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Trivializing Map Overview

»> A map can be used to connect two distinct
probability distributions to each other. -
Trivial Case
P Trivializing Map is a bijective map between a
trivial distribution and one that is difficult to Y ~N(0,1) < ¢ ~ N(100,1)
sample.
Thus we define a map, F: ¢ — ¢
> Typical methods for sampling these ‘difficult’
distributions is via Markov Chain Monte o = F(¢) = ¢ — 100
Carlo. MCMC has its own issues, long
autocorrelation times which is bijective
P> With a trivializing map, it would then be
possible to sample the trivial distribution to
generate unique uncorrelated samples from
the target distribution

¢=F (¢) =1 +100



Trivializing Flow
A trivializing flow, is a trivializing map defined by a solution to a differential equation

defined by a generating functional, S.

9
0¢(x)

We may then consider 2 probability distributions, p(¢), q(¢), given by:

$(@,y) = 0:5(6(t) O =

e—5() e—So()

= —

p(¢) =

After applying the flow, which is a change of variables, where J(¢) is the determinate
of the Jacobian matrix, Jzy.

a()DY = q(F(¢))T (¢)D¢

Thus our matching condition is that this is equal to our trivial distribution.
p(¢) = a(F(¢) T (¢)
e=S(®)  e—So(F(¢)
z Zo
Z,
S(#) = So(F(#)) — [T ()] +1n[ 2]




Time Dependent Flow

Consider a time-dependent flow such that, ¢(t) = ]-';1(111, t) must satisfy a
time-dependent probability distribution, p(¢(t),t). Where,

o= St(6().t)

P60, = s

Here the time-dependent map, F:(¢,t), is defined such that at ¢ = 1, the distribution
is trivial and at ¢t = 0 is our target distribution.

pe(6(1),1) = q(¢h) pe(¢(0),0) = p(¢)
Fi(p(1),1) = F(¢) = ¢ Fi ' (4(0),0) = ¢
Se(¢(1),1) = So () S:(¢(0),0) = S(¢)
Zi(1) = Zo Zi(0)=Z

This construction leads to the same condition as before, now with time-dependent
pieces.

Se(d(t),t) = S(F(8(1),1)) — In[T (¢)] + C(t)

As Z and Z;(t) are independent of the fields, we may replace them with a
time-dependent constant, C'(¢). Note C(0) =0



Time Dependent Flow

Consider the full time derivative of the previous equation.
d
= |:St(¢(t)7 t) = S(F(o(t),t)) — In[T(#)] + C(t)}

dIn[J (¢)]

0 +C(t)

D aSe((t), t)(x, 1) +0:Se($(1), 1) ZBZS(I $(t), 1))z, ) —

The Jacobian Term can be simplified,

din(J (1) i1 ¢y, 1)\ " 9o(y, )
Se =T oy ] = xZ; ( 96(z) ) 9(z) ]

9é(y, 1) 9d(y,t)
Z [aqs (v.1) 6(x) } ; 96 (y,1)
= Xy: m¢(ya t) = -

=82S

9,8 =>"0,0,8

]
99(y, 1) "

dIn(J (1))
dt

In which case the full equation is,

05+ 0:85 0.8 =) 028 055 = Sy — C(t)



Model Freedom

At this point we have an equation related two unknown quantities, Sy and S. The
choice of one determines the other. Consider a choice of S; that linear interpolates to
the trivial action.

5:6(6).0) = S(6(0) + 1 S0(6(0) ~ S(6() )
Then using this form,
- 0°S + Zazs 9.8 — Zaz(s +£(So — 8))8xS = 8:(S + t(So — 8)) — C(t)
7325+Za S 8,5 — Za S 8 sftZa (So — 8)8z5 = (So — S) — C(2)

- 8%8 ftZa (So — 8)8z8 =S5 — 8 — C(t)

As Sy is the trivial distribution, So = 0, as long as the elements are part of a compact
group.

— S+t 0:80,5=-8-C(t)
x



Small Flow Time Expansion

By expanding S, C in flow time,
S = Zt"S(") C= Zt"C’“‘)

we may find a perturbative solution for S.

]38

_32(

5 415 [0,5 (0:( 30 n5))] = —s - 3 e
x n=0 n=0

[ 25t 4Ly (9,8 azs<">)} =-S5-— f: ™)
x n=0

3
Il
o

NE

n=0

Then collecting powers of t. There are 2 classes of functions.!

n=0: ~ 9?80 = 5 - c©®
n>1: =0°S"+3%"0,89,8""1 =-c™

Luscher, “Trivializing maps, the Wilson flow and the HMC algorithm” .



The O(3) Model

The O(3) model is defined by the 2D Euclidean
lattice action

861 = — 58D (solsesn)
T,

where s € S2. Thus they have a probability
distribution defined by this action

C_S[S] = > _S[s)
pls = ——, = [ se
and the integration measure, Ds, is over S2. Figure: Example distribution

(xy.z) = (rgb)

1Bietenholz et al., “Topological susceptibility of the 2D O(3) model under gradient flow".



Defining a Flow Equation

When determining a gradient flow it is important to
choose dynamics that preserve properties of the
elements.

VR € SO(3) & VseS2
Rxse &2

Therefore, a general map that takes an S2 valued
vector field s and maps to an S2 valued vector field
o, can be written as

o(x) = R(z) s(x),

where R(z) is an element of SO(3) which is
determined up to an SO(2) rotation.

The quotient SO(3)/SO(2) subgroup of SO(3) is
diffeomorphic to the sphere S? manifold.



Unit Vectors to Rotations

By parameterizing the field with respect to rotation of a reference vector, sg,
S¢ = R(2)s0,x

the fields may be represented in the Lie algebra, s0(3) of SO(3), which is isomorphic
to R3 with cross product. The Lie derivative, 0%, is well defined on these elements.

R(z) =) wiTs

O R(x) = wiTa da,p 0ay

Using a scalar functional of the fields, S, whose gradient defines the generator of the
flow,

$(z,t) = =Y Ta09S[s(z,t)] 50,

we may preserve the symmetries of the system.



0t" Order

We want to solve:

-8250) = _s

with,

) S 5O =20 0 (sl

T rooH
Thus expanding on the Left Hand Side:
—9250) — _ DD 0205 [v0 Y 0> (sylsytn)]
z a you
-0 Z Za:[z Z — syl T* |sy+u) 0,y + (sy| T [sy4u) o ,y+u]
z a Yy op

=90 DD [ D (el TOT® [sap) + (S0 TOT® [s2) ]

T a

o

=0 Z [Z (s2| CF |$a4u) + (s2—ul CF |52) ]
z  p

—52500) = 2CFrv0 ZE (se|sziu) = QCFS(O)

T

Therefore

SO =233 (sulswia)
r M
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1% Order - Gradient Product
We want to solve
028 + 33" (058) (025@) =0
First lets consider the term

33 (028) (55 ) = T3[0S o)) (023 (el
x a Y, zZ,V

z,a

Z[ Z (52| T [so4u) + (So—p| T |52) )

<Z (52l T [s24) + (0| T [52)))]

v

_ 12
- 1?5 SO =20l T ) ) (D =2 sl T Iswtn) )]
r v

x,a

_52

[0 (s T [sa) 0] T I5240) |

x,a  p,v

- Z[Z (selsa) (s al5e ) — (Salsa ) (s2l5052)

ZZ (8;8) (8“5(0) IB Z[Z Sr‘3x+;¢+y> - <Sz|sw+u> <Sz‘3x+u>i|

x a

11



15" Order - Solution

Again we choose S(1) to be parameterized by terms we are trying to cancel.
S = 4 @) 4 4D

where,

TE =37 (salsarputo) TOD =37 " (salsarn) (szlso4v)

T p,v T pv
And applying the 92, we find a new term to arise,
== Zaaaa Z Z (sylsy+u) (sylsy+v)]
ZTRY

— (sylsy+u) syl T |Sy+v) O,y + (Sylsy+u) (syl T [sy+v) 5z,y+u]

= =30 (sl T [s2) sapalso—p) + - ]

T,a [,V

=— ZZ [<3w—u‘ T |sz) (Sx—p| T [S2—ptv) Oz,2—ptv + ]
T,a [,V

--XX [ {so—ilsa—p) (selse) = (sa—plse) (somplse) + .'.]

= _ZZ [1 - 5r|sz+u . ] ZZ 5r|sz+u

12



Therefore, we can define this new term, and add it
to our parameterization of S(1).

gLl — ZZ <5z|31+#>2
T p

S Z o T® G 1D 4 (11D

then including this term, we may find a solution,
2
g _ B [2@2) _gn o l\p(hlf)]
40 6

Combining with the previous order,

&_ By B @ _gan, lgain 2
= LCgm P hy@_ganylyaan)on
8 +40[ *6 Jerow)

I,

13



2" Qrder - Terms

UM =373 (salsotu)
T p
U =377 (salsarurvra)

T v,
e o o o o o o @(271)522 <sz|s“+“+”><sz|sz+>‘>
e o o o o o o - 1,2) T pand
e o o o o o o Uoind EZZ (sz|S2+u) (Sz+v|8z4A)
e o o o o o o T A
e © o o o o o \Ifl()i’(ll,’;?hzzz <sz|3x+;¢> (Sz|$x+u> <5z‘sz+)\>
e o o o o o o T v,
= (1,1,1) _
A \I’.(;ham)zz Z <sw|sz+u> <Sw+u|5w+u+1/> <Sw+u+u|sz+u+u+)\>
Figure: U3 ) T oA
P2 =3 7% (selsatn) (selsatuiv)
T p,v
T =378 (salsarn)® (salsa+v)
T p,v

GAI£1f) = ZZ <Sz|sz+u>3
T p
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2" Qrder - Laplacians

—_92u(M) — 4
9203 — 4¢3
—925(21) — 10§21 _ ogB) _15p1)
—82\1121’2) _ 8\11‘(11’2) — 320 4 4§(1,2f)
—2F (LD gLl 63 (1) ogp () 4 6HLAD
—?u0 LD — (LD g (D) 4 gGLLAD _ g G20 _ 4§ (120
_o20(12h) — 105120 _ 199D
_o2 (A — oq @ (LIAD) L gop(D) _ 4§12 4 4§15
20 (L1f1S) — o p(L1f1S) _ 1og (1)

Our goal is to solve,
028 + 33" (958) (025@) =0
928 =33 " (928) (925™)

which can be translated to,

A =b = z=A"1%

15



2"d Qrder - Solution

Solving the next order gives:

(1,1,1)
branch

3 ~ ~ ~
s@ - B [ — 44670 413050 ®) — 99091 — 300% ) 4 2009
72000

+2250 00 + 2460120 — 2109 (111D 4 355 (111 ]

Procedure can be repeated to any order but this is where our analytic approach ends.
2nd Order has > 30 unique terms, 3rd Order has > 100 unique terms

~ ~ 3 q
S = 5\1}“’+i [2\11@ \I/(l’l)Jr%\I/(l’lf)]t + L[74467\I/(1)+1305\11(3)

8 72000
2,1 3, (1,2) 3(1,1,1) (1,1,1) F,(1,2
—990% 1) — 3000 + 20005 0 4 22500 4 2460 (120

— 21091110 4 35 LID]2 4 0(t?)

By applying the flow, and observing the variance of the error between, the action and
our flowed ensemble, we may determine how well the flow preforms

AS = 5() = [So(F(9) ~n T (4)] + C(Z, Z0)

16



Scaling with Lattice Size

We observe linear scaling with the lattice side length

beta=0.5, t=1.0
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Scaling with Beta

We observe quadratic scaling with beta with the method breaking as 8 > 1

36x36 lattice, t=1.0
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¢ Order2
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Future Steps

It is worth noting S(©), appears in S(2), therefore all terms of S(1) will appear in S®).
So a subset of the higher order terms is already known.

S =gty A E e,

g(2n+1) :/82(71-9—1) Z,y((l2n+1)\1,gdd

By non-perturbative tuning of the ~,, it might be possible to increase performance
further with little cost to preforming the flow.

19



Conclusion

It is possible to solve the Luscher equation analytically
Scaling with lattice volume is inevitable

Non-perturbative tuning may still improve solution

vvyyvyy

Preforming the flow may be just as computationally expensive as HMC

20
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