FINDING VORTICES IN THE BKT TRANSITION OF 2D FERMI GASES

EVAN BERKOWITZ
INSTITUT FÜR KERNPHYSIK
INSTITUTE FOR ADVANCED SIMULATION, JÜLICH SUPERCOMPUTING CENTRE
FORSCHUNGSZENTRUM JÜLICH

LATTICE CONFERENCE 02 AUGUST 2023
CODE AVAILABILITY

https://github.com/evanberkowitz/two-dimensional-gasses

https://two-dimensional-gasses.readthedocs.io/
THE BKT TRANSITION
A little about BKT:

Vadim L’Vovich Berezinskii J. Michael Kosterlitz David J. Thouless

10.1070/PU1981v024n03ABEH004788
Finite-temperature phase transition in 2D

Happens in the **XY model**, **cold fermi gases**, arrays of Josephson junctions, ...

\[H = -J \sum_{\langle ij \rangle} s_i \cdot s_j = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \]

Divergent critical exponents (!)

No local order parameters!

Topological
\[H = - J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \simeq H_0 + \frac{J}{2} \int d^2x \left\| \nabla \theta \right\|^2 \]

\[Vortex: \quad \int d\mathbf{\ell} \cdot \nabla \theta = 2\pi n \]

\[\nabla \theta \sim \frac{n}{r} \]

\[Energy: \quad E \sim J\pi n^2 \log(L/r) \]

\[Entropy: \quad S = \log \Omega \sim \log(L^2/r^2) \]

\[Free \ Energy: \quad F = E - TS \]

\[No \ vortices \ at \ all \quad T/J \quad Vortices \ everywhere \]
TURNING AND TURNING IN THE WIDENING GYRE

$T/J = 0.4$ on 250^2
TURNING AND TURNING IN THE WIDENING GYRE

\[\frac{T}{J} = 0.4 \text{ on } 250^2 \]

\[\theta \]

\[\langle \text{vortex} \rangle \]

\[\int d\ell \cdot \nabla \theta \rightarrow \sum_i d\hat{x}_i \cdot (s_{i+\hat{x}} - s_i) \]
TURNING AND TURNING IN THE WIDENING GYRE

\[T/J = 0.4 \text{ on } 250^2 \]

\[\theta \]

- No local order parameters!

- Topological

\[\int d\vec{\ell} \cdot \nabla \theta \rightarrow \sum_i d\hat{x}_i \cdot (s_{i+\hat{x}} - s_i) \]
FERMI GASSES IN 2D
NONRELATIVISTIC 2D FERMI GASES

- $[\psi] = [L]^{-1}$
- $C_0 M$ is dimensionless
- 2D two-particle scattering amplitude
- Low-energy EFT; 'universal'
- But also: a UV fixed point!

$$H = \int d^2x \frac{(\nabla \psi)^\dagger \cdot (\nabla \psi)}{2M} + C_0(\psi^\dagger \psi)^2$$

$$T = \frac{4/M}{\cot \delta_0(k) - i}$$

$$\cot \delta_0(k) = \frac{2}{\pi} \log ka + \mathcal{O}(k^2)$$

Warning: 2 common conventions
IT'S REAL!

- Trapping!
- Lasers!
- Feshbach Resonances!
- Ions!
PHASE STRUCTURE

- No vortices
- Vortices everywhere

T/T_F

BEC | log k_F a | BCS

T_BKT/T_F
Zhang et al. (2022) PRL 129, 076403

PHASE STRUCTURE

Theory
- BCS mean-field
- Petrov et al. [36]
- Bighin et al. [36]
- Bauer et al. [40]
- Mulkerin et al. [60]

Experiment
- Ries et al. [24]
- Sobirey et al. [34]

This work
- $L=45$, $N_\phi=58$
- $L=\infty$, $N_\phi=\infty$

No vortices

Vortices everywhere

T_{BKT}/T_F vs. $\log(k_Fa)$

BEC \rightarrow log(k_Fa) \rightarrow BCS
DETECTION STRATEGIES

Critical velocity

![Critical velocity graph](image1)

2-point function

![2-point function graph](image2)

dn_c/dT

![dn_c/dT graph](image3)

WHERE ARE THE VORTICES?
A PROBE OF VORTICITY

- Idea: try to find the vortices!

- What are 'the arrows'?

- What tracks the vortices?

- Example

\[j = -\frac{i}{2M} \left(\psi^\dagger \nabla \psi - \nabla \psi^\dagger \psi \right) \]

\[\omega = \nabla \times j = -\frac{i}{M} \nabla \psi^\dagger \times \nabla \psi \]

\[|\chi\rangle = \int d^2 x \, \chi(x) |x\rangle \]

\[\chi(x) = e^{i\ell \theta} f(r) \]

\[\langle \chi \mid \omega(x) \mid \chi \rangle \propto \ell \]
LATTICE APPROACH
\[H = \int d^2 x \frac{(\nabla \psi)^\dagger \cdot (\nabla \psi)}{2M} + C_0(\psi^\dagger \psi)^2 \rightarrow \sum \Delta x^2 \frac{(\nabla \psi)^\dagger \cdot (\nabla \psi)}{2M} + C_0(\psi^\dagger \psi)^2 \]
TOOLS OF LATTICE FIELD THEORY

\[H = \int d^2x \frac{\nabla \psi \cdot \nabla \psi}{2M} + C_0(\psi^\dagger \psi)^2 \rightarrow \sum \Delta x^2 \frac{\nabla \psi \cdot \nabla \psi}{2M} + C_0(\psi^\dagger \psi)^2 \]

- Work in the grand-canonical ensemble
- Trotterize + control time discretization
- Eliminate fermions for auxiliary field path integral
- Markov-Chain Monte Carlo / HMC

\[Z = \text{tr} \left[e^{-\beta(H-\mu N)} \right] = Z(\Delta t) + \mathcal{O}(\Delta t^2) \]

\[Z(\Delta t) = \int \mathcal{D} \phi \ e^{-S(\phi)} \]

A real equal sign!
Finite volume 2-body energies \iff\ \cot \delta_0(k) = \frac{2}{\pi} \log ka + \mathcal{O}(k^2)

\begin{align*}
\cot \delta &- \frac{2}{\pi} \log \sqrt{x} = \frac{1}{\pi^2} \\
\cot \delta &- \frac{2}{\pi} \log \sqrt{x} = \frac{1}{\pi^2}
\end{align*}

\begin{align*}
\cot \delta &- \frac{2}{\pi} \log \sqrt{x} = \frac{1}{\pi^2} \\
\cot \delta &- \frac{2}{\pi} \log \sqrt{x} = \frac{1}{\pi^2}
\end{align*}

Energies converge with Δx^2
EXAMPLE CONTINUUM BEHAVIOR
SANITY CHECK: TAN'S CONTACT

\[\hat{C} = 2\pi M \frac{dH}{d \log a} \]
A PROBE OF VORTICITY

- What tracks the vortices?
- $\omega(x)$ is local

Need $\langle \omega(x) \omega(y) \rangle$ correlations

Caution: OPE analysis shows it diverges as $\partial^2 \delta(x-y)$

$$B_n = \int d^2 x \ |x|^n \langle \omega(x) \omega(0) \rangle$$

intensive

$n \geq 2$ well-behaved in the continuum

$$\omega = \nabla \times j = -\frac{i}{M} \nabla \psi^\dagger \times \nabla \psi$$

$$\sum_x \Delta x^2 \omega(x) = 0 \quad \text{with periodic boundary conditions}$$

$$\omega(x) \omega(0)$$
A PROBE OF VORTICITY

- What tracks the vortices?
- $\omega(x)$ is local

- Need $\langle \omega(x) \omega(y) \rangle$ correlations
 Caution: OPE analysis shows it diverges as $\partial^2 \delta(x-y)$

- $B_n = \int d^2x \ |x|^n \langle \omega(x) \omega(0) \rangle$
 intensive
 $n \geq 2$ well-behaved in the continuum

$$\omega = \nabla \times j = -\frac{i}{M} \nabla \psi^\dagger \times \nabla \psi$$

$$\sum_x \Delta x^2 \omega(x) = 0 \quad \text{with periodic boundary conditions}$$
A PROBE OF VORTICITY

- What tracks the vortices?
- $\omega(x)$ is local
- Need $\langle \omega(x) \omega(y) \rangle$ correlations
 Caution: OPE analysis shows it diverges as $\partial^2 \delta(x-y)$
- $B_n = \int d^2x \ |x|^n \langle \omega(x) \ \omega(0) \rangle$
 intensive
 $n \geq 2$ well-behaved in the continuum

$\omega = \nabla \times j = -\frac{i}{M} \nabla \psi^\dagger \times \nabla \psi$

$\sum_x \Delta x^2 \omega(x) = 0$ with periodic boundary conditions
LIMITS OF VORTICITY PROBES

Free theory, $\mu=0$, $\beta/ML^2 = 0.061$

Spatial continuum

Free theory, $\mu=0$

Fixed lattice spacing
Infinite volume

$nx_0 = 7$
$\beta/ML^2 = 0.061$
FIRST RESULTS!
\[x^2 \langle \omega(x) \omega(0) \rangle \]

\[\log k_F a = 3.3 \quad T/T_F = 1.2 \quad N = 4. \]

Each took about 1 hour on 1 NVIDIA A100 GPU

Same parameters as the contact check

N = 9, scaled L by 1.5
PHASE STRUCTURE

T/T_F

BEC $\log k_F a$ BCS

No vortices T_{BKT}/T_F Vortices everywhere

our test calculation $T/T_F = 1.2$
CURRENT CAMPAIGN

Berkowitz + Warrington 2309.????

No vortices

T/T_F

BEC

log k_F a = 0

log k_F a

MB_2/k_F^4

BCS

T/T_F with fixed log k_F a

BEC

Vortices everywhere

T_{BKT}/T_F

Vortices everywhere

T/T_F
BACKUP SLIDES
CODE AVAILABILITY

https://github.com/evanberkowitz/two-dimensional-gasses

https://two-dimensional-gasses.readthedocs.io/
BUT KNOWN THEOREM?

- Mermin-Wagner(-Berezinskii-Coleman): continuous symmetries don't spontaneously break in 2D

- Therefore, correlation functions don't go to a finite constant at long distance.

- BKT: OK, but if they decay with a power law?

\[H = -J \sum_{\langle ij \rangle} s_i \cdot s_j \quad \text{O(2)} \]

\[= -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \]
$H = - J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j) \simeq H_0 + \frac{J}{2} \int d^2x \left| \nabla \theta \right|^2$
EXPECTED VALUES AND SUSCEPTIBILITIES

$|\omega|^2$ vs $T/BKT/J$ and susceptibility vs $T/BKT/J$
A PROBE OF VORTICITY

- What tracks the vortices?
- \(\omega(x) \) is local

- Need \(\langle \omega(x) \omega(y) \rangle \) correlations
 Caution: OPE analysis shows it diverges as \(\delta^2 \delta(x-y) \)

- \(B_n = \int d^2 x \ |x|^n \langle \omega(x) \omega(0) \rangle \)
 intensive
 \(n \geq 2 \) well-behaved in the continuum

\[
\begin{align*}
\omega &= \nabla \times j = - \frac{i}{M} \nabla \psi^\dagger \times \nabla \psi \\
\sum_x \Delta x^2 \omega(x) &= 0 \quad \text{with periodic boundary conditions}
\end{align*}
\]
A PROBE OF VORTICITY

- What tracks the vortices?
- $\omega(x)$ is local
- Need $\langle \omega(x) \, \omega(y) \rangle$ correlations
 Caution: OPE analysis shows it diverges as $\partial^2 \delta(x-y)$
- $B_n = \int d^2x \, |x|^n \langle \omega(x) \, \omega(0) \rangle$
 intensive
 $n \geq 2$ well-behaved in the continuum

$$\omega = \nabla \times j = - \frac{i}{M} \nabla \psi^\dagger \times \nabla \psi$$

$$\sum_x \Delta x^2 \omega(x) = 0 \quad \text{with periodic boundary conditions}$$

$$\Omega(k) = \int d^2x \, e^{-ik \cdot x} \langle \omega(x) \omega(0) \rangle$$
ANTICIPATED BEHAVIOR

No vortices T_{BKT}/T_F with fi fixed

$\log k_F a$

T/T_F with fixed $\log k_F a$

MB_2/k_F^4