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Probe theories that are inaccessible through 

Simulations of the Standard Model

Quantum computers have a fundamentally different computational strategy and will 
provide novel probes of fundamental questions in particle and nuclear physics 

• The last decade has seen the rapid evolution of real-world quantum computers, with 
increasing size and decreasing noise  

• It is imperative to begin exploratory studies of the applicability of this emerging technology

Many interesting properties of strongly-coupled theories, including real-time 
dynamics, seem incredibly challenging to study on classical machines

Studying the properties of strongly coupled theories from first principles is necessary 
to fully understand the Standard Model  

• Classical lattice computations have made incredible advancements in our understanding of 
the non-perturbative properties of Quantum Chromodynamics  
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Probe theories that are inaccessible through 

Goals of This Talk

I had two main goals in preparing this talk  

1) Provide a general introduction to some of the challenges and hurdles that we must 
overcome before we can implement 3+1 dimensional QCD onto a quantum computer 

2) Inspire those who are not working on Hamiltonian lattice methods to attend the many great 
talks occurring in the parallel sessions

Main Take Away Message 
 We are a young vibrant field with many interesting theoretical and algorithmic challenges ahead!  
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What is Quantum Simulation?

Initial State 
Preparation

Unitary Time 
Evolution

Digital 

“Re-write” theory into quantum circuit formulation 
that runs in reasonable amount of time

Analog 

Construct quantum system that is “close” to 
target theory and let the system evolve in time

Working Definition: Protocol to manipulate quantum degrees of freedom plus an 
experimental platform that utilizes collective properties for calculation

Measurement

Post-ProcessingRepeat

Two Different Approaches
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Digital Quantum Computers
Computational Strategy: Quantum circuit is created by acting on collection of 
qubits with gates 

• Any two-state system can be used as a qubit (in theory) 

• Gates are unitary operations that usually act on one or two qubits 

• Discrete time evolution 

Currently in Noisy Intermediate-Scale Quantum (NISQ)-era 

• Machines contain  noisy qubits without error corrections 

• Sensitive to various sources of noise, including decoherence and dephasing

𝒪(100)

•Superconducting 
loops

• Trapped 
ions

• Diamond 
vacancies

Graphics by C. Bickle, Science Data by Gabriel Popkin
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Real-World Digital Computing Hardware
Many “commercial” computers are networking together ever-growing number of qubits

IBM Quantum Roadmap, 2020 
Superconducting Qubits IonQ Roadmap, 2020 

Trapped Ion

*  16:1 error-correction encoding  32:1 error-correction encoding

2021 2023 2025 2027 2028

22 25 29 35 64*
256*

384

1024
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its

20212019 2023 Beyond

Qubits

27 65 127 433 1121 Path to 
million and 

beyond

Year

Copy over from previous slide - rephrase

Gate noise is currently at the 10-3 level, with ideas for how to decrease it further
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Analog Quantum Computers
Computational Strategy: “Tweak” the natural degrees of freedom of your experiment to mimic 
a target model 

Example: A simple toy model 
• Naturally implemented in quantum simulator  

• Shows some version of an interesting phenomenon  

Observation: Gauge theories emerge from simple condensed matter systems once local 
constraints are imposed

1+1 Ising mode 
Trapped Ions, Rydberg atoms, etc 
Confinement
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Computational Strategy: “Tweak” the natural degrees of freedom of your experiment to mimic 
a target model 

Example: A simple toy model 
• Naturally implemented in quantum simulator  

• Shows some version of an interesting phenomenon  

Observation: Gauge theories emerge from simple condensed matter systems once local 
constraints are imposed

1+1 Ising mode 
Trapped Ions, Rydberg atoms, etc 
Confinement

“Non-Universal”

See parallel talk about scalar QED in Rydberg atoms!
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Hamiltonian Lattice Gauge Theory, Abelian 
Quantum simulations utilize Hamiltonian formulations 

•  Continuous time, but discrete space 

•  Use Weyl Gauge ( ) 

•  Commutation relations inform how operators map onto qubits

A0 = 0

H =
1

2a
g2 ∑

ℓ∈ links

EℓEℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Phys Rev D 11, 395 (1975)

Kogut-Susskind Hamiltonian

[ ̂Eℓ, Ûℓ′ ] = Ûℓδℓℓ′ 
̂E = ∑

ϵ

ϵ |ϵ⟩⟨ϵ | Û = ∑
ϵ

|ϵ + 1⟩⟨ϵ |

Operators defined in the electric basis

Ûℓ

̂Eℓ′ 

̂Pp
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Is this the end of the story?
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Theoretical Challenges of Lattice Gauge Theories
Three fundamental hurdles have to be overcome on the quest for quantum 

simulation of Hamiltonian lattice field theories

C) Gauss Law is not automatically satisfied
Q= 0Q= 2

Q= 3

Q= 1

B) Phenomenologically-relevant 
gauge groups are continuous

A) Infinite-dimensional Hamiltonian 
must be truncated

Construct finite-dimensional Hermitian matrix 
that faithfully captures desired physics

Construct “sampling” method to capture gauge 
phenomena with finite number of samples

Gauss's law is the constraint associated with the  Lagrange multiplier 

Naive Hilbert space is tensor product of different charge sectors

A0



D.M. Grabowska Quantum Simulations of Lattice Field Theories Lattice 2023 9

Probe theories that are inaccessible through 

Theoretical Challenges of Lattice Gauge Theories
Three fundamental hurdles have to be overcome on the quest for quantum 

simulation of Hamiltonian lattice field theories

C) Gauss Law is not automatically satisfied
Q= 0Q= 2

Q= 3

Q= 1

B) Phenomenologically-relevant 
gauge groups are continuous

A) Infinite-dimensional Hamiltonian 
must be truncated

Construct finite-dimensional Hermitian matrix 
that faithfully captures desired physics

Construct “sampling” method to capture gauge 
phenomena with finite number of samples

Gauss's law is the constraint associated with the  Lagrange multiplier 

Naive Hilbert space is tensor product of different charge sectors

A0



D.M. Grabowska Quantum Simulations of Lattice Field Theories Lattice 2023

• Theory now contains both left and right electric operators 

• Rotations of gauge link from left and right are generated by 
left and right electric fields

General Idea: Similar to Abelian, but electric and gauge link operators carry color indices 

10

Probe theories that are inaccessible through 

Hamiltonian Lattice Gauge Theory, SU(N) Version 

H =
1

2a
g2 ∑

ℓ∈ links

Ea
ℓEa

ℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Ûℓ

n n + ̂ei

̂ER̂EL

|ψ ⟩ [ ̂Ea
L, Ûj

mn] = Tja
mm′ 

Ûj
m′ n

[ ̂Ea
R, Ûj

mn] = Ûj
mn′ 

Tja
n′ n

[ ̂Ea
L, ̂Eb

L] = − if abc ̂Ec
L

[ ̂Ea
R, ̂Eb

R] = if abc ̂Ec
R

[ ̂Ea
L, ̂Eb

R] = 0

• Each electric field has their own Lie algebra 
and commutation relations

I can add something here

Û(n, ei) ⟼ Ω(n) Û(n, ei) Ω(n + ei)†
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Gauge Fixing and Gauss Law

Key Issue: Weyl gauge is an incomplete gauge-fixing procedure. Gauge transformations 
with only spatial dependence still allowed and Gauss law becomes a constraint

SU(N) Gauss Law: 

• No transitions between different charge sectors for 
noiseless simulations 

• “Energy penalty” term can be added to Hamiltonian 
for noisy simulations

D ⋅ Ea = 0 Ĝa(n) =
d

∑
i=1

[ ̂Ea
R(n − ei, ei) − ̂Ea

L(n, ei)]
Continuum Lattice

Fact: Hamiltonian does commute with Gauss law operators and so charge is conserved

Option One: No Additional Gauge Fixing Option Two: Additional Gauge Fixing

• Fully gauge-fixed Hamiltonian spans only one 
charge sector 

• Expect increase in non-locality due to imposition of 
Gauss law constraints

Halimeh, J.C. and Hauke, P. Phys. Rev. Lett. 125, 030503 (2020)
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Coupling Strength and Basis Choices

H =
1

2a
g2 ∑

ℓ∈ links

Ea
ℓEa

ℓ +
1
g2 ∑

p∈ plaquettes

Tr (2I − Pp − P†
p)

Strong Coupling (Irrep Basis) 

Electric component of Hamiltonian dominates 

Basis: | j, mL, mR⟩

Starting Point: Theory has fundamentally different properties at large and small (bare) gauge coupling

Weak Coupling (Group Element Basis) 

Magnetic component of Hamiltonian dominates 

Basis: |𝔤⟩

• States naturally discretized  
• Gauss’s law is function of electric fields 
• Natural UV truncation  

• Electric fields are more complicated 
• Digitization/truncation of gauge links must 

be done carefully 

• Gauge links diagonal 
• Well-suited for “close to continuum” physics

• Not well-suited for “close to continuum” physics

GOOD

BAD
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Examples of Abelian & Non-Abelian Formulations + Basis

Kogut-Susskind formulation 
– Irrep/”angular momentum” basis Byrnes, Yamamoto, 
Zohar, Burrello, et al.  
– Group-element basis Zohar, NuQS collab., et al.  

Gauge magnets/quantum link models: Wiese, 
Chandrasekharan, et al. 
 
Tensor lattice field theory: Meurice, Sakai, Unmuth-
Yockey, et al. 
 
Dual/rotor formulations: Kaplan, Stryker, Haase, 
Dellantonio, et al., Bauer, DMG Kane 
 
Casimir variables / “local-multiplet basis”: Klco, 
Savage, Stryker, Ciavarella

Purely fermionic formulations (1+1D & OBC): 
Muschik, Atas, Zhang, IQuS@UW group, Powell, et al. 

Prepotential/Schwinger boson formulations: Mathur, 
Anishetty, Raychowdhury, et al.  

Loop-string-hadron formulation: Raychowdhury, 
Stryker, Davoudi, Shaw, Dasgupta, Kadam 
 
Light-front formulation: Kreshchuk, Kirby, Love, Yao, 
et al.  

Qubit models: Chandrasekharan, Singh, et al.  

q-deformed Kogut-Susskind: Zache, González-
Cuadra, Zoller

Stryker, https://indico.ph.tum.de/event/7112/contributions/6917/
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Stryker, https://indico.ph.tum.de/event/7112/contributions/6917/

Parallel Talk
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Mixed-Basis Approach to Digitizing Group Element Basis
General Idea: Gauge fixing allows us to do “importance sampling” on gauge variables 

Step One: Gauge fix using maximal-tree gauge 
fixing procedure 

• Use residual gauge transformations to set each link 
on the maximal tree to the identity 

• Must pay careful attention to commutation rules

HB =
1

2g2a ∑
p

Tr I − ∏
κ∈p

X̂(κ)σ(κ) + h . c .

HE =
g2

2a ∑
ℓ

∑
κ ∈ t+(ℓ)

ℰ̂a
Lκ − ∑

κ ∈ t−(ℓ)

ℰ̂a
Rκ

2

[ℰ̂a
L(κ), X̂(κ′ )] = TaX̂(κ)δκ,κ′ 

[ℰ̂a
R(κ), X̂(κ′ )] = X̂(κ)Taδκ,κ′ 

[ℰ̂a
L(κ), X̂(κ′ )] = TaX̂(κ)δκ,κ′ 

[ℰ̂a
R(κ), X̂(κ′ )] = X̂(κ)Taδκ,κ′ 

Bauer, D’Andrea, Freytsis and DMG, arXiv: 2307.11829 

κ
P(κ)

n n + ex

Case 4

Case 1

Case 3Case 2
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Step Two: Utilize axis-angle coordinates to parameterize gauge links and electric links of SU(2) 

• Each gauge link is given by 

• Electric operators are differential operators  

• Axis-angle coordinates are also hyperspherical coordinates of the double cover of S3

15

General Idea: Gauge fixing allows us to do “importance sampling” on gauge variables 

U =
cos ω

2 − i sin ω
2 cos θ −i sin ω

2 sin θe−iϕ

−i sin ω
2 sin θeiϕ cos ω

2 + i sin ω
2 cos θ

Ez
R = i (cos θ

∂
∂ω

− i cot
ω
2

sin θ
∂
∂θ

−
1
2

∂
∂ϕ )

Mixed-Basis Approach to Digitizing Group Element Basis

Bauer, D’Andrea, Freytsis and DMG, arXiv: 2307.11829 
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θ

ϕ

I

(ω, θ, ϕ)

ω = π

−I

ω = π

θ′ 

ϕ′ 

(ω′ , θ′ , ϕ′ )

Mixed-Basis Approach to Digitizing Group Element Basis

Bauer, D’Andrea, Freytsis and DMG, arXiv: 2307.11829 
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Step Three: Digitize in  

• Variable  acts like a radial coordinate and can be 
easily digitized using previously developed methods 

• Variables  are angular coordinates and can 
be digitized via truncations on spherical harmonics 

• Utilize Discrete fourier transformation to move 
between electric and magnetic basis  

Example: One plaquette, open boundary conditions

(ωi, θi, ϕi) → (ωi, Li, mi)
ωi

(θi, ϕi)

16

Probe theories that are inaccessible through 

Mixed-Basis Approach to Digitizing Group Element Basis
General Idea: Gauge fixing allows us to do “importance sampling” on gauge variables 

H[1] =
2g2

a
L̂2

4 sin2 ω
2

−
∂2

∂2ω
− cot

ω
2

∂
∂ω

+
2

g2a (1 − cos
ω
2 )
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Tasting Platter of QC and QI Ideas and Talks

Initial State Preparation 

How do you initialize a simulation when you do 
not know the eigenstates of the target theory 

We are in an incredibly vibrant and exciting time for this field - new ideas abound!

Scale Setting, Improvement Hamiltonians 
and Renormalization 

How do you extract physically meaningful 
information from lattice Hamiltonian 

simulations?

Finite-Temperature Simulations  

How do you simulate finite-temperature 
systems (mixed states) on a computer that 

does only pure states?

Alternative Computational Approaches 

 What are alternatives to the quantum circuit qubit 
approach for digital quantum computers?

Variational Quantum Methods 

Can we use variational approaches to 
learn about QFTs on NISQ-era hardware?

Error Mitigation and Error Correction 

How can we mitigate and correct quantum error and noise 
on the path towards fault-tolerant quantum computers?
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All of these ideas 
will be discussed in 

parallel talks!



D.M. Grabowska Quantum Simulations of Lattice Field Theories Lattice 2023

Conclusions

18

Quantum computers have a fundamentally different computational strategy and will 
provide novel probes of fundamental questions in particle and nuclear physics 

We are well on our way to overcoming the many theoretical challenges and hurdles for 
implementing 3+1 dimensional QCD onto a quantum computer 

• Truncate infinite dimension Hamiltonian 

• Carefully sample continuous gauge groups 

• Ensure charge is appropriately conserved during simulation 

There is much exciting work that I could not discuss here but am excited to hear about in 
the parallel sessions!

Q= 0Q= 2

Q= 3

Q= 1


