\nu}\right] \\
= & -\sum_{x, a} \sum_{\mu, \nu} \partial_{x}^{a}\left[\left\langle s_{x-\mu}\right| T^{a}\left|s_{x}\right\rangle\left\langle s_{x-\mu} \mid s_{x-\mu+\nu}\right\rangle+\ldots\right] \\
=- & \sum_{x, a} \sum_{\mu, \nu}\left[\left\langle s_{x-\mu}\right| T^{a}\left|s_{x}\right\rangle\left\langle s_{x-\mu}\right| T^{a}\left|s_{x-\mu+\nu}\right\rangle \delta_{x, x-\mu+\nu}+\ldots\right] \\
=- & \sum_{x} \sum_{\mu}\left[\left\langle s_{x-\mu} \mid s_{x-\mu}\right\rangle\left\langle s_{x} \mid s_{x}\right\rangle-\left\langle s_{x-\mu} \mid s_{x}\right\rangle\left\langle s_{x-\mu} \mid s_{x}\right\rangle+\ldots\right] \\
=- & \sum_{x} \sum_{\mu}\left[1-\left\langle s_{x} \mid s_{x+\mu}\right\rangle^{2}+\ldots\right]=\sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle^{2}+\ldots
\end{aligned}
$$

Therefore, we can define this new term, and add it to our parameterization of $S^{(1)}$.

$$
\begin{gathered}
\Psi^{(1,1 f)}=\sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle^{2} \\
S^{(1)}=\gamma_{1} \Psi^{(2)}+\gamma_{2} \tilde{\Psi}^{(1,1)}+\gamma_{3} \Psi^{(1,1 f)}
\end{gathered}
$$

then including this term, we may find a solution,

$$
S^{(1)}=\frac{\beta^{2}}{40}\left[2 \Psi^{(2)}-\tilde{\Psi}^{(1,1)}+\frac{1}{6} \Psi^{(1,1 f)}\right]
$$

Combining with the previous order,

$$
\tilde{S}=\frac{\beta}{8} \Psi^{(1)}+\frac{\beta^{2}}{40}\left[2 \Psi^{(2)}-\tilde{\Psi}^{(1,1)}+\frac{1}{6} \Psi^{(1,1 f)}\right] t+\mathcal{O}\left(t^{2}\right)
$$

$2^{\text {nd }}$ Order - Terms

Figure: $\Psi^{(3)}$

$$
\begin{aligned}
\Psi^{(1)} & \equiv \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle \\
\Psi^{(3)} & \equiv \sum_{x} \sum_{\mu, \nu, \lambda}\left\langle s_{x} \mid s_{x+\mu+\nu+\lambda}\right\rangle
\end{aligned}
$$

$$
\tilde{\Psi}^{(2,1)} \equiv \sum_{x} \sum_{\mu, \nu, \lambda}\left\langle s_{x} \mid s_{x+\mu+\nu}\right\rangle\left\langle s_{x} \mid s_{x+\lambda}\right\rangle
$$

$$
\tilde{\Psi}_{d i s c}^{(1,2)} \equiv \sum_{x} \sum_{\mu, \nu, \lambda}\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x+\nu} \mid s_{x+\lambda}\right\rangle
$$

$$
\tilde{\Psi}_{b r a n c h}^{(1,1,1)} \equiv \sum_{x} \sum_{\mu, \nu, \lambda}\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x} \mid s_{x+\nu}\right\rangle\left\langle s_{x} \mid s_{x+\lambda}\right\rangle
$$

$$
\tilde{\Psi}_{c h a i n}^{(1,1,1)} \equiv \sum_{x} \sum_{\mu, \nu, \lambda}\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x+\mu} \mid s_{x+\mu+\nu}\right\rangle\left\langle s_{x+\mu+\nu} \mid s_{x+\mu+\nu+\lambda}\right\rangle
$$

$$
\begin{aligned}
\tilde{\Psi}^{(1,2 f)} & \equiv \sum_{x} \sum_{\mu, \nu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle\left\langle s_{x} \mid s_{x+\mu+\nu}\right\rangle \\
\tilde{\Psi}^{(1,1 f, 1)} & \equiv \sum_{x} \sum_{\mu, \nu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle^{2}\left\langle s_{x} \mid s_{x+\nu}\right\rangle \\
\tilde{\Psi}^{(1,1 f, 1 f)} & \equiv \sum_{x} \sum_{\mu}\left\langle s_{x} \mid s_{x+\mu}\right\rangle^{3}
\end{aligned}
$$

$2^{\text {nd }}$ Order - Laplacians

$$
\begin{aligned}
-\partial^{2} \Psi^{(1)} & =4 \Psi^{(1)} \\
-\partial^{2} \Psi^{(3)} & =4 \Psi^{(3)} \\
-\partial^{2} \tilde{\Psi}^{(2,1)} & =10 \tilde{\Psi}^{(2,1)}-2 \Psi^{(3)}-16 \Psi^{(1)} \\
-\partial^{2} \tilde{\Psi}_{d}^{(1,2)} & =8 \tilde{\Psi}_{d}^{(1,2)}-32 \Psi^{(1)}+4 \tilde{\Psi}^{(1,2 f)} \\
-\partial^{2} \tilde{\Psi}_{b r a n c h}^{(1,1,1)} & =18 \tilde{\Psi}_{b r a n c h}^{(1,1,1)}-6 \tilde{\Psi}_{d}^{(1,2)}-24 \Psi^{(1)}+6 \tilde{\Psi}^{(1,1 f, 1)} \\
-\partial^{2} \tilde{\Psi}_{\text {chain }}^{(1,1,1)} & =16 \tilde{\Psi}_{\text {chain }}^{(1,1,1)}-16 \Psi^{(1)}+8 \tilde{\Psi}^{(1,1 f, 1)}-4 \tilde{\Psi}^{(2,1)}-4 \tilde{\Psi}^{(1,2 f)} \\
-\partial^{2} \tilde{\Psi}^{(1,2 f)} & =10 \tilde{\Psi}^{(1,2 f)}-12 \Psi^{(1)} \\
-\partial^{2} \tilde{\Psi}^{(1,1 f, 1)} & =20 \tilde{\Psi}^{(1,1 f, 1)}-20 \Psi^{(1)}-4 \tilde{\Psi}^{(1,2 f)}+4 \tilde{\Psi}^{(1,1 f, 1 f)} \\
-\partial^{2} \tilde{\Psi}^{(1,1 f, 1 f)} & =24 \tilde{\Psi}^{(1,1 f, 1 f)}-12 \Psi^{(1)}
\end{aligned}
$$

Our goal is to solve,

$$
\begin{array}{r}
-\partial^{2} S^{(1)}+\sum_{x} \sum_{a}\left(\partial_{x}^{a} \mathcal{S}\right)\left(\partial_{x}^{a} S^{(0)}\right)=0 \\
\partial^{2} S^{(1)}=\sum_{x} \sum_{a}\left(\partial_{x}^{a} \mathcal{S}\right)\left(\partial_{x}^{a} S^{(0)}\right)
\end{array}
$$

which can be translated to,

$$
\hat{A} \vec{x}=\vec{b} \Longrightarrow \vec{x}=\hat{A}^{-1} \vec{b}
$$

$2^{\text {nd }}$ Order - Solution

Solving the next order gives:

$$
\left.\begin{array}{rl}
S^{(2)}= & \frac{\beta^{3}}{7} 2000
\end{array}-4467 \Psi^{(1)}+1305 \Psi^{(3)}-990 \tilde{\Psi}^{(2,1)}-300 \tilde{\Psi}_{d}^{(1,2)}+200 \tilde{\Psi}_{\text {branch }}^{(1,1,1)}\right) ~\left(225 \tilde{\Psi}_{\text {chain }}^{(1,1,1)}+246 \tilde{\Psi}^{(1,2 f)}-210 \tilde{\Psi}^{(1,1 f, 1)}+35 \tilde{\Psi}^{(1,1 f, 1 f)}\right]
$$

Procedure can be repeated to any order but this is where our analytic approach ends. 2nd Order has > 30 unique terms, 3rd Order has >100 unique terms

$$
\begin{aligned}
\tilde{S}= & \frac{\beta}{8} \Psi^{(1)}+\frac{\beta^{2}}{40}\left[2 \Psi^{(2)}-\tilde{\Psi}^{(1,1)}+\frac{1}{6} \Psi^{(1,1 f)}\right] t+\frac{\beta^{3}}{72000}\left[-4467 \Psi^{(1)}+1305 \Psi^{(3)}\right. \\
& -990 \tilde{\Psi}^{(2,1)}-300 \tilde{\Psi}_{d}^{(1,2)}+200 \tilde{\Psi}_{\text {branch }}^{(1,1,1)}+225 \tilde{\Psi}_{\text {chain }}^{(1,1,1)}+246 \tilde{\Psi}^{(1,2 f)} \\
& \left.-210 \tilde{\Psi}^{(1,1 f, 1)}+35 \tilde{\Psi}^{(1,1 f, 1 f)}\right] t^{2}+\mathcal{O}\left(t^{3}\right)
\end{aligned}
$$

By applying the flow, and observing the variance of the error between, the action and our flowed ensemble, we may determine how well the flow preforms

$$
\Delta S \equiv \mathcal{S}(\phi)-\left[S_{0}(\mathcal{F}(\phi))-\ln \mathcal{J}(\phi)\right]+C\left(\mathcal{Z}, \mathcal{Z}_{0}\right)
$$

Scaling with Lattice Size

We observe linear scaling with the lattice side length

Scaling with Beta

We observe quadratic scaling with beta with the method breaking as $\beta>1$
36×36 lattice, $\mathrm{t}=1.0$

Future Steps

It is worth noting $S^{(0)}$, appears in $S^{(2)}$, therefore all terms of $S^{(1)}$ will appear in $S^{(3)}$. So a subset of the higher order terms is already known.

$$
\begin{aligned}
S^{(2 n)} & =\beta^{2 n+1} \sum_{a} \gamma_{a}^{(2 n)} \Psi_{\text {even }}^{a} \\
S^{(2 n+1)} & =\beta^{2(n+1)} \sum_{a} \gamma_{a}^{(2 n+1)} \Psi_{o d d}^{a}
\end{aligned}
$$

By non-perturbative tuning of the γ_{a}, it might be possible to increase performance further with little cost to preforming the flow.

Conclusion

- It is possible to solve the Luscher equation analytically
- Scaling with lattice volume is inevitable
- Non-perturbative tuning may still improve solution
- Preforming the flow may be just as computationally expensive as HMC

[^0]: ${ }^{1}$ Luscher, "Trivializing maps, the Wilson flow and the HMC algorithm".

[^1]: ${ }^{1}$ Bietenholz et al., "Topological susceptibility of the $2 \mathrm{D} \mathrm{O}(3)$ model under gradient flow".

