Selected topics at non-zero temperature and density

Attila Pásztor

ELTE Eötvös Loránd University, Budapest
LATTICE 2023, FERMILAB

The conjectured phase diagram of QCD

Baryon density / chemical potential / doping

A rough outline of my talk

Effective restoration of $U(1)_{A}$ at high T ?

- Idea: towards chiral limit the determinant might suppress topology so that some observables related by $U(1)_{A}$ become degenerate
- Banks-Casher relation (assumes analyticity at $\lambda=0$):

$$
\frac{1}{V}\langle\bar{\psi} \psi\rangle \underset{V \rightarrow \infty}{\rightarrow} \int_{0}^{\infty} \rho(\lambda) \frac{m}{\lambda^{2}+m^{2}} \underset{m \rightarrow 0}{\rightarrow} \pi \rho(0)
$$

- Naive expectation: $\rho(0)=0$ at $T>T_{c}$ (chiral symmetry restoration)
- Small m (see e.g. [Kanazawa \& Yamamoto PRD 91 (2015)]):

$$
\begin{array}{r}
f=f_{0}-f_{2}\left(m_{u}^{2}+m_{d}^{2}\right)-f_{A} m_{u} m_{d} \cos \theta+\ldots \\
\text { as } m \rightarrow 0 \quad \chi_{\pi}-\chi_{\delta} \sim f_{A} \text { and } \chi_{\text {top }}=\frac{1}{V}\left\langle Q_{\text {top }}^{2}\right\rangle \sim f_{A} m_{u} m_{d}
\end{array}
$$

- Contrast: $T \ll T_{c}: \chi_{\text {top }} \propto m$ with $T \gg T_{c} \chi_{t o p} \propto m^{N_{f}}$
- [Aoki et al, PRD86 (2012)]: analyticity in m and of $\rho(\lambda)$ at $\lambda=0 \rightarrow f_{A}=0$
- [Azcoiti, PRD107 (2023)]: analyticity in m and $f_{A} \neq 0 m \rightarrow \rho \underset{m \rightarrow 0}{\sim} m^{2} \delta(\lambda)$
\rightarrow near zero modes of D are key

Weakly interacting instantons at high T

RM model of the physics of NZMs [T. Kovács: Tuesday 13:30]

- Peak near zero related to topology
- Here: overlap on quenched
- Overlap on staggered looks similar [Alexandru \& Horváth, PRD100 (2019)] [Alexandru \& Horváth, PRL127 (2021)]
- Staggered: peak less pronounced [Ding et al, PRL126 (2021)]
- Caveat: JLQCD doesn't see the peak for overlap on DW (small V) [H. Fukaya, Monday, 15:30]

- 2 params describe I-AI mixing
- $\rho \rightarrow \lambda^{-\alpha}$ with $\alpha<1$
- $\alpha \lambda$ as $m \searrow$
- Eigenvectors have fractal structure
- $N_{N Z M} \propto m^{N_{f}}$
- $\chi_{\pi}-\chi_{\delta} \neq 0$ for $N_{f}=2 \chi$ limit
- $\chi_{\pi}-\chi_{\delta} \rightarrow 0$ for $N_{f}=3 \chi$ limit
- instanton-aniinstanton molecules (?)

Ideally, one should look at the NZM peak with dynamical chiral fermions

Dynamical overlap fermions with physical quark masses

- [Monday: A. Kotov (13:30)]
- Dynamical overlap with standard Wilson kernel and 2steps of hex smearing
- Large finite volume effects (probably due to fixed topology)
- Large cut-off effects (???)

The Columbia plot and the anomaly

- Perturbative RG (ϵ expansion) [Pisarski \& Wilczek PRD89 (1984)]
- If $U(1)_{A}$ effectively restored at $T_{c}: N_{f}=2,3$ cannot be 2 nd order
- If not: $N_{f}=2$ can be second order, $N_{f}=3$ cannot
- If correct, then left: phase diagram without anomaly, middle: with anomaly
- Recent work by Frankfurt group (staggered): new scenario on the right (see also [Dini et al, PRD 105(2022)])
- pRG not always reliable ($N_{f}=3$ FP with no anomaly in [Fejős, PRD105 (2022)])
- [Ding et al, PRL 123 (2019)]: $N_{f}=2$ consistent with O (4)
- Consistent with $T>T_{c}$ instantons: $U(1)_{A}$ eff. restored for $N_{f}=3$ but not $N_{f}=2$

MDW fermions for $N_{f}=3$

- From the talk of [Y. Zhang, Mo 14:30]
- Domain wall, $N_{\tau}=12, N_{f}=3, L T=2$ and 3
- Scan in the quark mass for fixed $T=121 \mathrm{MeV}$:
heavier \rightarrow confined; lighter \rightarrow deconfined
- Binder cumulants \rightarrow crossover (Gaussian $\bar{\psi} \psi$)
- When the strange quark is as light as the up and down \rightarrow crossover

QCD in the grand canonical ensemble

$$
p=\frac{T}{V} \log \operatorname{Tr}\left[e^{-\left(H_{Q C D}-\mu_{u} N_{u}-\mu_{d} N_{d}-\mu_{s} N_{s}\right) / T}\right]=\frac{T}{V} \log \operatorname{Tr}\left[e^{-\left(H_{Q C D}-\mu_{B} B-\mu_{Q} Q-\mu_{S} S\right) / T}\right]
$$

Generalized susceptibilities:

$$
\chi_{i, j, k}^{B S Q}=\frac{\partial^{i+j+k}(\hat{p})}{\left(\partial \hat{\mu}_{B}\right)^{i}\left(\partial \hat{\mu}_{S}\right)^{j}\left(\partial \hat{\mu}_{Q}\right)^{k}} \quad \chi_{i, j, k}^{u d s}=\frac{\partial^{i+j+k}(\hat{p})}{\left(\partial \hat{\mu}_{u}\right)^{i}\left(\partial \hat{\mu}_{d}\right)^{j}\left(\partial \hat{\mu}_{s}\right)^{k}}
$$

where $\hat{\mu}=\mu / T$ and $\hat{p}=p / T^{4}$.

$$
\begin{gathered}
\mu_{u}=\frac{1}{3} \mu_{B}+\frac{2}{3} \mu_{Q} \quad \mu_{d}=\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q} \quad \mu_{s}=\frac{1}{3} \mu_{B}-\frac{1}{3} \mu_{Q}-\mu_{S} \\
\chi_{1}^{B} \sim\langle B\rangle \quad \chi_{2}^{B} \sim\left\langle B^{2}\right\rangle-\langle B\rangle^{2} \quad \chi_{11}^{B Q} \sim\langle B Q\rangle-\langle B\rangle\langle Q\rangle
\end{gathered}
$$

Higher orders are crucial for methods based on analytic continuation:
DATA $\left(\operatorname{lm} \mu_{B}\right.$ or derivatives at $\left.\mu_{B}=0\right)$ and ANSATZ (Taylor, Padé, ...)

The phase diagram for small μ_{B}

The phase diagram for $L T=4$ $\frac{T_{c}\left(\mu_{B}\right)}{T_{c}(0)}=1-\kappa_{2}\left(\frac{\mu_{B}}{T_{c}\left(\mu_{B}\right)}\right)^{2}-\kappa_{4}\left(\frac{\mu_{B}}{T_{c}\left(\mu_{B}\right)}\right)^{4}-\ldots$
[Borsanyi et al, PRL 125(2020)]
Continuum extrapolated
Fixed volume \boldsymbol{X}
Strangeness neutrality

Finite volume effects

[R. Kara: Tuesday 14:50]
Fixed spacing $N_{\tau}=12$ (4stout) \boldsymbol{X}
Several volumes, inf.vol. extrap. Strangeness neutrality

The strength of the crossover

When decreasing $m_{u d}$

[Ding et al, PRL 123 (2019)]

When increasing μ_{B}

See also: [W-P Huang, Wednesday 9:00] [Borsanyi et al, PRL 125(2020)]

$$
N_{f}=2 \text { 2nd order } \leftrightarrow D \text { eigenvalues }
$$

Apparently, the system at $\mu_{B}=0$ is only sensitive to $O(4)$ criticality $\left(O(2)\right.$ for staggered at finite spacing) in the $N_{f}=2$ chiral limit

Taylor coefficients of the pressure at $\mu_{B}=0$

- Up to 4th order in μ_{B} and μ_{S} in the continuum
- χ_{4}^{Q} challenging: taste breaking effects large \boldsymbol{X}
- χ_{6}^{B} and χ_{8}^{B} at finite N_{τ}

From Im μ_{B} simulations

[Borsanyi et al, JHEP 10 (2018)]
strangeness chemical potential $\mu_{S}=0$

From $\mu_{B}=0$ simulations

[Bollweg et al, PRD108 (2023)]
strangeness density $\chi_{1}^{S}\left(T, \mu_{B}\right)=0$

Resummed equation of state

- At $\operatorname{Im} \mu_{B}$ we observe: $\frac{\chi_{1}^{B}\left(T, \hat{\mu}_{B}\right)}{\hat{\mu}_{B}} \approx \chi_{2}^{B}\left(T\left(1+\kappa \hat{\mu}_{B}^{2}\right), 0\right)$
- Can be turned into a systematically improvable ansatz:

$$
F\left(T, \mu_{B}\right)=F\left(T^{\prime}, 0\right) \quad T^{\prime}=T\left(1-\kappa_{2}(T) \hat{\mu}^{2}-\kappa_{4}(T) \hat{\mu}^{4}+\ldots\right)
$$

- A choice of the observable F together with this ansatz defines an extrapolation scheme (a resummation of the Taylor series in μ_{B})
- Analysis becomes similar to the extrapolation of $T_{c}\left(\mu_{B}\right)$

$$
\begin{aligned}
& \mu_{S}=0:[\text { Borsányi et al, PRD106 (2021)] } \\
& \chi_{1}^{S}=0:[\text { Borsányi et al, PRD105 (2022)] }
\end{aligned}
$$

Analytic structure: Lee-Yang zeros

$$
\mathcal{Z}=\operatorname{Tr}\left(e^{-\left(H-\mu_{B} B\right) / T}\right)=\sum_{n=-k V}^{+k V} e^{n \mu / T} \operatorname{Tr}_{n}\left(e^{-H / T}\right)=\sum_{n} Z_{n} e^{n \mu_{B} / T}
$$

- (up to a factor) a polynomial in $e^{\mu / T} \rightarrow$ zeros [Lee, Yang PR87 (1952)]
- $Z_{n} \in \mathbf{R} \rightarrow$ Lee-Yang zeros come in complex conjugate pairs
- LY zeros $\rightarrow p \propto \log Z$ has a branch point $\rightarrow R_{\text {conv }}=\left(\limsup _{n \rightarrow \infty}\left|\chi_{n}^{B} / n!\right|^{1 / n}\right)^{-1}$
- Finite volume scaling \rightarrow order of transition [Itzykson et al, NPB (1983)]
- $V=\infty$: analytic cont of RG scaling $\rightarrow h_{L Y} \sim\left|T-T_{c}\right|^{\Delta}$ (near a crit. pt)
- Chiral limit: $m_{u d} \sim h$
- Roberge-Weiss: $\operatorname{Im} \mu_{B}-\pi \sim h$
- Critical endpoint: $\mu-\mu_{C E P} \sim h$
- LY zeros determine the large order behavior of series expansions
- In the context of QCD, the asymptotic behavior is discussed in:
- Taylor $\left(\mu_{B}\right), V=\infty$ [Stephanov, PRD73 (2006)]
- Taylor $\left(\mu_{B}\right), V<\infty$ [Giordano \& Pásztor, PRD99 (2019)]
- Fugacity $\left(e^{\mu_{B} / T}\right), V=\infty$ [Almási et al, PLB 793 (2019)]
- Fugacity $\left(e^{\mu_{B} / T}\right), V<\infty$ [C. Schmidt, Friday 9:40]
- Rooted staggered \rightarrow no LY polynomial: [Giordano et al, PRD99 (2019)]

CEP extrapolation from the Parma-Bielefeld group

[F. di Renzo, Friday 9:20] [C. Schmidt, Friday 9:40] [D. Clarke, Friday 10:00]

$$
\begin{aligned}
\operatorname{Im} \mu_{L Y}= & c\left(T-T_{C E P}\right)^{\Delta} \\
\operatorname{Re} \mu_{L Y}= & \mu_{C E P}+a\left(T-T_{C E P}\right) \\
& +b\left(T-T_{C E P}\right)^{2}
\end{aligned}
$$

The basic approach:

- Padé \rightarrow estimated $\mu_{L Y}(T)$
- Orange: Taylor data, $N_{\tau}=8$ (HISQ)
- Blue: $\operatorname{Im} \mu_{B}$ data, $N_{\tau}=6$ (HISQ)
- An extrapolation

Comments:

- Inconsistent data for $\operatorname{Im} \mu_{B}$
- $b=0$: scaling close to CEP
- Tension with the idea that near $\mu=0$ QCD is mostly sensitive to $O(4)$ crit
- Similar ballpark to other approaches: DS: [J. Bernhardt et al, PRD 104 (2021)] FRG: [Fu et al, PRD 104 (2021)]
- Best case scenario: this observable is mainly sensitive to CEP, and finds it
- Worst case: once all systematics are considered, the signal disappears

Reweighting: in general

Fields: ϕ Target theory: Z_{t} Simulated theory: Z_{s}

$$
\begin{aligned}
Z_{t} & =\int \mathcal{D} \phi w_{t}(\phi) \quad w_{t}(\phi) \in \mathbb{C} \\
Z_{s} & =\int \mathcal{D} \phi w_{s}(\phi) \quad w_{s}(\phi)>0 \\
\frac{Z_{t}}{Z_{s}} & =\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s} \\
\langle O\rangle_{t} & =\frac{\int \mathcal{D} \phi w_{t}(\phi) O(\phi)}{\int \mathcal{D} \phi w_{t}(\phi)}=\frac{\int \mathcal{D} \phi w_{s}(\phi) \frac{w_{t}(\phi)}{w_{s}(\phi)} O(\phi)}{\int \mathcal{D} \phi w_{s}(\phi) \frac{w_{t}(\phi)}{w_{s}(\phi)}}=\frac{\left\langle\frac{w_{t}}{w_{s}} O\right\rangle_{s}}{\left\langle\frac{w_{t}}{w_{s}}\right\rangle_{s}}
\end{aligned}
$$

Two problems that are exponentially hard in the volume can arise:

- $\frac{w_{t}}{w_{s}} \in \mathbb{C} \rightarrow$ the complex action problem became a sign problem \rightarrow noise
- Tails of $\rho\left(\frac{w_{t}}{w_{s}}\right)$ long \rightarrow overlap problem \rightarrow potentially incorrect results
- Important to choose a "good" w_{s}
- If the overlap problem is avoided \rightarrow reliable results on a fixed lattice setup

Phase and sign reweighting

$w_{t} / w_{s} \in$ compact space \rightarrow no tails, no overlap problem (at least in the pressure)

Phase reweighting

$$
\begin{aligned}
& w_{t}=e^{-S_{g}} \operatorname{det} M=e^{-S_{g}}|\operatorname{det} M| e^{i \theta} \\
& w_{s}=e^{-S_{g}}|\operatorname{det} M| \quad \text { phase quenched ensemble }
\end{aligned} \quad \Rightarrow \frac{w_{t}}{w_{s}}=e^{i \theta}
$$

- $N_{f}=2$ equiv. to isospin $\operatorname{det} M(\mu) \operatorname{det} M(-\mu)=|\operatorname{det} M(\mu)|^{2}$
- At non-zero isospin, a Goldstone mode appears at $\mu=m_{\pi} / 2$
- Hard to simulate PQ ensemble, prev. used $\operatorname{det}\left(M^{\dagger} M+\lambda^{2}\right)$ (not compact)

Sign reweighting

$$
\begin{aligned}
& w_{t}=e^{-S_{g}} \operatorname{Re} \operatorname{det} \mathrm{M} \\
& w_{s}=e^{-S_{g}}|\operatorname{Redet} \mathrm{M}| \quad \operatorname{sign} \text { quenched ensemble } \Rightarrow \frac{w_{t}}{w_{s}}=\operatorname{sgn} \cos \theta= \pm 1
\end{aligned}
$$

- $\operatorname{det} M \rightarrow \operatorname{Re} \operatorname{det} M$ can be done in Z but not in generic expectation values. E.g. things like $\frac{\partial^{n} \log Z}{\partial \mu_{u d}^{n}}, \frac{\partial^{n} \log Z}{\partial m_{u d}^{n}}$ and $\frac{\partial^{n} \log Z}{\partial \beta^{n}}$ can be calculated.
- Has a weaker sign problem than phase reweighting [de Forcrand et al, 2003]
- BUT: hard to simulate with weights $\propto|\operatorname{Re} \operatorname{det} \mathrm{M}|$

First true PQ and SQ studies (improved action): [Borsanyi et al, PRD (2022)]

Extrapolations vs direct results for the EoS

- Wuppertal-Budapest; PRD 107 (2023)
- $\mu_{s}=0$, fixed volume $L T=2$, fixed lattice spacing $N_{\tau}=8$
- at the end of the RHIC range in μ_{B}

Troubles at low temperatures

At low T : cut-off effects related to rooting: [Goterman et al, PRD75 (2006)]

$$
Z_{N_{f}=2+1}=\int \mathcal{D} U\left(\operatorname{det} M_{l}\left(U, \mu_{q}\right)\right)^{1 / 2}\left(\operatorname{det} M_{s}(U)\right)^{1 / 4} e^{-S_{G}[U]}
$$

[C.H. Wong, Friday] The rooted staggered free energy $(a \neq 0)$ is non-analytic at $\mu=0$. Only defined pertrubatively in μ. Before anything, we need a path integral that is worth trying to solve.

- Geometric matching of det $M_{\text {stagg }}$ zeros [Giordano et al, PRD99 (2019)]
- Minimally doubled fermions?
[R. Víg, Tue 16:40] [D. Godzieba, Tue 17:00] [J.H. Weber, Wed 9:20]

Summary

I talked about four topics:

- Near zero modes and topology at high T
- The crossover transition at small quark mass and small μ_{B}
- The equation of state and analytic structure from resummations
- More direct reweighting methods

And had to make some important omissions:

- Resummations: [Mondal+, PRL128 (2022)], [Dunne \& Basar, PRD105 (2022)]
- Non-zero isospin density [W. Detmold Mo 16:20]
- Magnetic fields: [J.J. Hernandez We 10:00], [J.-B. Gu, We 10:20] [Marques Valois, Fri 10:20]
- Anomalous transport [E. Garnacho-Velasco Thu 13:30] [Brandt et al, JHEP 07 (2023)]
- Sign problem approaches: [Tuesday, finite μ], [Thursday, Algorithms and AI]
- Heavy quarks at non-zero temperature: [S. Sharma, Tue 16:40]
- ...

BACKUP

Some recent results on topology and near zero modes

About instantons at high T

- [Víg \& Kovács PRD103 (2021)]: free instantons ($T>T_{c}$) in pure YM
- [Borsányi et al, PRD107 (2023)]: $\chi_{\text {top }}$ discont at T_{c} in pure SU(3)
- [Borsányi et al, Nature (2016)]: $\chi_{\text {top }}$ in QCD at physical point
- Also [Petreczky et al, PLB762 (2016)], [Athenodorou et al, JHEP (2022)]
- Exponent compatible with free instantons above $T \gtrsim 2 T_{p c}$
- With and without assuming free instanton gas: same result for $T \gtrsim T_{c}$

About near zero modes

- [Ding et al, PRL126 (2021)]: $N_{N Z M} \propto m_{u d}^{2} \rightarrow f_{A} \neq 0$
- [Alexandru \& Horváth, PRD100 (2019)]: $\rho(\lambda) \rightarrow \infty$ as $\lambda \rightarrow 0$
- [Alexandru \& Horváth, PRL127 (2021)]: eigenvectors are fractals

The two uses of imaginary μ simulations

Analytical continuation on $N_{t}=12$ raw data

- Numerical differentiation at $\mu=0$: relaitvely safe
- Extrapolation: relatively risky

Estimating the severity of the sign problem

W-B: PRD 105 (2022) 5, L051506

- Statistics required $\propto 1 /\left(\right.$ strength of the sign problem) ${ }^{2}$
- Gaussian model describes simulation data pretty well
- Const. strength of the sign problem for \approx const. $(L T)^{3}\left(\frac{\mu_{B}}{T}\right)^{2}$
- For $L T=16 / 6 \approx 2.7(T=140 \mathrm{MeV} \rightarrow L \approx 4 \mathrm{fm})$ the sign problem is managable for the entire RHIC BES range

Does the rescaling work at real non-zero μ_{B} ?

Yes, up to some point at least: PRD 105 (2022) 5, L051506 ($N_{\tau}=6$)

Rescaling also works at real $\mu_{B} \rightarrow$ no sign of a strengthening crossover

