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Quantum simulation of gauge theories: discrete subgroups

Replace Lie group with finite subgroup ¢ < SU(N)
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For G finite, the transition is only first order
~ effective theory

Q: Is there an action/formulation with a
second-order transition?

[Hasenfratz & Niedermayer '01]
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The Hamiltonian
Transfer matrix from the Wilson action:

[Kogut & Susskind ‘75; Creutz ‘77; Luscher ‘77] [Harlow & Ooguri ‘18]

Lie group: Finite group:
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E? is a Laplacian on As we will see, this
the Lie group In both cases Hj IS a Laplacian on

involves a choice of the finite group

representation p



Cayley graph / Vertices = group elements

Geometric structure of G is a graph _
\ Edges = Pick a subset of
' non-unique but must have genergtorsill“ c G. Bond
[=T"'and gTg~t =T. g~hitgh™ el

57 'pAg :.:
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[={z,z71} I'={z,z7%,z%,2z7°} ['={r,r %, s}

Lorentz symmetry: relates Hgz and Hg. Relativistic choice of I' : connect nearest
neighbours according to distance function d(g, h) = dimp — tr p(gh™1)

[see also Caspar et al '16]



Finite-group Laplacian 34 2

Every graph has a graph Laplacian: e.e

Ap(g) = Zp~g(WD(g) —¥(h)) (5 (rs)
Reproduces the transfer-matrix @ e
electric Hamiltonian @ e

- Applicable to other cases? subsets, ...
- Can import known results about 0 9 °

the graph Laplacian



Finite-group Laplacian: electric degeneracy

Degeneracy of lowest eigenvalue _ Number of connected components
of graph Laplacian ~  ofthe graph

D,
= {r,r?r3}

- Electric degeneracy on each link

- Persists in gauge-invariant sector " "

- Hints to a different phase diagram

Two connected components
Twofold degenerate on each link



The dimension of the physical subspace SN

Gauss’ Law | |
Htot }[phys : :
Js a AJT
How many resources can be saved in : i : i
a gauge-invariant simulation scheme? PO === P -
j4-'\ J\j2

- Wilson loops do not necessarily span
Hpnys [Durhuus "80] LN L -

- Use spin-network states [Baez '94] - I
Assign:
- an irrep to each link;
Hphys = 69 ® nv] (®l+=x VJD ® (®l—=x ij)] - an invariant tensor to

ur X each site.



The dimension of the physical subspace

Gauss’ Law
Hiot > }[phys

For a pure gauge theory with arbitrary
finite group G on an arbitrary lattice with
V sites and E links:

E-V
. G
dim}fwt — |G|E dlm}[phys — z (m
C

C are the conjugacy classes of G.

Roughly speaking: dim Hpnys ~ 1

dim H;,; |G|V




What about matter fields?

If matter Hilbert space is local, Hpatr = @, Hy then ok:

|G| E-V
dim Hppys = z <m> xm(0)
C

Example: no charged states on a torus.

Zy theory. Place g = 1 charge on each site.
N-1
. E-V 27'cl'kK
dlm}[phys =N z e N
k=0

which is zero unless Q;,; =V = 0 (mod N).

But general case more complicated.




Conclusions

The electric Hamiltonian is a natural Laplace operator on the finite
group, with conseguences for its degeneracy.

We gave an exact formula for the dimension of the physical
subspace of pure gauge theories.

Further questions:
Applications of graph Laplacian to other cases.

Exploration of theories with electric degeneracy.

Dimension of physical Hilbert space with matter fields.
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Degeneracy in the physical Hilbert space

30 FD = {T’, 7'2, 7'3}

] Spectrum of Hg in the

2. - gauge-invariant basis.
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