
Algorithms for gauge evolution and solvers

Peter Boyle (BNL)

Gauge evolution
• Critical slowing down

• GFHMC & RMHMC
• FTHMC

• Communication avoiding
• Domain decomposition

• Multilevel integration & Master field simulation
• Parallel tempering

Solvers

Outlook
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Hardware trends: how does this interact with algorithms

Incredible growth in accelerated node performance continues

Huge floating point throughput; Reduced precision arithmetic

Enormous (but less flexible) dense matrix throughput: Machine learning / DNN

High speed intranode networks; Lower speed internode networks

Cost of computation not just flop/s: memory, GPU-GPU & node-node bandwidth important

• Growing penalty for communication
• Multi-scale physics and large volumes

⇒ Changes to algorithms

Location System
Interconnect (GB/s) 

per node (X+R)

Floating point 
performance (GF/s) 

per node

Memory Bandwidth 
(GB/s) per node

Year
System peak 

(PF/s)
FP / Interconnect FP / Memory Memory / Interconnect

LLNL BlueGene/L 2.1 5.6 5.5 2004 0.58 2.7 1.0 2.6
ANL BlueGene/P 5.1 13.6 13.6 2008 0.56 2.7 1.0 2.7
ANL BlueGene/Q 40 205 42.6 2012 20 5.1 4.8 1.1

ORNL Titan 9.6 1445 250 2012 27 150.5 5.8 26.0
NERSC Edison 32 460 100 2013 2 14.4 4.6 3.1
NERSC Cori/KNL 32 3050 450 2016 28 95.3 6.8 14.1
ORNL Summit 50 42000 5400 2018 194 840.0 7.8 108.0
RIKEN Fugaku 70 3072 1024 2021 488 43.9 3.0 14.6
NERSC Perlmutter/GPU 200 38800 6220 2022 58 194.0 6.2 31.1
ORNL Frontier 200 181200 12800 2022 >1630 906.0 14.2 64.0
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Hybrid Monte Carlo

Auxiliary Gaussian integral over conjugate momentum field
∫
dπe

−π2
2∫

dπ

∫
dφ

∫
dU e−

π2
2 e−SG [U]e−φ∗(M†M)−1φ

Outer Metropolis Monte Carlo algorithm

• Draw gaussian momenta and pseudofermion as gaussian η =M−1φ

• Metropolis acceptance step
• Proposal includes inner molecular dynamics at constant Hamiltonian:

H =
π2

2
+SG [U]+φ

∗(M†M)−1
φ

U̇ = iπU, derive HMC EOM from:

Ḣ = 0= π [π̇ + iU ·∇USTA]

Finite timestep performed in Lie algebra, keeps U on group manifold:

U ′ = e iπdtU

Force terms ∇US ; Invert M†M at each timestep of evolution in MD force

∆H ∼ 0.1, H ∼ 109

HMC designed to conserve probability
⇒ Can expect wicked volume scaling for approximate algorithms:
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Avenues actively investigated by community (incomplete list)

Trivialising flows: covered in Gurtej Kanwar’s plenary, Mon 10am

Critical slowing down / Fourier acceleration
• GFFA-HMC
• FTHMC
• RMHMC

Domain decomposition

Parallel tempering & topological sampling

Multi-level integration & Master field simulations

Solvers & multigrid:
• DWF
• Staggered multigrid
• Staggered communication avoiding preconditioning
• Equivariant (Covariant) neural networks

4 / 28



SciDAC-5 project

“Multiscale acceleration: Powering future discoveries in High Energy Physics”

5 year project 2022/10 to 2027/10

Algorithmic research collab. between USQCD HET and SciDAC institutes

USQCD:
• 3 Labs: ANL, BNL (lead), FNAL
• 8 Universites: Columbia, BU, MSU, Illinois, UIUC, Utah

SciDAC Fastmath :
• LBNL, MIT, SUNY Buffalo

3 work packages:
• WP1: Multigrid for Domain Wall and Staggered Fermions
• WP2: Transformational sampling algorithms
• WP3: Large domain decomposed HMC: minimise communication
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Critical slowing down
Free field: decoupled harmonic oscillators, period in MD time dependent on wavelength:

H(π̃p , φ̃p) =
1

2 ∑
p

π
†
pπp +ω

2
pφ

†
pφp ; ω

2
p =m2+p2

(soft covariant) Gauge fixed fourier accelerated HMC Y. Huo Tue 14:30. arXiv:2108.05486

Riemanian Manifold HMC ECP and SciDAC-5, C. Jung Tue 15:10
• arXiv:2112.04556, arXiv:1710.07036
• momentum distribution depends on covariant Laplacian wavelength
• Fourier accelerate with arbitrary profile function H[D2] of the adjoint Laplacian
• Implicit integrator (Girolami & Calderhead)
• c.f. Gauge Invariant Fourier Acceleration Duane & Pendleton, PLB 206 (1988)∫

dπU

∫
dπφ

∫
dφ

∫
dU e−

πuHπu
2 e−

πφ H−1πφ

2︸ ︷︷ ︸
cancellingdetH[U]/detH[U]

e−SQCD [U]e−φ∗φ
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3
x64 2+1+1f 1/a ~4Gev

Long distance quantities decorrelate faster
with RMHMC, measured in Fermion force
evaluations

Gauge implicit integrator needs further
optimisation for “wall clock” gain
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Flowed HMC

Much activity based on Luscher’s Wilson flowed HMC (arXiv:1009.5877)

Two possible directions to address critical slowing down:

Complex IR flow: learned generative/trivialising maps; (Gurtej Kanwar plenary, Mon 10am)

Simple UV flow: retain momentum based local update with field transformation FT-HMC

• Might be substantially easier to map QCD to QCD than trivialising to strong coupling
limit

UV smearing function U(V ) brings tunable Fourier acceleration with incomplete trivialisation∫
dUe−S[U] =

∫
dV

∣∣∣∣ dUdV
∣∣∣∣e−S[U(V )]

FTHMC :
Gaussian momentum distribution
Covariant smearing ⇒ wavelength dependent transformation to physical gauge field
Computable exact log det Jacobian

• Quenched FT-HMC; general Wilson loops (Matsumoto, Jin, Izubuchi, Tomiya et al)
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Simple flow FT-HMC with domain wall fermions

(masked) stout plaquette smeared FT-HMC in Grid: enables Fermion simulations (PB, Jin)
• Reimplements Luchang Jin’s Qlat FT-HMC; adds many options for fermions

Ls = 16 Domain wall fermions + Iwasaki gauge action

163×48, β = 2.13, mud = 0.01, ms = 0.04 2+1 flavour

• TWQCD’s exact one flavor algorithm for strange (arXiv:1403.1683)

2×Nd subsets for plaquette stout smearing, ρ = 0.1

• Developed under SciDAC-5 WP2 ; single node of 4xAMD GPUs (Lumi-G)
• Field transformation overhead significant but sub-dominant

• Reproduces reference plaquette in smeared links
• Plan to investigate critical slowing down on 323 at 3 GeV

Exascale consideration: the Jacobian force parallelises; Fermion solvers do not.

• FT-HMC overhead is scalable.
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Trajectory Jacobian Force smearing Fermion action + force
1530s 295s 166s 900s
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Decimation
arXiv:2212.11387, (Nobu Matusmoto Lattice 2022) + Akio Tomiya, Luchang Jin, Taku
Izubuchi, PB, Christoph Lehner, Chulwoo Jung

2D U(1): trivialise subsets of gauge links sequentially

first stage second stage

Lüscher’s trivializing map applied to one link at a time

𝜏!"# ≃ 1

𝜏!"# ≃ 8,000

𝜏!"# in Monte Carlo time 𝜏!"#	in wall clock time

Decimation map in 2D for accelerating HMC Nobuyuki Matsumoto, Mon 4:20

Combined with guided HMC:

Lüscher 09

Duane,Kennedy,Pendleton,Roweth 87
Horowitz 91

…

x73 speed up
 &
x0.62 in the exponent
@ four stages
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Fermion determinant factorisation

Can split 2f determinants into multiple factors: closer to identity, independently estimated

• Reduces forces, whose stochastic sum is estimated more precisely
• Ideally reduce the computational cost of each factor

Examples:

hep-lat/0107019 Hasenbusch mass preconditioning:

detM†(ml )M(ml ) = det
M†(ml )M(ml )

M†(mh)M(mh)
detM†(mh)M(mh)

hep-lat/0409134 Clark and Kennedy n-roots: detM†(ml )M(ml ) =

(
det

[
M(ml )

†M(ml )
] 1
n

)n

hep-lat/0409106 Luscher’s domain decomposition HMC
• Hasenbusch preconditioning has been most widely used
• DDHMC provides clean localisation of determinant and computational benefit
• n-roots did not initially reduce cost of each factor

arXiv:1808.01829 De Forcrand and Keegan use multi-RHS multi-shift solver for computational benefit

Exascale considerations:

• Domain decomposition is of particular interest for exascale as it reduces global
commmunication

• n-roots may be compined with machine subdivision for trivial parallelism
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Domain decomposition: hep-lat/0409106, CLS, PACS-CS

Divide space time into “black” and “white” blocks and decompose Dirac operator(
DΩ D∂

D
∂̄

DΩ̄

)
=

(
1 D∂D

−1
Ω̄

0 1

)(
DΩ−D∂D

−1
Ω̄

D
∂̄

0
0 DΩ̄

)(
1 0

D−1
Ω̄

D
∂̄

1

)
.

detD = detDΩ detDΩ̄ det
{
1−D−1

Ω D∂D
−1
Ω̄

D
∂̄

}
,

“boundary” determinant is projected to exterior boundary of Ω

R = P
∂̄
−P

∂̄
D−1

Ω D∂D
−1
Ω̄

D
∂̄

R−1 = P̂
∂̄
− P̂

∂̄
D−1D̂

∂̄

Boundary gauge links are frozen (cross domain & surface plane)

• 3D Pseudofermion action φ
†
∂̄
(RR†)−1φ

∂̄
involves two solves due to boundary projector

• MD evolve gauge action & local det without communication
• Small cell IR regulates Dirichlet solve, fits in cache

Drawbacks:

• Doesn’t work for odd flavours (nested solve needed due to projector)
• Too many inactive links loses efficiency
• Too few inactive links has spikes in δH
• Small domains: good for CPUs but not for GPUs
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Large domain DDHMC:

arXiv:2203.17119 PB, D. Bollweg, C. Kelly, A. Yamaguchi, SciDAC-5

Gain of communication avoidance, do not use small cell

Make domain as big as required for good performance on a multi-GPU exascale node

Make inactive region as broad required to suppress communication

• Expect to lose IR bound on subdomain solves
• Expect to gain fidelity and large force suppression with bigger inactive zones/more

efficiency
• Perturbative massless zero momentum two point function ∝ t−3: suppress with wider

inactive link zones

Must be more efficient on a large enough volume: asymptotically guaranteed to win if
communications is a limit

Suited to master-field ideas
27/07/2023, 17:02

Page 1 of 2file:///Users/peterboyle/Documents/Algorithms23/drawing5.svg
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Modified pseudofermion approach

Write D̃ as Dirichlet operator. Use

det
{
1−D−1

Ω D∂D
−1
Ω̄

D
∂̄

}
=

detD

detD̃
,

2 flavour (4d) boundary pseudofermion action:

S2f = φ
†Ddirichlet(D

†D)−1D†
dirichletφ

Introduce domain wall pseudofermions in style of (dirichlet) Hasenbuch intermediate
operators:

detP(D†
l Dl )

−1P† = detD̃l (D
†
l Dl )

−1D̃† ·det P̃(D̃†
l D̃l )

−1P̃† ·detP(P̃†P̃)−1P†

Can now take fractional powers of boundary determinant!

RHMC boundary pseudofermion:

SB
1f = φ

†
1 (D

†
dirichletDdirichlet)

1
4 (D†D)−

1
2 (D†

dirichletDdirichlet)
1
4 φ1

RHMC local 1 flavor determinant ratio

SL
1f = φ

†
2 (PdirichletPdirichlet)

1
4 (D†

dirichletDdirichlet)
− 1

2 (PdirichletPdirichlet)
1
4 φ2
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163 test

163×48, β = 2.13, mud = 0.01 2+1 flavour
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Two favour, 3D pseudofermion, m=0.01
Two favour, 4D pseudofermion, m=0.01
One favour, 4D pseudofermion, m=0.04
One favour, 4D pseudofermion, m=0.01

2 flavour 4D pseudofermion has larger force than 2f 3D pseudofermion

1+1 flavour 4D pseudofermion has smaller force than 2f 3D pseudofermion

Odd flavour domain decomposition is now possible
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Large volume run β = 2.25, 483×96×12, mud = 0.00078

Close to physical, but Ls = 12 not Ls = 24

Frontier/Lumi-G have good communications: Time gain will be strictly limited

• Certain existing (and future) machines are less balanced: e.g. Polaris, Perlmutter

 100
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 0  5  10  15  20  25

1+1f boundary
2f boundary
eofa strange

Again, reduced force with rational 1+1 f
boundary

Introduced partial dirichlet BCs with
further force reduction

• Surface physical fields remain
connected, 5d bulk is disconnected

Bdy Cell Iters Conds
pppa 48x48x48x96 12351 antiperiodic
pppd 48x48x48x96 11864 open time
dddd 48x48x48x96 7349 open 4 dirs
pppd 48x48x48x48 10015 dirichlet
pppd 48x48x48x24 7416 dirichlet
ppdd 48x48x24x24 5150 dirichlet
pddd 48x24x24x24 4324 dirichlet
dddd 24x24x24x24 3692 dirichlet

Nice surprise: Subdomain solves are
MUCH faster than full solves

Lower iteration count MULTIPLIES
communications gain

Applies to all intermediate Hasenbusch
factors in our DDHMC scheme
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HMC and DDHMC comparison on Lumi-G
Compare double precision algorithms for simplicity

• Loosely tuned to similar δH; preliminary integrator hierarchy (work in progress!)
• DDHMC block size : 243×48, active link block: 163×40

algorithm HMC DDHMC
integrator Force Gradient Force Gradient
rms dH 0.04 0.09

L1/2/3 steps 6/2/8 3/3/12
Ddirichlet 0 1176892
Dfull 2432132 884884

Take cost of full communicating operator to dirichlet as R

Relative speed up S(R) is

S =
NHMC

full R

NDDHMC
full R+NDDHMC

dir

∼ 2.4R

0.9R+1.2
≥ 2.2

Additional gain with multishift/multiRHS is possible (de Forcrand and Keegan,
arXiv:1808.01829)
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Topology sampling

Topological sampling is a sign of non-ergodicity and algorithm breakage.
• Symptomatic treatment may not address all sources of non-ergodicity.
• Opening boundary conditions cures the symptom by amputation
• Pay with larger volume and loss of translation averaging

We had to destroy topology in order to save topology
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Parallel tempering and topology sampling

Early UKQCD work: arXiv:hep-lat/9810032

• Jointly sample multiple ensembles with nearby parameters
• Replica switching requires suff. similar actions and scales poorly with volume

Recent interest in parallel tempering as algorithmic solution

Hasenbusch: arXiv:1706.04443

Bonnano and D’Elia: arXiv:1911.03384, arXiv:2212.02330, arXiv:2012.14000,
arXiv:2205.06190

• Localised action difference at boundary: temper between open and periodic
• Does not change periodic distribution, but gives access to tunneling
• Thursday 14:50, talk by Dasilva Golan, Twisted BC + PT

Eichorn et al: arXiv:2307.04742 Metadynamics + PT

Also: out of equilibrium simulation: A. Nada, Monday, 14:50.

arXiv:2210.07622, SU(6) glueball spectrum with
no topology systematic
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Monte Carlo time
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0
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Q
c

V = 164, β = 1.25, DBW2 action

1HMC

1HB+4OR

PT-MetaD (4stout)

arXiv:2307.04742 : Quenched DBW2 gauge evo-
lution topological sampling gain
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Parallel tempering and topology sampling
Parallel tempering illustrates problem of approximate algorithms

• Suffers as volume increases or change in action grows
• c.f. accurate MD integration in HMC conserves probability to high accuracy

Field transformation/normalizing flow may bridge action changes: will suffer if approximate

Difficult to avoid poor acceptance (exact alg.) / low effective sample size (reweighted)

Volume scaling in 4D means simple 2D models could mislead

Subvolume switching for topology is good solid plan:
in future likely involve domain decomposition for non-local fermion action ?

• D. Hackett Thu 15:10
• J. Finkenrath Mon 16:40, local updates, Nf = 2 2D Schwinger model

4

Correction steps 
With Fermions
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flowGC-Lb=8:
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PG HMC proposal

Fine grain flow proposal

Flow proposal on L=8
@ z = 0.2

New

N. Christian et al., Nucl.Phys.B 736 (2006)

J.F., arXiv:2201.02216

Fermion Corrections via hierarchical Filter 
and flow-based pure gauge updates
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Master field simulation

arXiv:1707.09758, 1812.02062, 1911.04533 2111.11544

Lüscher; Lüscher, Fritzsch, Bulava, Cé, Francis, Rago

Premise:
very large lattice gauge field, the master field, can replace a conventional Markov chain
Monte-Carlo ensemble of a discretised field theory with a mass gap

Larger volumes than traditional have certain advantages and disadvantages

Advantages:

• Global topology: effects fall as 1
V and can be made negligible

• do we care if there is an instanton behind the moon?

• Suited to large GPU systems
• Variance: reduces with volume so equivalent to gaining statistics
• Estimate statistical error, in part, from spatial decorrelation

Disadvantages:

• Thermalisation overhead: low configuration count argument somewhat oversold
• To be sure of thermalisation, must run for many autocorrelation times. Less waste to

accumulate statistics
• Thermalisation bias falls as 1

Nconf
; variance falls as 1√

Nconf
Evolution removes bias faster than error falls

• Intractable for eigenvector methods & other V 2 algorithms: idea best with a good
multigrid
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Multilevel integration

arXiv:1601.04587, arXiv:1612.06424, arXiv:1812.01875, arXiv:2112.02647

detQ =
det(1−w)detQ0 detQ2

detQΛ1

N1 samples in interstitial Λ1 domain

For each sample N2 independently from each of Λ0 and Λ2

Reweight factor (1−w) regularised by width of intermediate zone

N1×N2
2 samples

Lots avenues to explore in valence measurements:

• e.g. multigrid subspace reuse
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Solvers

Wilson multigrid is a solved problem for valence

Faster setup for HMC needed
• Encourage Wilson folks to try Chebyshev filter setup in arXiv:2103.05034
• Both setup AND solved DWF twice faster than single RB-CGNE

Domain wall and staggered multigrid research on-going
• Currently algorithms exist for DWF and Staggered but less dramatic gains than for

Wilson
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Multigrid preconditioners

Low mode subspace vectors φ generated in some way

Inverse iteration, Inverse iteration with self refinement, Chebyshev filters

φ
b
k (x) =

{
φk (x) ; x ∈ b
0 ; x ̸∈ b

(1)

span{φk} ⊂ span{φ
b
k }. (2)

PS = ∑
k,b

|φb
k ⟩⟨φb

k | ; PS̄ = 1−PS (3)

M =

(
MS̄ S̄ MSS̄
MS̄S MSS

)
=

(
PS̄MPS̄ PSMPS̄
PS̄MPS PSMPS

)
(4)

We can represent the matrix M exactly on this subspace by computing its matrix elements, known
as the little Dirac operator (coarse grid matrix in multi-grid)

Aab
jk = ⟨φ a

j |M|φb
k ⟩ ; (MSS ) = Aab

ij |φ a
i ⟩⟨φb

j |. (5)

the subspace inverse can be solved by Krylov methods and is:

Q =

(
0 0
0 M−1

SS

)
; M−1

SS = (A−1)abij |φ a
i ⟩⟨φb

j | (6)

It is important to note that A inherits a sparse structure from M because well separated blocks do

not connect through M.
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DWF: multigrid enfant terrible

Spectrum of DWF presents problems to non-Hermitian Krylov solvers

Why? Krylov space is the span of polynomials of matrix M.
Let |i⟩ be the set of right eigenvectors, P(x) = cnx

n a polynomial

M|i⟩ = λi |i⟩
η = ηi |i⟩

ψ
Krylov = P(M)η = (cnλ

n
i )ηi |i⟩

ψ
True =

1

λi
ηi |i⟩

There exists a contour C contained entirely within the (dense in large/infinite volume)
spectrum such that

∮
C

PKrylov(z)dz = 0

∮
C
F True(z)dz =

∮
C

1

z
dz = 2π i

-2

-1

0

1

2

-2 0 2 4 6 8 10

Im
La
m
bd
a

Re Lambda

5D Wilson eigenvalues

C

Thus the Krylov polynomial and true solution must differ within the domain of the spectrum

Must differ from solution between discrete eigenvalues. Low order polynomial is inadequate

Manifests as slow convergence, perhaps of order system size
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Domain wall and Staggered multigrid

arXiv:1205.2933, Cohen, Brower: real positive (M† precondition)
coarsen M†M (2hop)

arXiv:1402.2585, PB: real indefinite (RB-NE precondition)
coarsen M†

pcMpc (4hop)

arXiv:1611.06944, arXiv:2203.17119, PB, Yamaguchi: real indefinite (Γ5 precondition)
coarsen Γ5M (1hop)

arXiv:2004.07732, Weinberg et al: complex positive half plane (M†
PV precondition),

coarsen M (1 hop) and M†
PV (1 hop)

• 2D U(1) arXiv:2004.07732
• 4D SU(3) arXiv:2203.17119

Staggered multigrid: arXiv:2212.12559, arXiv:1801.07823

SciDAC-5 / PETSc collaboration:

Directly coarsen 2-hop matrix M†
PVM

Work with PETSc team opens up many algebraic and other multigrid options

• Apply good ideas arising from applied math community
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Staggered Schwarz preconditioning

Kate Clark, Thu 14:00 : bit reproducible and more precise reductions

Evan Weinberg, Mon 15:20 : HISQy business, Schwarz Preconditioning HISQ

11

Schwarz Preconditioning for the 
HISQ operator

• Problem: not all HPC facilities prioritize network bandwidth

• Solution: use communication-avoiding preconditioning?

• Additive Schwarz preconditioning to improved staggered 
fermions is challenging

• Operator is less local due to 3-hop Naik term
• Typically solve the normal operator, doubling the radius of 

the operator

• Critical to account for “snake” terms
• Contributions that start and end at the domain boundary 

but have non-zero support outside of the domain
• Snake terms induce an effective “boundary clover” term

• Successfully deployed in QUDA
• Stable convergence using half precision
• Time-to-solution improvement on machines with poor 

network bandwidth

• Future work: application of Schwarz preconditioner as a 
smoother for staggered multigrid

“HISQy Business”
Evan Weinberg, Monday 15:20
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Covariant network approach

Lehner & Wettig : arXiv:2302.05419 arXiv:2304.10438

Key idea: NN directly represents inverse of matrix on coarse space

• Similar coarsening to multigrid / inexact deflation
• Replace iterative solve of coarse representation of operator with less local approxation

of inverse (deep covariant network).

Clearly reasonably for high mode smoother.

Look forward to data scaling low mode coarse grid correction to larger volumes

• currently 83×16
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Summary

Exciting range of research in gauge evolution

• Trivialising flows
• Critical slowing down: GFFAHMC, RMHMC, FTHMC
• Parallel tempering to address topological sampling via subvolume “topology factories”

• I am optimistic open BC’s can soon be avoided
• Conventional/subvolume PT could be combined with a learned flow mapping QCD to QCD

• Domain decomposition & communication avoidance
• DD determinant likely central to subvolume techniques with fermions
• Possibly required to make flow methods exact and will impose a cost

Solver research ongoing for MG in staggered and DWF continues

Opportunities for ML ; pragmatism vs. ambition

Communication avoidance continues to be important
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