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Replace Lie group with finite subgroup 𝐺 ≤ SU(𝑁)

Quantum simulation of gauge theories: discrete subgroups

0 ∞

SU(𝑁)

𝐺
𝑔2

Deconfined Confined Transition

For 𝐺 finite, the transition is only first order

effective theory

[Hasenfratz & Niedermayer ’01]

Q: Is there an action/formulation with a 

second-order transition?
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The Hamiltonian

Transfer matrix from the Wilson action:

𝐻 =
𝑔2

2


𝑙𝑖𝑛𝑘𝑠

𝐸𝑙
𝑎𝐸𝑙

𝑎 −
1

𝑔2


𝑝𝑙𝑎𝑞

Re tr 𝜌(𝑈□ )

Lie group: Finite group:

𝐻 =
𝑔2

2


𝑙𝑖𝑛𝑘𝑠

Δ𝑙 −
1

𝑔2


𝑝𝑙𝑎𝑞

Re tr 𝜌(𝑈□ )

[Harlow & Ooguri ‘18][Kogut & Susskind ‘75; Creutz ‘77; Luscher ‘77]

𝐸2 is a Laplacian on

the Lie group

As we will see, this 

is a Laplacian on

the finite group
In both cases 𝐻𝐵
involves a choice of 

representation 𝜌
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Cayley graph

Geometric structure of 𝐺 is a graph

Vertices = group elements

Edges = Pick a subset of   

generators Γ ⊂ 𝐺. Bond    

𝑔 ∼ ℎ if 𝑔ℎ−1 ∈ Γ

ℤ𝟓
Γ = {𝑧, 𝑧−1}

ℤ𝟓
Γ = {𝑧, 𝑧−1, 𝑧2, 𝑧−2}

𝐷4
Γ = {𝑟, 𝑟−1, 𝑠}

Γ non-unique but must have 

Γ = Γ−1 and 𝑔Γ𝑔−1 = Γ.

Lorentz symmetry: relates 𝐻𝐵 and 𝐻𝐸. Relativistic choice of Γ : connect nearest
neighbours according to distance function 𝑑 𝑔, ℎ = dim𝜌 − tr 𝜌(𝑔ℎ−1)

[see also Caspar et al ’16]
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Finite-group Laplacian

Every graph has a graph Laplacian:

- Applicable to other cases? subsets, …

- Can import known results about

the graph Laplacian

Reproduces the transfer-matrix 

electric Hamiltonian

Δ𝜓 𝑔 = σℎ∼𝑔(𝜓 𝑔 − 𝜓 ℎ )
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Finite-group Laplacian: electric degeneracy

Degeneracy of lowest eigenvalue

of graph Laplacian

Number of connected components

of the graph=

𝐷4
Γ = {𝑟, 𝑟2, 𝑟3}

Two connected components

Twofold degenerate on each link

- Electric degeneracy on each link

- Persists in gauge-invariant sector

- Hints to a different phase diagram
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ℋ𝑡𝑜𝑡

The dimension of the physical subspace 

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

How many resources can be saved in

a gauge-invariant simulation scheme?

- Wilson loops do not necessarily span

ℋ𝑝ℎ𝑦𝑠 [Durhuus ’80]

- Use spin-network states [Baez ‘94]

ℋ𝑝ℎ𝑦𝑠 =ໄ

𝑗

ໆ

𝑥

Inv[ ⊗𝑙+=𝑥 𝑉𝑗𝑙
∗ ⊗ ⊗𝑙−=𝑥 𝑉𝑗𝑙 ]

Assign:

- an irrep to each link;

- an invariant tensor to 

each site.



ℋ𝑡𝑜𝑡
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ℋ𝑡𝑜𝑡

The dimension of the physical subspace 

ℋ𝑝ℎ𝑦𝑠

Gauss’ Law

For a pure gauge theory with arbitrary 

finite group 𝐺 on an arbitrary lattice with 

𝑉 sites and 𝐸 links:

dimℋ𝑡𝑜𝑡 = 𝐺 𝐸 dimℋ𝑝ℎ𝑦𝑠 =

𝐶

𝐺

𝐶

𝐸−𝑉

𝐶 are the conjugacy classes of 𝐺.

ℋ𝑝ℎ𝑦𝑠

ℋ𝑡𝑜𝑡

Roughly speaking:
dimℋ𝑝ℎ𝑦𝑠

dimℋ𝑡𝑜𝑡
≈

1

𝐺 𝑉
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What about matter fields?

If matter Hilbert space is local,                             then ok:ℋ𝑚𝑎𝑡𝑡 = ⊗𝑥ℋ𝑀

But general case more complicated.

Example: no charged states on a torus.

ℤ𝑵 theory. Place 𝑞 = 1 charge on each site.

dimℋ𝑝ℎ𝑦𝑠 =

𝐶

𝐺

𝐶

𝐸−𝑉

𝜒𝑀 𝐶 𝑉

dimℋ𝑝ℎ𝑦𝑠 = 𝑁𝐸−𝑉 

𝑘=0

𝑁−1

𝑒2𝜋𝑖𝑘
𝑉
𝑁

which is zero unless 𝑄𝑡𝑜𝑡 = 𝑉 ≡ 0 (mod 𝑁).
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The electric Hamiltonian is a natural Laplace operator on the finite 

group, with consequences for its degeneracy.

We gave an exact formula for the dimension of the physical

subspace of pure gauge theories.

Further questions:

Applications of graph Laplacian to other cases.

Exploration of theories with electric degeneracy.

Dimension of physical Hilbert space with matter fields.

Conclusions
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Backup slides
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Degeneracy in the physical Hilbert space

Spectrum of 𝐻𝐸 in the 

gauge-invariant basis. 

Choose 

𝐷4 pure gauge theory on 

a 2 × 2 periodic lattice.

Γ = {𝑟, 𝑟2, 𝑟3}


