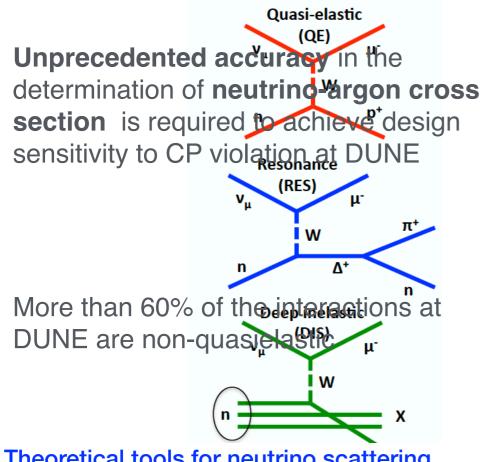
Fermilab C ENERGY Office of Science

Theory needs of neutrino experiments

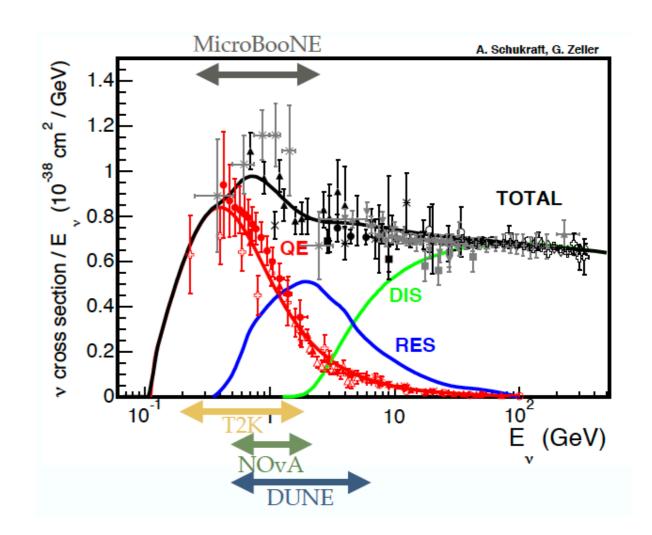
Noemi Rocco

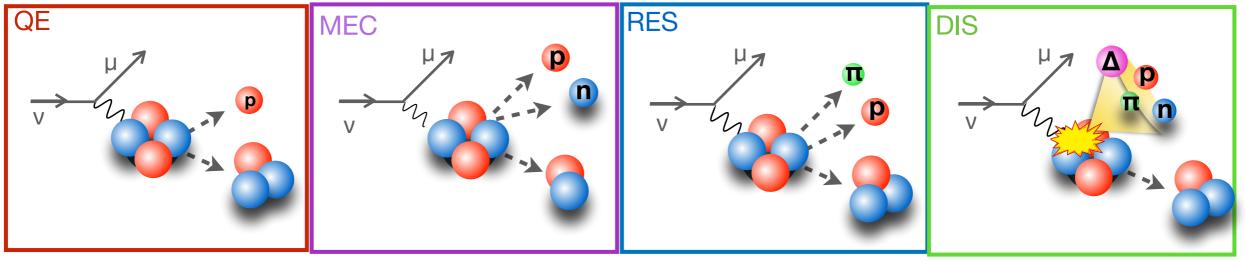
Lattice 2023 Fermilab – July 31- August 4, 2023

Inputs for the nuclear model

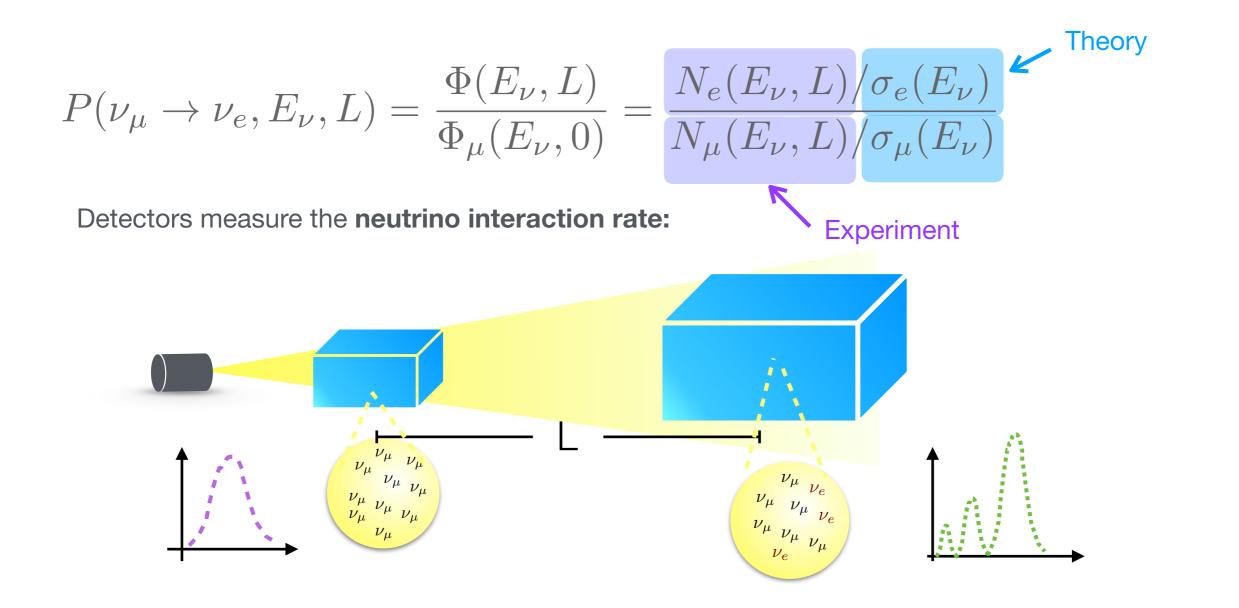


Theoretical tools for neutrino scattering, Contribution to: 2022 Snowmass Summer Study





Why do we need more precision?



A precise determination of $\sigma(E)$ is crucial to extract v oscillation parameters. Nuclear effects at near and far detector **do not** cancel

Neutrino-nucleus cross section systematics

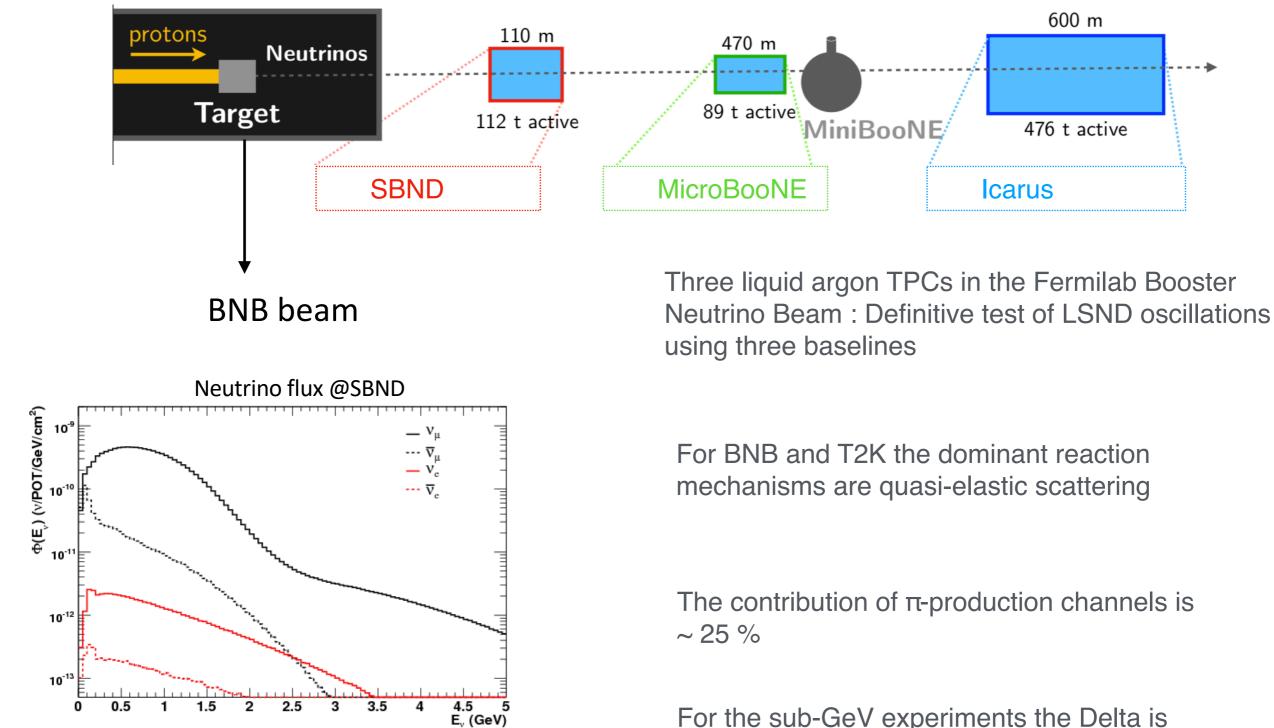
Current oscillation experiments report **large systematic uncertainties** associated with neutrinonucleus interaction models.

Error source	Ve FHC	V e RHC	v_e / v̄_e FHC/RHC	e Lepton Reconstruction
Flux and (ND unconstrained)	15.1	12.2	1.2	H(Neutron Uncertainty Detector Besponse
cross section (ND constrained)	3.2	3.1	2.7	Detector Response
SK detector	2.8	3.8	1.5	
SK FSI + SI + PN	3.0	2.3	1.6	Beam Flux
Nucleon removal energy	7.1	3.7	3.6	Detector Calibration
$\sigma(u_e)/\sigma(ar{ u}_e)$	2.6	1.5	3.0	
NC1γ	1.1	2.6	1.5	Neutrino Cross Sections
NC other	0.2	0.3	0.2	Near-Far Uncor.
$\sin^2 \theta_{23}$ and Δm_{21}^2	0.5	0.3	2.0	
$\sin^2 \theta_{13}$ PDG2018	2.6	2.4	1.1	Systematic Uncertainty
All systematics	8.8	7.1	6.0	-20 -10 0 10 20 Total Prediction Uncertainty (%)

T2K Collaboration, Phys. Rev. D 103, 112008 (2021)

T2K, Phys. Rev. D 103, 112008 (2021)

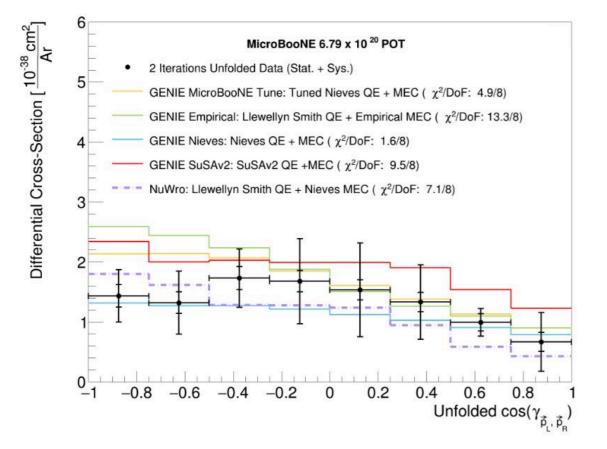
Short Baseline Neutrino program

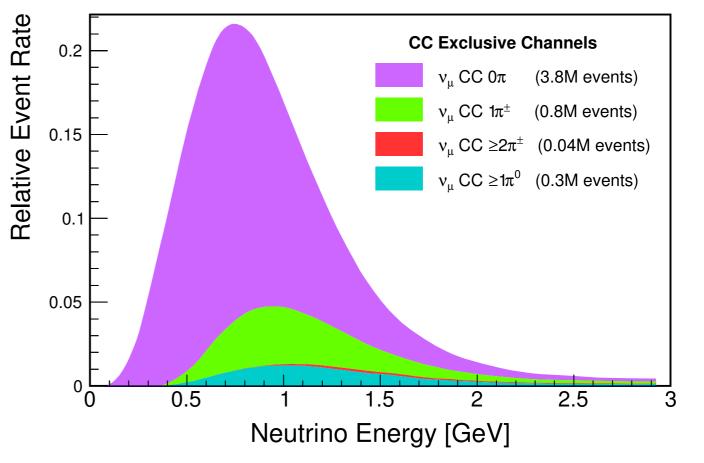


For the sub-GeV experiments the Delta is the only relevant resonance

Short Baseline Neutrino program

SBND will provide the world's highest statistics cross section measurements in LAr: 2 million events for v_{μ} per year for the next 3 years





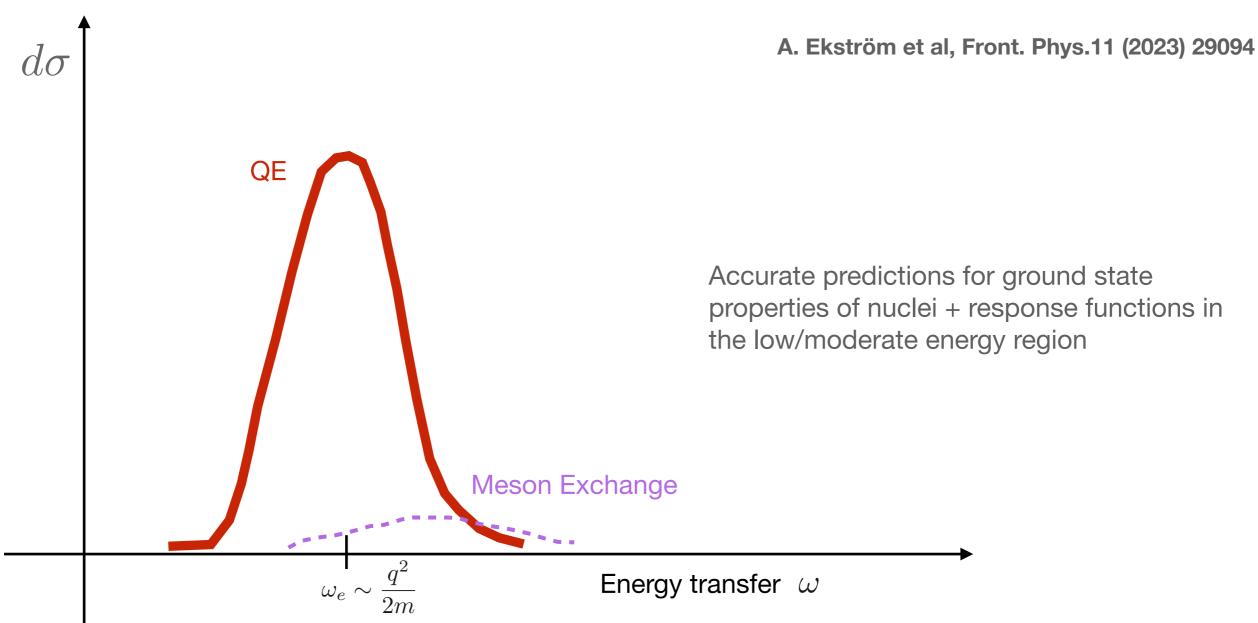
A. Papadopoulou W&C seminar June 2023

MicroBooNE provided first two-proton knockout single-differential cross section on argon 2211.03734

Ab initio Methods

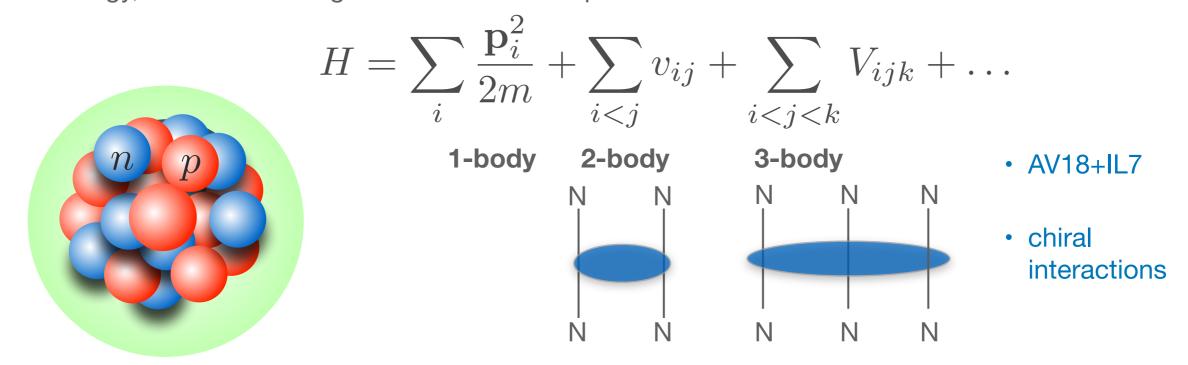
Ab-initio methods (CC, IMSRG, SCGF, QMC, etc) are systematically improvable many-body approaches.

Fermilab



Hamiltonian and Currents

At low energy, the effective degrees of freedom are pions and nucleons:



The electromagnetic current is constrained by the Hamiltonian through the continuity equation

$$\boldsymbol{\nabla} \cdot \mathbf{J}_{\mathrm{EM}} + i[H, J_{\mathrm{EM}}^0] = 0 \qquad \qquad [v_{ij}, j_i^0] \neq 0$$

 \cap -

The above equation implies that the current operator includes one and two-body contributions

Chiral effective field theory

Chiral Hamiltonians exploits the (approximate) broken chiral symmetry of QCD

Identify the soft and hard scale of the problem

 $\mathcal{L}^{(n)} \sim \left(\frac{q}{\Lambda_b}\right)^n ~~\text{100 MeV soft scale}$ ~ 1 GeV hard scale

Design an organizational scheme that can distinguish between more and less important terms:

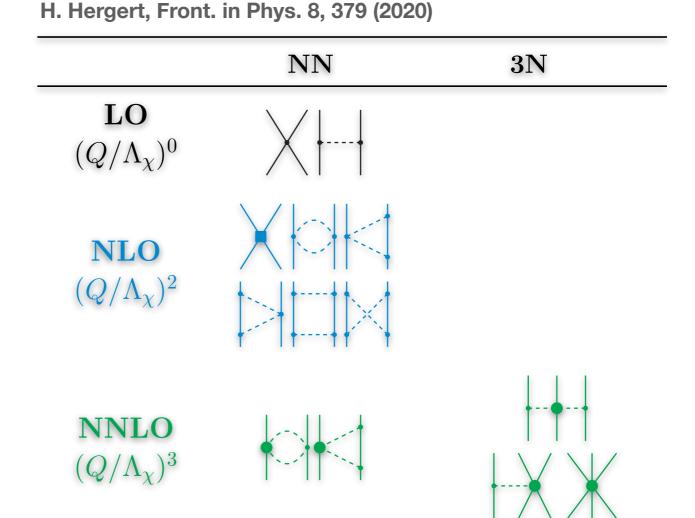
$$\mathcal{L}_{\rm eff} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)}$$

Contact interactions lead to LEC:

Short range two-nucleon interaction fit to deuteron and NN scattering

Three nucleon interactions fitted on light nuclei

Long-range LEC are determined from π-nucleon scattering



🚰 Fermilab

Formulate statistical models for uncertainties: Bayesian estimates of EFT errors

S. Wesolowski, et al, PRC 104, 064001 (2021)

Noemi Rocco, nrocco@fnal.gov

Green's Function Monte Carlo

Any trial wave function can be expanded in the complete set of eigenstates of the the Hamiltonian according to

$$|\Psi_V\rangle = \sum_n c_n |\Psi_n\rangle \qquad \qquad H|\Psi_n\rangle = E_n |\Psi_n\rangle$$

GFMC uses a projection technique to **enhance the true ground-state component** of a starting wave function.

$$\lim_{\tau \to \infty} e^{-(H-E_0)\tau} |\Psi_T\rangle = \lim_{\tau \to \infty} \sum_n c_n e^{-(E_n - E_0)\tau} |\Psi_n\rangle = c_0 |\Psi_0\rangle$$

The direct calculation of the imaginary-time propagator for strongly-interacting systems involves prohibitive difficulties

J. Carlson , et al. Rev. Mod. Phys. 87 (2015) 1067

Fermilab

The imaginary-time evolution is broken into N small imaginary-time steps, and complete sets of states are inserted

$$e^{-(H-E_0)\tau}|\Psi_V\rangle = \int dR_1 \dots dR_N |R_N\rangle \langle R_N | e^{-(H-E_0)\Delta\tau} |R_{N-1}\rangle \dots \langle R_2 | e^{-(H-E_0)\Delta\tau} |R_1\rangle \Psi_V(R_1)$$

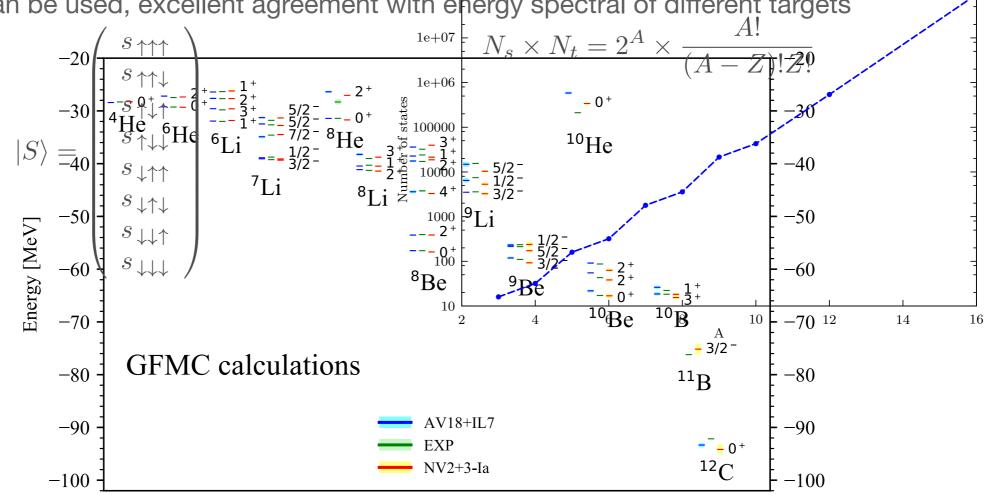
Short Time Propagator

Solve the Many Body Nuclear problem

A sum over all the many-body spin-isospin states is performed

$$\sum_{SS'} \langle S' | e^{-[V - E_0]\delta\tau} | S \rangle \simeq \sum_{SS'} \langle S' | \prod_{i < j} e^{-V_{ij}\delta\tau} | S \rangle e^{E_0\delta\tau}$$

GFMC is extremely accurate but limited to A < 13 nuclei. Semi-phenomenological, or chiral potentials can be used, excellent agreement with energy spectral of different targets $\sqrt{2}$



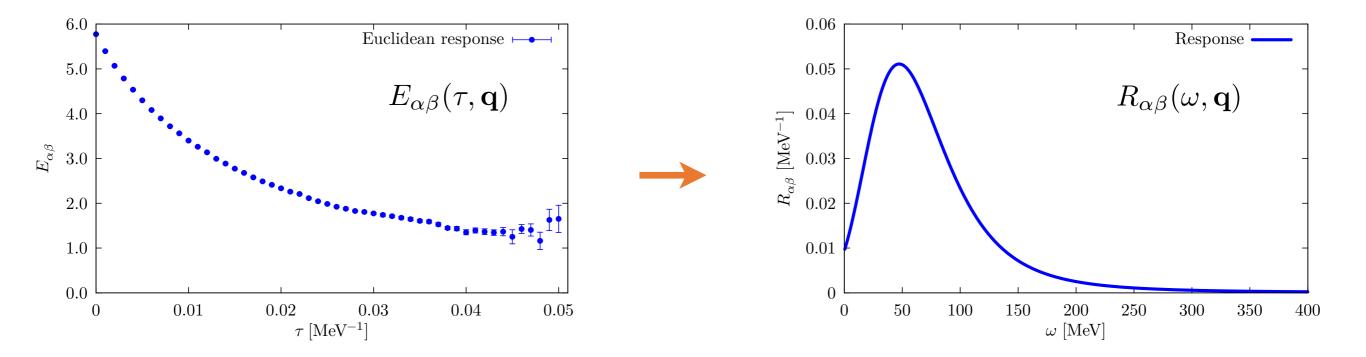
M. Piarulli, et al. Phys.Rev.Lett. 120 (2018) 5, 052503

Green's Function Monte Carlo

Nuclear response function involves evaluating a number of transition amplitudes. Valuable information can be obtained from the **integral transform of the response function**

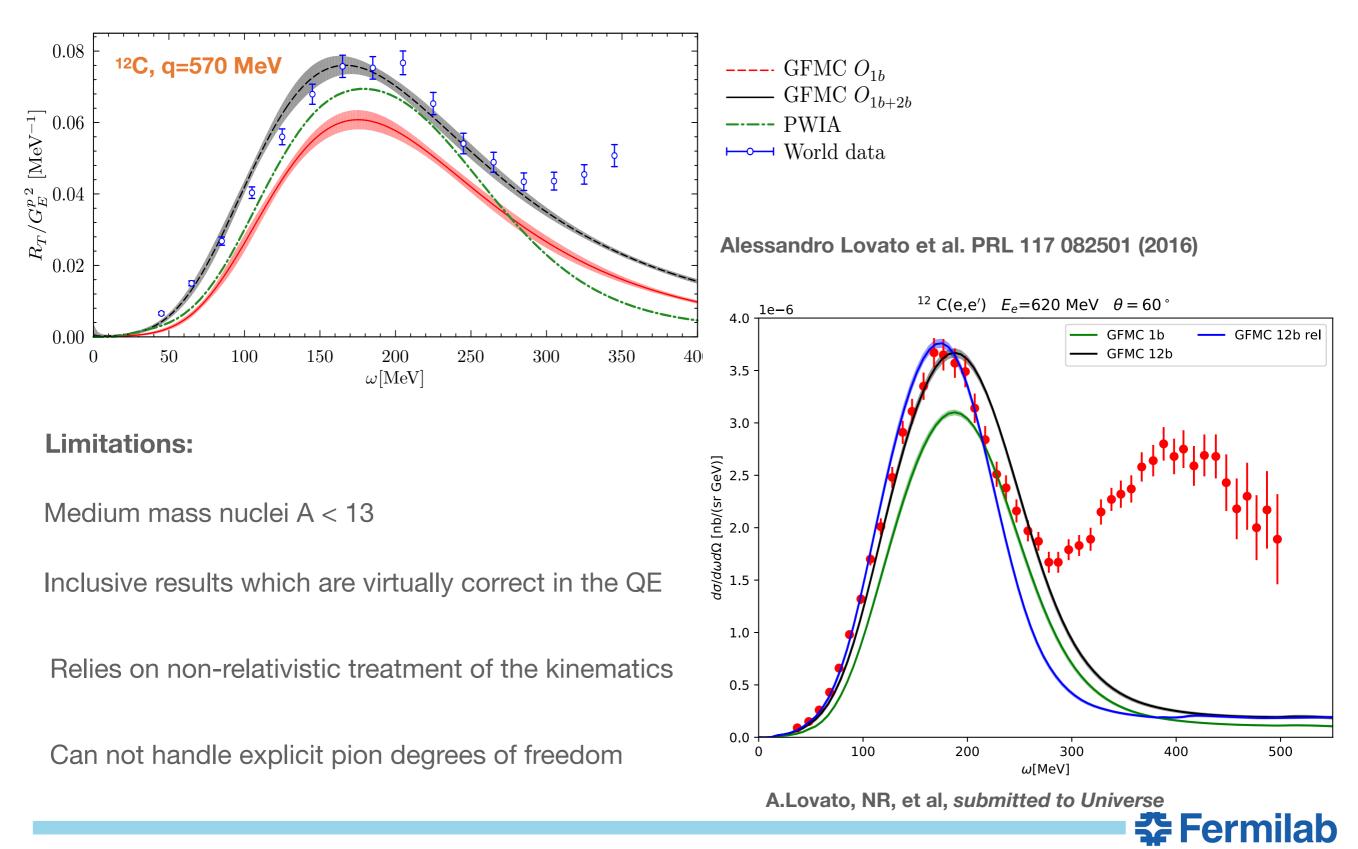
$$E_{\alpha\beta}(\sigma,\mathbf{q}) = \int d\omega K(\sigma,\omega) R_{\alpha\beta}(\omega,\mathbf{q}) = \langle \psi_0 | J_{\alpha}^{\dagger}(\mathbf{q}) K(\sigma,H-E_0) J_{\beta}(\mathbf{q}) | \psi_0 \rangle$$

Inverting the integral transform is a complicated problem



Same problem applies to different realm physics for example lattice QCD

Cross sections: Green's Function Monte Carlo



Axial form factor determination

• The axial form-factor has been fit to the dipole form

$$F_A(q^2) = \frac{g_A}{(1 - q^2/m_A^2)^2}$$

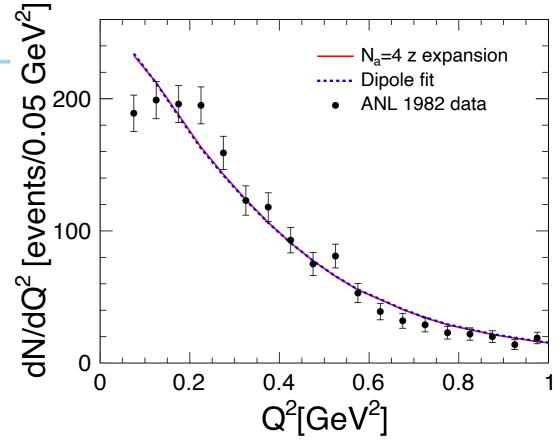
- The intercept g_A =-1.2723 is known from neutron β decay
- Different values of m_A from experiments
 - $m_A = 1.02 \text{ GeV} q.e.$ scattering from deuterium
 - m_A=1.35 GeV @ MiniBooNE
- Alternative derivation based on z-expansion —model independent parametrization

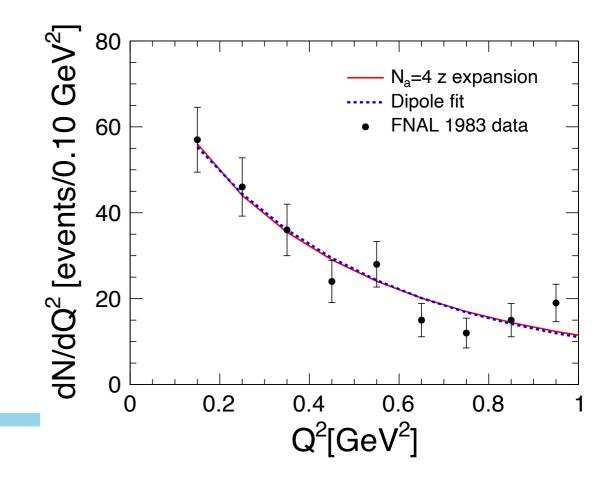
$$F_A(q^2) = \sum_{k=0}^{k_{\text{max}}} a_k z(q^2)_{\boldsymbol{k}}^k, \quad \text{known functions}$$

free parameters

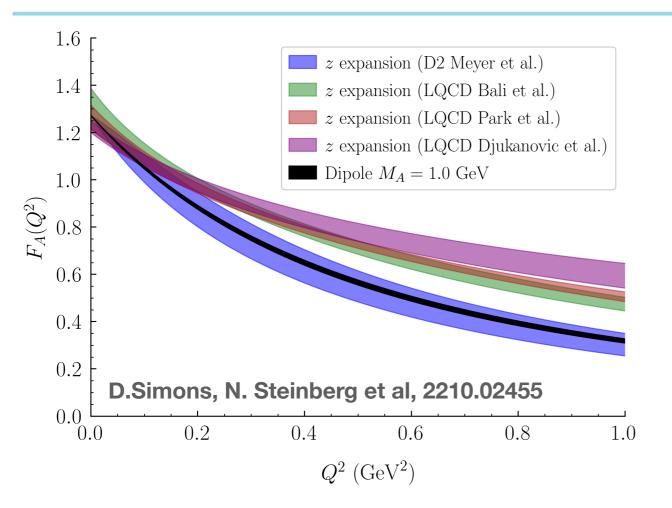
Bhattacharya, Hill, and Paz PRD 84 (2011) 073006

A.S.Meyer et al, Phys.Rev.D 93 (2016) 11, 113015





Axial form factor determination



Comparison with recent MINERvA antineutrino-hydrogen charged-current measurements

1-2σ agreement with MINERvA data and LQCD prediction by PNDME Collaboration

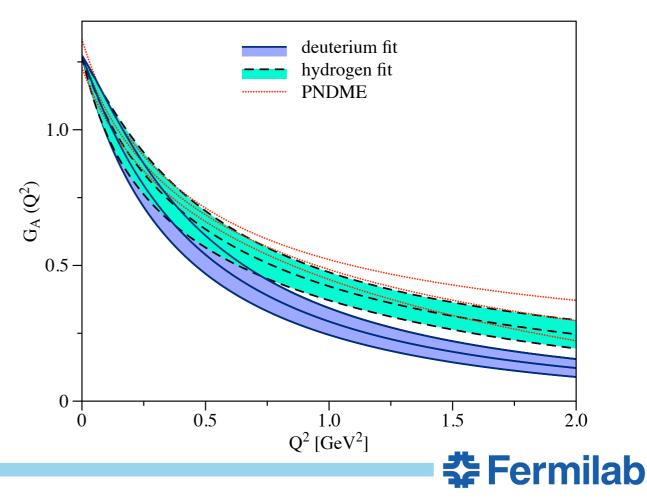
Novel methods are needed to remove excitedstate contributions and discretization errors A. Meyer, A. Walker-Loud, C. Wilkinson, 2201.01839

D2 Meyer et al: fits to neutrino-deuteron scattering data

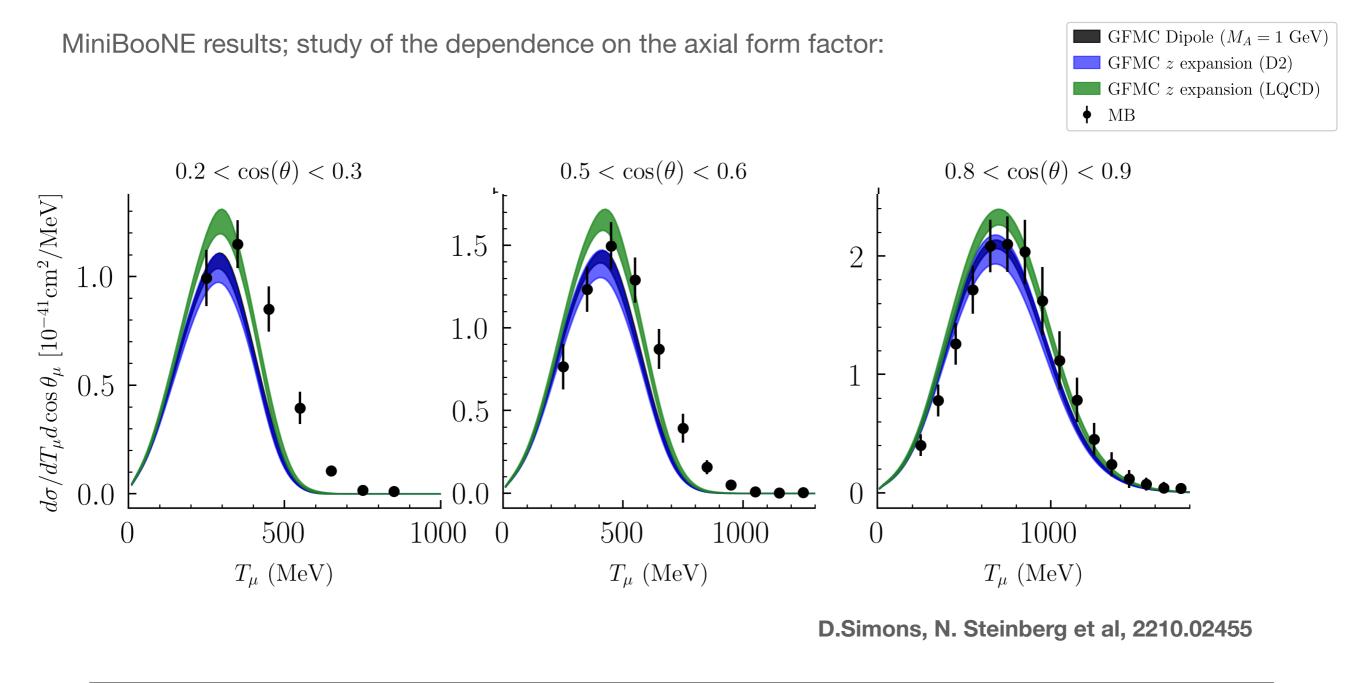
LQCD result: general agreement between the different calculations

LQCD results are 2-3 σ larger than D2 Meyer ones for Q² > 0.3 GeV²

O. Tomalak, R. Gupta, T. Battacharaya, 2307.14920

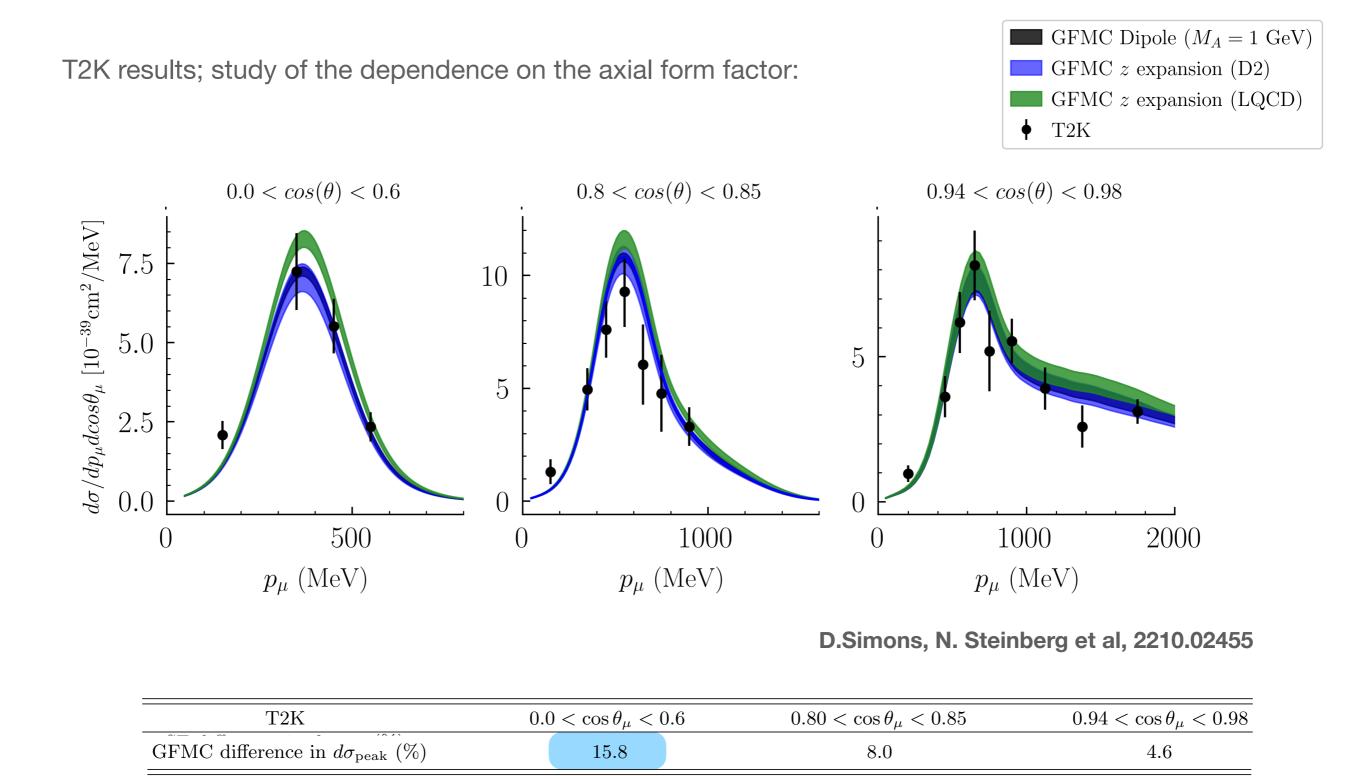


Study of model dependence in neutrino predictions



MiniBooNE	$0.2 < \cos \theta_{\mu} < 0.3$	$0.5 < \cos \theta_{\mu} < 0.6$	$0.8 < \cos \theta_{\mu} < 0.9$
GFMC Difference in $d\sigma_{\text{peak}}$ (%)	18.6	17.1	12.2

Study of model dependence in neutrino predictions



Fermilab

Coupled Cluster Method

Reference state Hartree Fock: $|\Psi|$

 $|\Psi
angle$

Include correlations through e^T operator

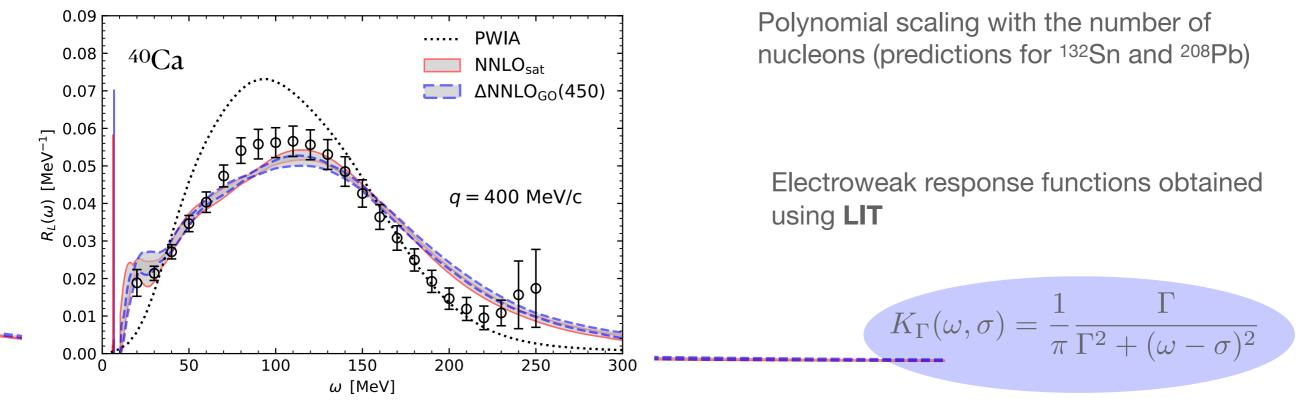
Fermilab

Similarity transformed Hamiltonian

$$e^{-T}He^{T}|\Psi\rangle = \bar{H}|\Psi\rangle = E|\Psi\rangle$$

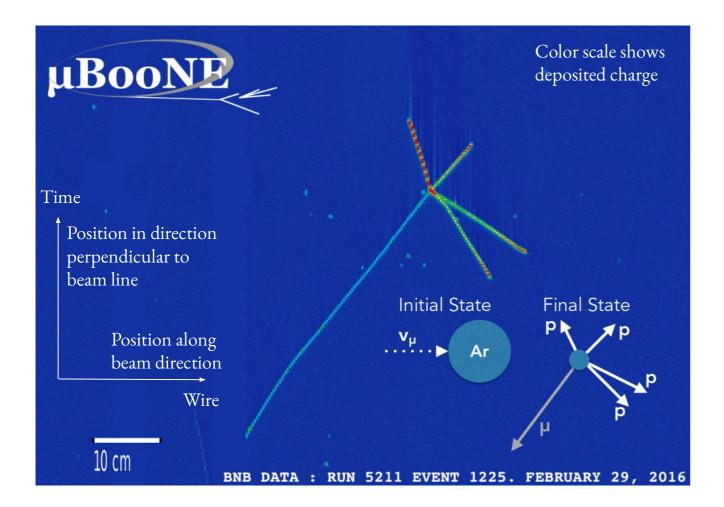
Expansion in second quantization single + doubles:

 $T = \sum t_a^i a_a^\dagger a_i + \sum t_{ab}^{ij} a_a^\dagger a_b^\dagger a_i a_j + \dots$



JES, B. Acharya, S. Bacca, G. Hagen; PRL 127 (2021) 7, 072501

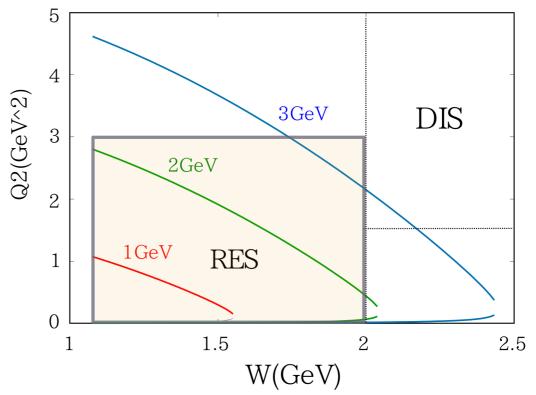
Address new experimental capabilities



A. Papadopoulou W&C seminar June 2023

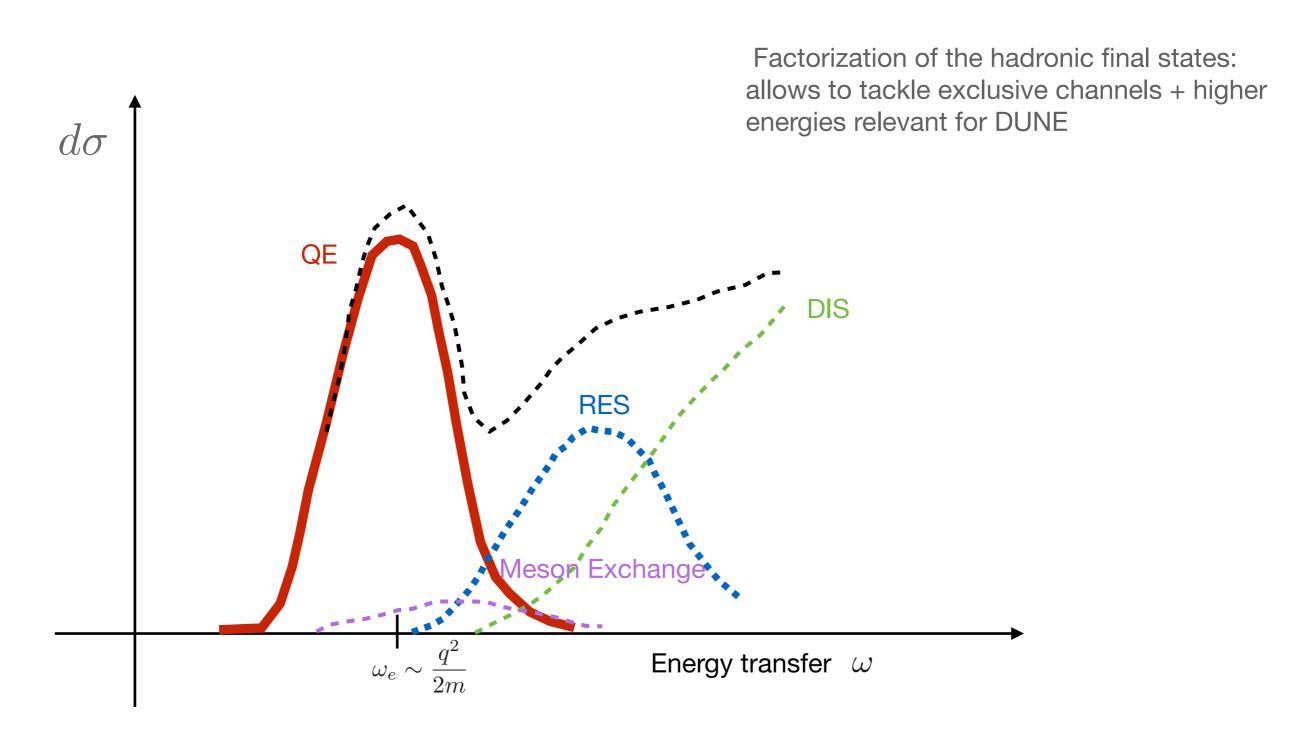
- Excellent spatial resolution
- Precise calorimetric information
- Powerful particle identification

T.Sato talks @ NuSTEC Workshop on Neutrino-Nucleus Pion Production in the Resonance Region



$$W = \sqrt{(p+q)^2}, Q^2 = -q^2 = -(p_{\nu} - p_l)^2$$

Factorization Based Approaches



Short-Time Approximation

Response functions are given by the **scattering from pairs of fully interacting nucleons** that **propagate** into a **correlated pair** of nucleons

The sum over all final states is replaced by a two nucleon propagator

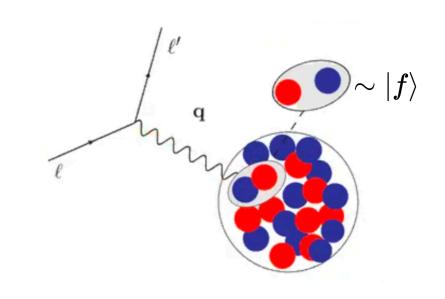
$$R_lpha(q,\omega) = \int_{-\infty}^\infty rac{dt}{2\pi} e^{i(\omega+E_i)t} ig\langle \Psi_i ig| O^\dagger_lpha({f q}) e^{-iHt} O_lpha({f q}) ig| \Psi_i ig
angle$$

Provides "more" exclusive information in terms of nucleon-pair kinematics via the Response Densities as functions of (E,e)

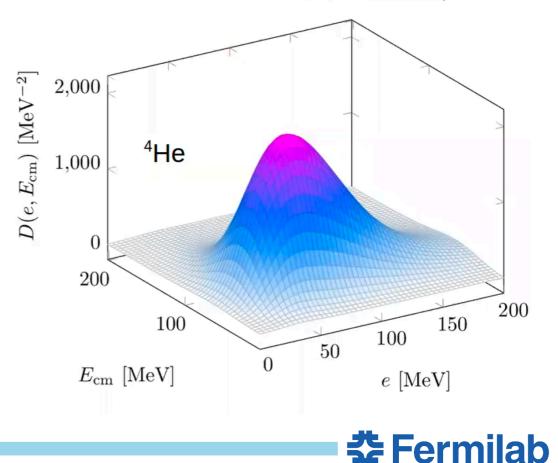
$$R^{ ext{STA}}(q,\omega) \sim \int \delta(\omega+E_0-E_f) de \; dE_{cm} \mathcal{D}(e,E_{cm};q)$$

Pastore et al. PRC101(2020)044612

L. Andreoli, NR, et al. PRC 105, 014002 (2022)



Transverse Density q = 500 MeV/c



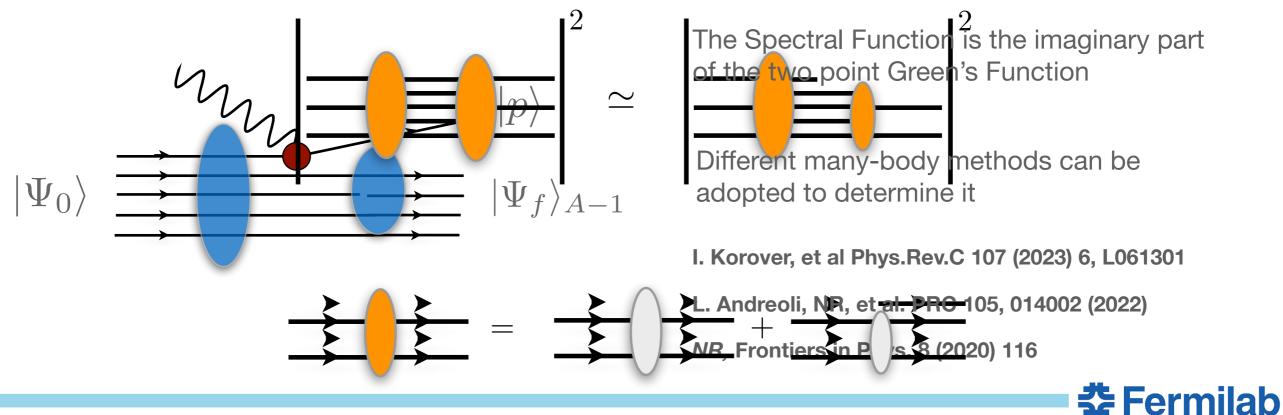
Spectral function approach

At large momentum transfer, the scattering reduces to the sum of individual terms

$$J_{\alpha} = \sum_{i} j_{\alpha}^{i} \qquad |\Psi_{f}\rangle \to |p\rangle \otimes |\Psi_{f}\rangle_{A-1}$$
$$J^{\mu} \to \sum_{i} j_{i}^{\mu} \qquad |\psi_{f}^{A}\rangle \to |p\rangle \otimes |\psi_{f}^{A-1}\rangle \qquad E_{f} = E_{f}^{A-1} + e(\mathbf{p})$$

The incoherenticontribution of the one-body response reads

$$R_{\alpha\beta} \simeq \int \frac{d^3k}{(2\pi)^3} dEP_h(\mathbf{k}, E) \sum_i \langle k | j_{\alpha}^{i^{\dagger}} | k + q \rangle \langle k + q | j_{\beta}^i | k \rangle \delta(\omega + E - e(\mathbf{k} + \mathbf{q}))$$



Spectral function approach

The hadronic tensor for two-body current factorizes as

$$R_{2b}^{\mu\nu}(\mathbf{q},\omega) \propto \int dE d^3k d^3k' P_{2b}(\mathbf{k},\mathbf{k}',E)$$
$$\times d^3p d^3p' |\langle kk' | j_{2b}^{\mu} | pp' \rangle|^2$$

$$|f\rangle \to |p_{\pi}p\rangle \otimes |f_{A-1}\rangle \to =$$

11

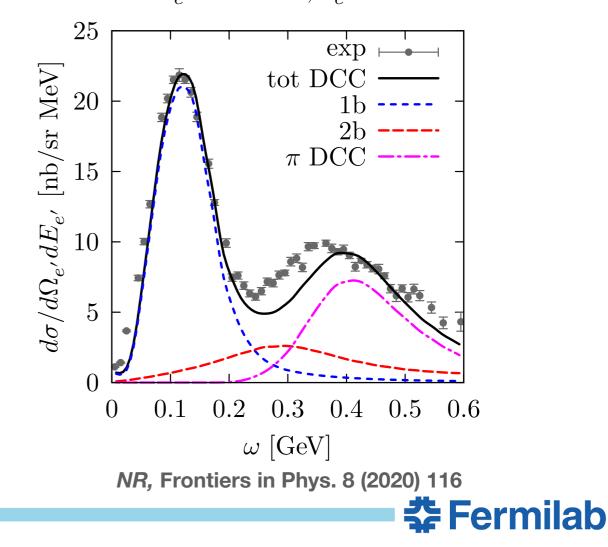
.

Production of real π in the final state

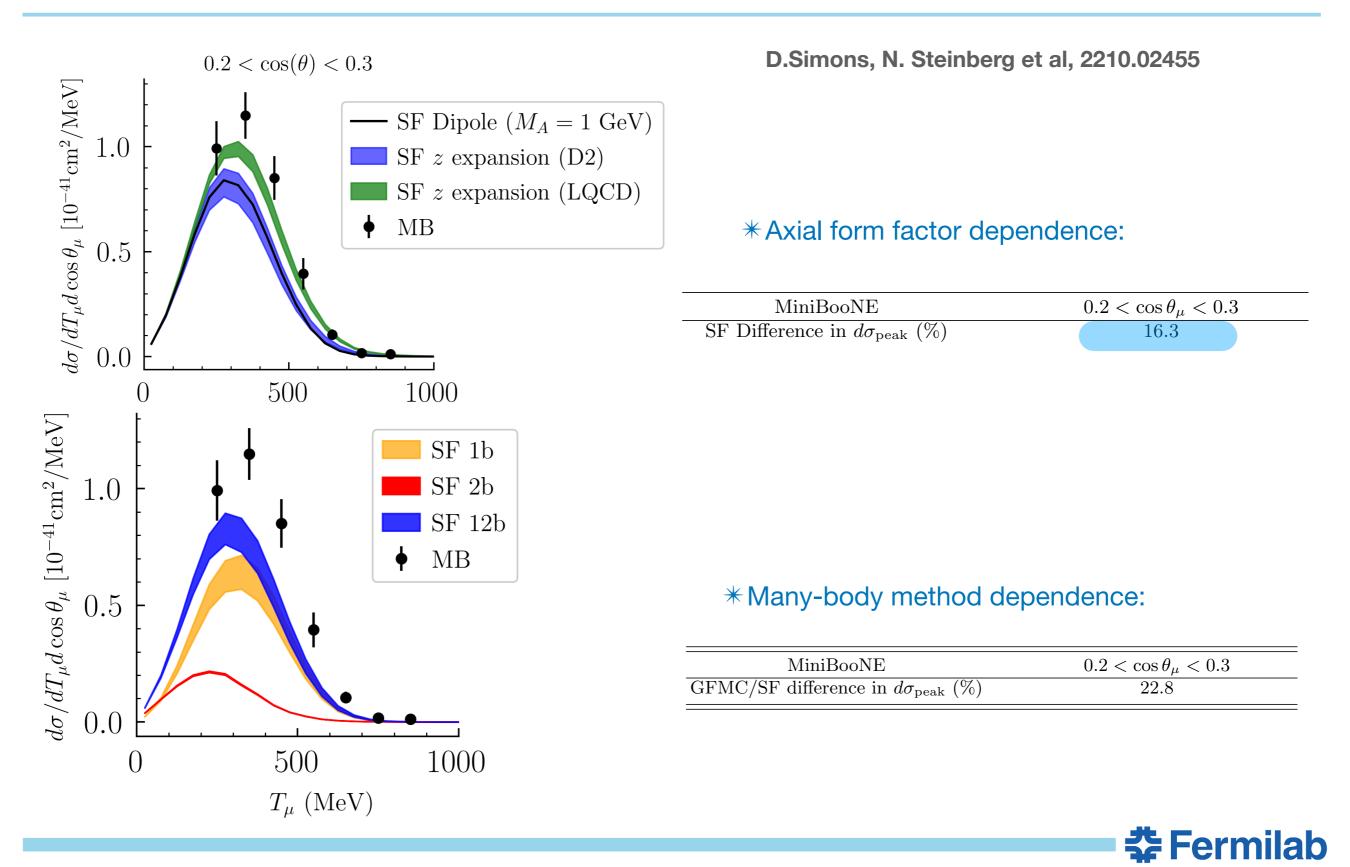
$$R_{1b\pi}^{\mu\nu}(\mathbf{q},\omega) \propto \int dE d^3 k P_{1b}(\mathbf{k},E) \\\times d^3 p d^3 k_{\pi} |\langle k|j^{\mu}|pk_{\pi}\rangle|^2$$

Pion production elementary amplitudes currently derived within the extremely sophisticated Dynamic Couple Chanel approach;

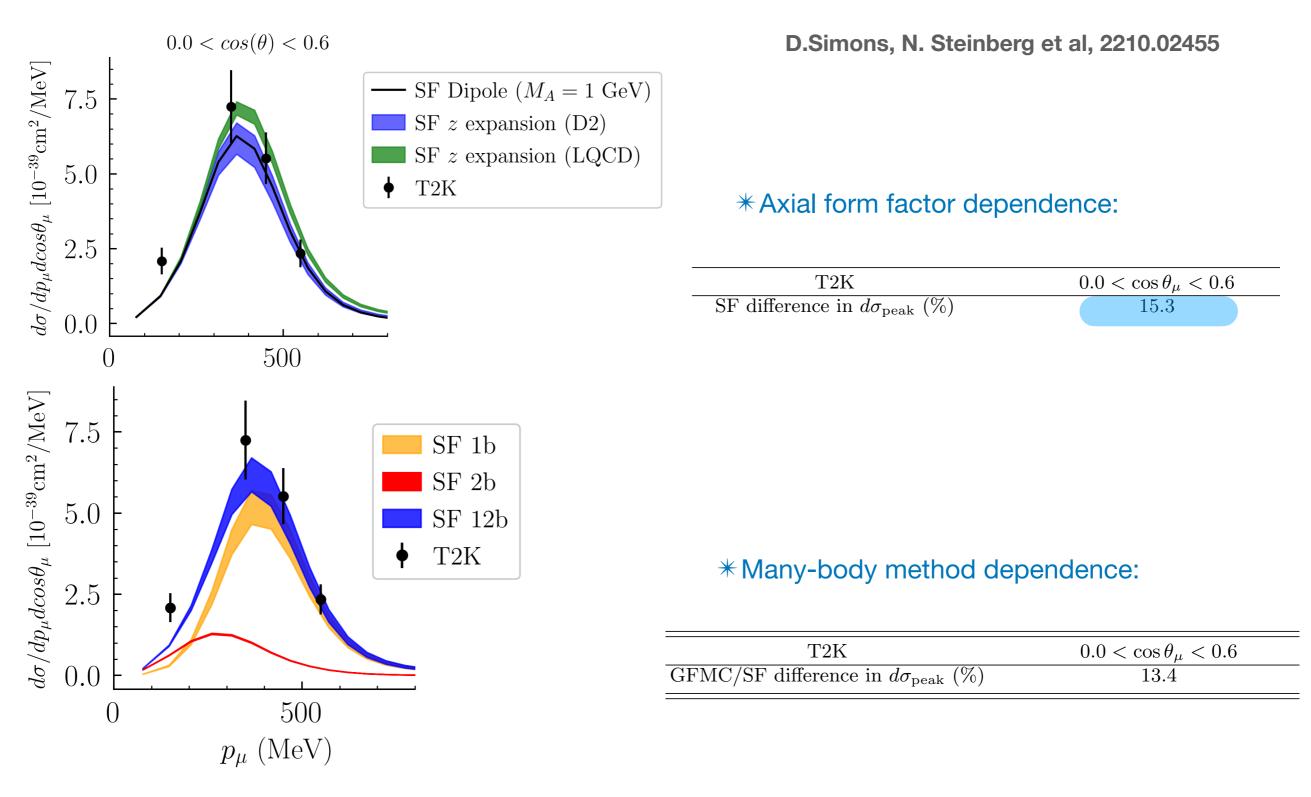
S.X.Nakamura, et al PRD92(2015) T. Sato, et al PRC67(2003) $E_e = 730 \text{ MeV}, \ \theta_e = 37.0^{\circ}$



Axial Form Factors Uncertainty needs

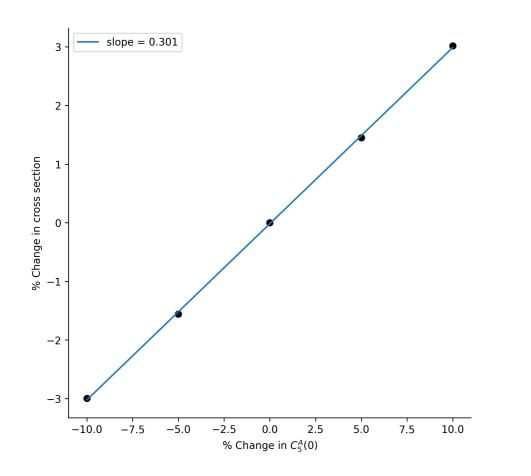


Axial Form Factors Uncertainty needs

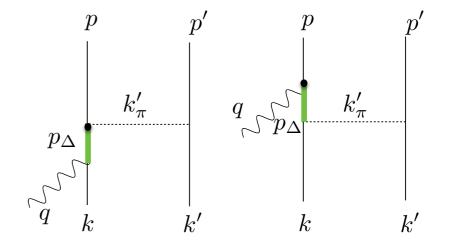


Resonance Uncertainty needs

The largest contributions to two-body currents arise from resonant $N\to \Delta$ transitions yielding pion production



D.Simons, N. Steinberg et al, 2210.02455



The normalization of the dominant $N \to \Delta$ transition form factor needs be known to 3% precision to achieve 1% cross-section precision for MiniBooNE kinematics

State-of-the-art determinations of this form factor from experimental data on pion electroproduction achieve 10-15% precision (under some assumptions)

Hernandez et al, PRD 81 (2010)

Further constraints on $N \to \Delta$ transition relevant for two-body currents and π production will be necessary to achieve few-percent cross-section precision

Conclusions

* Assessing the overall uncertainty of theory calculations requires evaluating uncertainties:

Nuclear Hamiltonians: different efforts in place to provide UQ in chiral EFT

Form factors: one- and two-body currents, resonance/π production

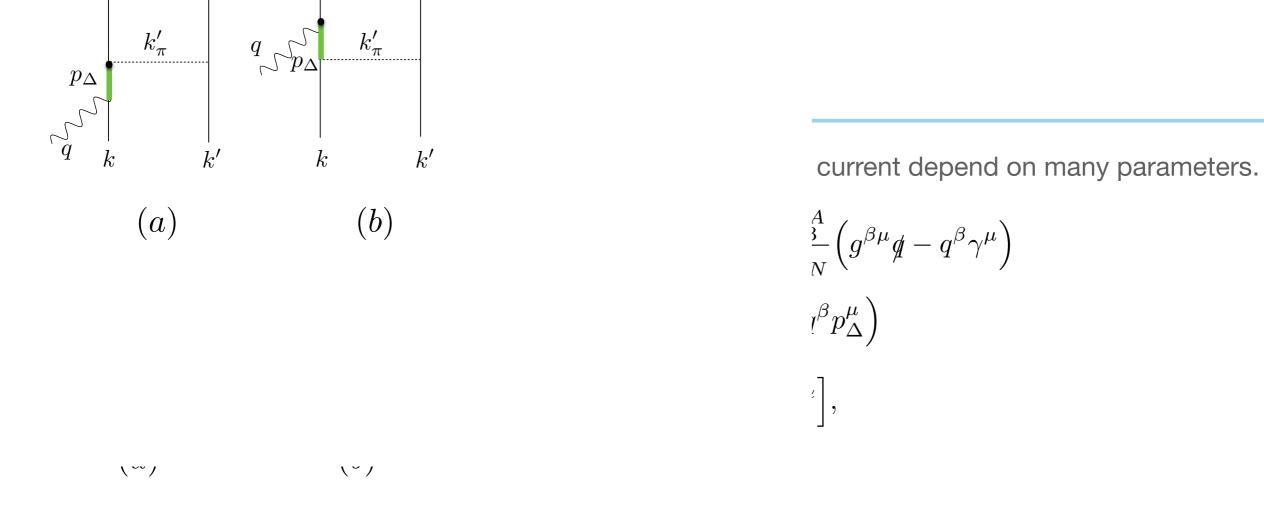
Error of factorizing the hard interaction vertex / using a non relativistic approach

* Address neutrino precision goals requires studying relations between cross section uncertainties and input parameter uncertainties

* Additional constraints on few-nucleon inputs from experiment and lattice QCD will be crucial

* Factorized approaches ideally suited to incorporate elementary amplitudes - nucleon hadron tensor

Thank you for your attention!



Parametrization chosen for the vector ff:

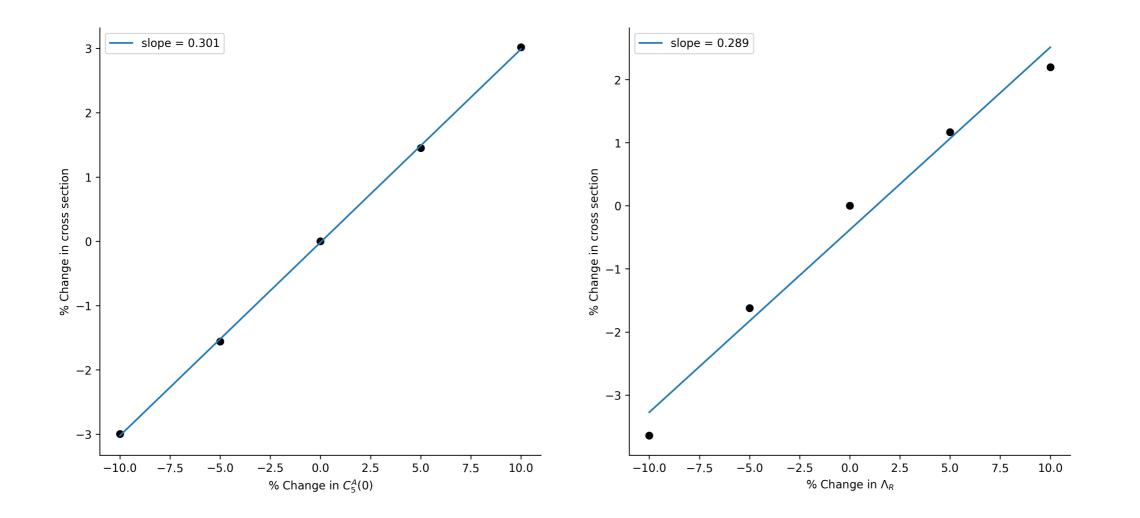
$$C_5^A = \frac{1.2}{(1 - q^2/M_{A\Delta})^2} \times \frac{1}{1 - q^2/(3M_{A\Delta})^2)},$$

Current extractions of C_{A^5} (0) rely on single pion production data from deuterium bubble chamber experiments; estimated uncertainty ~ 15 %

Delta decay width:
$$\Gamma(p_{\Delta}) = \frac{(4f_{\pi N\Delta})^2}{12\pi m_{\pi}^2} \frac{|\mathbf{d}|^3}{\sqrt{s}} (m_N + E_d) R(\mathbf{r}^2) \qquad R(\mathbf{r}^2) = \left(\frac{\Lambda_R^2}{\Lambda_R^2 - \mathbf{r}^2}\right)$$

Study of model dependence in neutrino predictions

Percent change in the MiniBooNE cross section versus the percent change in the two-body current parameters for $0.5 < \cos \theta \mu < 0.6$, T $\mu = 325$ MeV



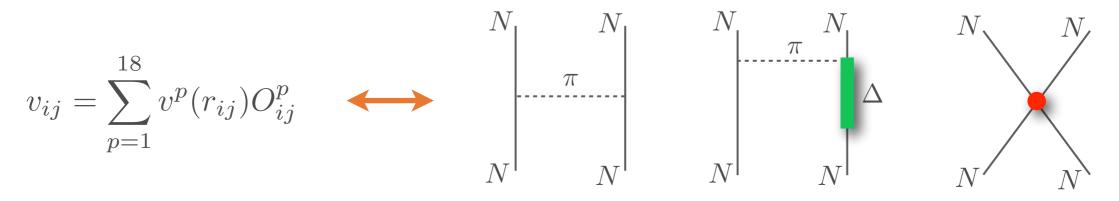
A 15% variation in either $C_5^A(0)$ or Λ_R changes the flux-averaged cross section by roughly 5%

😤 Fermilab

Phenomenological potential: av18 + IL7

Phenomenological potentials explicitly include the **long-range one-pion exchange interaction** and a set of **intermediate- and short-range phenomenological terms**

 Argonne v₁₈ is a finite, local, configuration-space potential controlled by ~4300 np and pp scattering data below 350 MeV of the Nijmegen database



 Phenomenological three-nucleon interactions, like the Illinois 7, effectively include the lowest nucleon excitation, the Δ(1232) resonance, end other nuclear effects



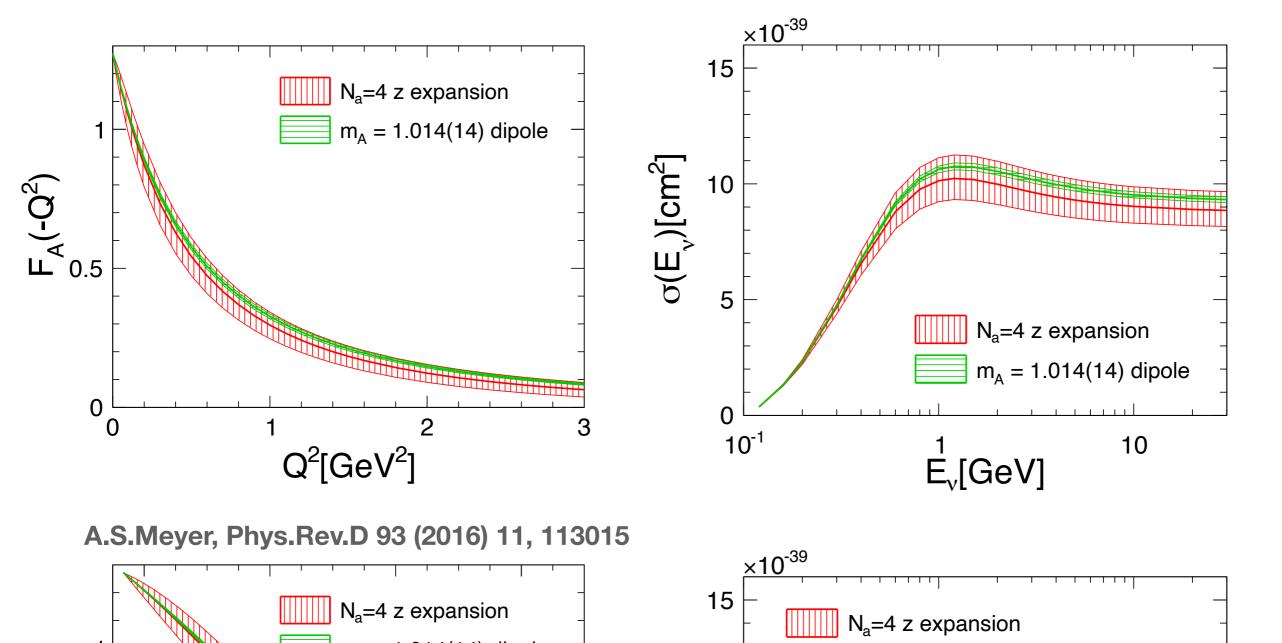
The parameters of the AV18 + IL7 are fit to properties of exactly solvable light nuclear systems.

Neutrino-Nucleon scattering

• Sum rule can be enforced ensuring that the form factor falls smoothly to zero at large Q²

$$\sum_{k=n}^{\infty} k(k-1)\cdots(k-n+1)a_k = 0, \quad n = 0, 1, 2, 3$$

Fit deuteron data replacing dipole axial form factor with z-expansion, enforce the sum rule constraints



da/dQ² [cm²/GeV²

ab