# Renormalons in Large-Momentum Effective Theory 

## Jianhui Zhang

The Chinese University of Hong Kong, Shenzhen \& Beijing Normal University

Lattice 2023, Fermilab, 2023.08.03

## Introduction

- Parton physics plays an important role in mapping out the 3D structure of hadrons and interpreting the experimental data at hadron colliders



Example: Drell-Yan Process

- Factorization

$$
\frac{d \sigma}{d Q^{2}}=\sum_{i, j} \int_{0}^{1} d \xi_{d} d \xi_{b} f_{i / P_{d}}\left(\xi_{a}\right) f_{j} / P_{b}\left(\xi_{b}\right) \frac{d \hat{\sigma}_{i j}\left(\xi_{a}, \xi_{b}\right)}{d Q^{2}} \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}\right)\right] \quad Q=\sqrt{q^{2}}
$$

$q_{T} \ll Q:$
$\frac{d \sigma}{d Q^{2} d^{2} \mathbf{q}_{\mathbf{T}}}=\sum_{i, j} H_{i j}(Q) \int_{0}^{1} d \xi_{a} d \xi_{b} \int d^{2} \mathbf{b}_{\mathbf{T}} e^{i \mathbf{b}_{\mathbf{T}} \cdot \mathbf{q}_{\mathbf{T}}} \times f_{i / P}\left(\xi_{a}, \mathbf{b}_{\mathbf{T}}\right) f_{j / P}\left(\xi_{b}, \mathbf{b}_{\mathbf{T}}\right) \times\left[1+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{Q}, \frac{q_{T}}{Q}\right)\right]$

## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- Focused on single parton distributions



## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- Focused on single parton distributions

- Collinear PDFs, distribution amplitudes, GPDs, TMDPDFs/wave functions


Ji, PRL 13’ \& SCPMA 14’, Ji, Liu, Liu, JHZ, Zhao, RMP 21’

Many talks, see Xiang Gao, 9 am Monday

- Main message: Now reaches the stage of precision control
- Higher-order perturbative correction, RG resummation, threshold resummation, higher-twist contribution, renormalon ambiguity...4


## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- New territory: double/multiple parton distributions
[JHZ, 2304.12481, Jaarsma, Rahn, Waalewijn, 2305.09716]

(a)

Two partons from a hadron can have transverse separations

$$
\sigma_{D P S} \sim \sum_{i j k l} \int d x_{1} d x_{2} \int d \bar{x}_{1} d \bar{x}_{2} \int d^{2} \boldsymbol{y} f_{i j}\left(x_{1}, x_{2}, \boldsymbol{y}\right) f_{k l}\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \hat{\sigma}_{i k} \hat{\sigma}_{j l}
$$

## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- New territory: double/multiple parton distributions
[JHZ, 2304.12481, Jaarsma, Rahn, Waalewijn, 2305.09716]

$$
\frac{s d \sigma}{\prod_{i=1}^{2} d x_{i} d \bar{x}_{i} d^{2} \boldsymbol{q}_{i}} \quad \frac{s d \sigma}{\prod_{i=1}^{2} d x_{i} d \bar{x}_{i}}
$$

$$
\frac{1}{\Lambda^{2} Q^{2}}
$$

$$
1
$$

b


$$
\frac{1}{\Lambda^{2} Q^{2}}
$$

$$
\frac{\Lambda^{2}}{Q^{2}}
$$

## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- New territory: double/multiple parton distributions [JHZ, 2304.12481, Jaarsma, Rahn, Waalewijn, 2305.09716]


Two partons from a hadron can have transverse separations

$$
\sigma_{D P S} \sim \sum_{i j k l} \int d x_{1} d x_{2} \int d \bar{x}_{1} d \bar{x}_{2} \int d^{2} \boldsymbol{y} f_{i j}\left(x_{1}, x_{2}, \boldsymbol{y}\right) f_{k l}\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \hat{\sigma}_{i k} \hat{\sigma}_{j l} . \quad \mathrm{JHZ}, 23,
$$

- Combines features of collinear PDFs and TMDPDFs
- Rapidity divergences can appear already in collinear distributions


## Introduction

- Tremendous progress has been achieved in calculating the partonic structure of hadrons from Euclidean correlations on the lattice
- New territory: double/multiple parton distributions [JHZ, 2304.12481, Jaarsma, Rahn, Waalewijn, 2305.09716]


Two partons from a hadron can have transverse separations

$$
\sigma_{D P S} \sim \sum_{i j k l} \int d x_{1} d x_{2} \int d \bar{x}_{1} d \bar{x}_{2} \int d^{2} \boldsymbol{y} f_{i j}\left(x_{1}, x_{2}, \boldsymbol{y}\right) f_{k l}\left(\bar{x}_{1}, \bar{x}_{2}, \boldsymbol{y}\right) \hat{\sigma}_{i k} \hat{\sigma}_{j l} \quad \text { JHZ, 23' }
$$

- The same development in single parton distributions (PDFs, TMDs, GPDs...) can be extended to DPDs, and generalized to multiparton distributions


## Renormalons

- Renormalons are related to the fact that QCD series Beneke, Phys. Rep., 99'

$$
F\left(\alpha_{s}\right)=\sum_{n} f_{n} \alpha_{s}^{n}
$$

is not convergent for any $\alpha_{s} \neq 0, f_{n}$ diverges $\sim a_{f}^{n} n$ !

- It can still be a useful approximation to $F\left(\alpha_{s}\right)$ if

$$
\lim _{\alpha_{s} \rightarrow 0} \alpha_{s}^{-N}\left|F\left(\alpha_{s}\right)-\sum_{n=0}^{N} f_{n} \alpha_{s}^{n}\right| \rightarrow 0
$$

- For finite $\alpha_{s}$, the partial sum usually gives an increasingly better approximation to $F\left(\alpha_{s}\right)$ up to some order $N_{0} \sim 1 /\left(\left|a_{f}\right| \alpha_{s}\right)$
- Beyond $N_{0}$, the approximation does not improve
- Best approximation is reached when truncated at the minimal term which characterizes the truncation error

$$
f_{N_{0}} \alpha_{s}^{N_{0}} \sim e^{-1 /\left(\left|a_{f}\right| \alpha_{s}\right)}
$$

## Renormalons

- Renormalons are related to the fact that QCD series Beneke, Phys. Rep., 99'

$$
F\left(\alpha_{s}\right)=\sum_{n} f_{n} \alpha_{s}^{n}
$$

is not convergent for any $\alpha_{s} \neq 0, f_{n}$ diverges $\sim a_{f}^{n} n$ !

- It can still be a useful approximation to $F\left(\alpha_{s}\right)$ if

$$
\lim _{\alpha_{s} \rightarrow 0} \alpha_{s}^{-N}\left|F\left(\alpha_{s}\right)-\sum_{n=0}^{N} f_{n} \alpha_{s}^{n}\right| \rightarrow 0
$$

- In terms of Borel transform

$$
B[F](t)=\sum_{n} f_{n} \frac{t^{n}}{n!}
$$

the same series expansion as $F$ can be obtained from the Borel integral

$$
\int_{0}^{\infty} d t e^{-t / \alpha_{s}} B[F](t)
$$

if $B[F](t)$ has no singularities for real positive $t$

- Singularities along integration path correspond to IR renormalons


## Numerical evidence of renormalons

- Self-energy of static source Bauer et al, PRL 12', Bali et al, PRD 13', Pineda, 21’

$$
\delta m=\frac{1}{a} \sum_{n=0}^{\infty} c_{n}^{(3, \rho)} \alpha^{n+1}(1 / a)
$$

- For large $n, c_{n}$ is universal and equal to the expansion coefficient of heavy quark pole mass $r_{n} / \nu$ up to $\mathscr{O}[\exp (-1 / n)]$ terms

$$
m_{\mathrm{OS}}=m_{\overline{\mathrm{MS}}}(\nu)+\sum_{n=0}^{\infty} r_{n} \alpha_{\mathrm{s}}^{n+1}(\nu),
$$

Large- $n$ behavior

$$
\begin{aligned}
& c_{n}^{(3, \rho)} \stackrel{n \rightarrow \infty}{=} N_{m}\left(\frac{\beta_{0}}{2 \pi}\right)^{n} \frac{\Gamma(n+1+b)}{\Gamma(1+b)} \\
& \times\left(1+\frac{b}{(n+b)} s_{1}+\frac{b(b-1)}{(n+b)(n+b-1)} s_{2}+\cdots\right) . \\
& \frac{c^{(3, \rho)}}{c_{n-1}^{(3, \rho)}} \frac{1}{n}= \frac{\beta_{0}}{2 \pi}\left\{1+\frac{b}{n}-\frac{b s_{1}}{n^{2}}+\frac{1}{n^{3}}\left[b^{2} s_{1}^{2}+b(b-1)\left(s_{1}-2 s_{2}\right)\right]\right. \\
&\left.+\mathcal{O}\left(\frac{1}{n^{4}}\right)\right\} .
\end{aligned}
$$

## Numerical evidence of renormalons

- Self-energy of static source Bauer et al, PRL 12', Bali et al, PRD 13', Pineda, 21'

$$
\delta m=\frac{1}{a} \sum_{n=0}^{\infty} c_{n}^{(3, \rho)} \alpha^{n+1}(1 / a)
$$

- For large $n, c_{n}$ is universal and equal to the expansion coefficient of heavy quark pole mass $r_{n} / \nu$ up to $\mathscr{O}[\exp (-1 / n)]$ terms

$$
m_{\mathrm{OS}}=m_{\overline{\mathrm{MS}}}(\nu)+\sum_{n=0}^{\infty} r_{n} \alpha_{\mathrm{s}}^{n+1}(\nu),
$$

- Large- $n$ behavior


Numerical stochastic perturbation theory calculated up to $\alpha_{s}^{20}$

## Numerical evidence of renormalons

- Self-energy of static source Bauer et al, PRL 12', Bali et al, PRD 13', Pineda, 21’

$$
\delta m=\frac{1}{a} \sum_{n=0}^{\infty} c_{n}^{(3, \rho)} \alpha^{n+1}(1 / a)
$$

- For large $n, c_{n}$ is universal and equal to the expansion coefficient of heavy quark pole mass $r_{n} / \nu$ up to $\mathcal{O}[\exp (-1 / n)]$ terms

$$
m_{\mathrm{OS}}=m_{\overline{\mathrm{MS}}}(\nu)+\sum_{n=0}^{\infty} r_{n} \alpha_{\mathrm{s}}^{n+1}(\nu),
$$

- Large- $n$ behavior


Numerical stochastic perturbation theory calculated up to $\alpha_{s}^{20}$

Renormalon-related talks:
Yushan Su, 4:20 pm Tuesday
Andreas Kronfeld, 1:50 pm Thursday Jack Holligan, 2:10 pm Thursday

## Renormalons in LaMET

- Factorization of quasi-PDF

$$
\begin{aligned}
\mathcal{Q}(x, p) & =\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
C_{\mathcal{Q}}\left(x, p, \mu_{F}\right) & =\delta(1-x)+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots-\frac{\mu_{F}^{2}}{p^{2}} D_{\mathcal{Q}}(x)+\ldots,
\end{aligned}
$$

- Logarithmic scale dependence in $c_{i}\left(x, \ln p^{2} / \mu_{F}^{2}\right)$ is canceled by that from the leading-twist PDF $q\left(x, \mu_{F}\right)$
- Power dependence is canceled between leading- and higher-twist contributions Braun, Vladimirov, JHZ, PRD 19'

$$
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)=\mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right)
$$

- In DR, power-like terms do not appear, but the coefficients $c_{i}$ grow factorially with $i$
- The sum of perturbative series is only defined to a power accuracy and this ambiguity is compensated by adding a higher-twist contribution


## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

- Start from the perturbative series of the coefficient function in coordinate space

$$
H=\delta(1-\alpha)+\sum_{k=0}^{\infty} h_{k} a_{s}^{k+1}, \quad a_{s}=\frac{\alpha_{s}(\mu)}{4 \pi}
$$

- Borel transform

$$
B[H](w)=\sum_{k=0}^{\infty} \frac{h_{k}}{k!}\left(\frac{w}{\beta_{0}}\right)^{k} \quad H=\delta(1-\alpha)+\frac{1}{\beta_{0}} \int_{0}^{\infty} d w e^{-w /\left(\beta_{0} a_{s}\right)} B[H](w) .
$$

- Borel integral has singularities along the integration path
- Ambiguity can be estimated by taking the residue at a given singularity


## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

- Singularities of the Borel transform (large $\beta_{0}$ approximation)

(a)

(b)

(c)

(d)
$\cdots \bigcirc \infty=\infty \times \infty+\infty \times \infty+\cdots$


FIG. 2. Singularity structure of the Borel transform.

## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

- Singularities of the Borel transform (large $\beta_{0}$ approximation)

(a)

(b)

(c)

(d)
$\infty>\infty=\infty \times \infty+\infty \times \infty+\cdots$



## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

## Quasi-PDF

$\mathcal{Q}(x, p)=q(x)\left\{1+\mathcal{O}\left(\frac{\Lambda^{2}}{p^{2}} \cdot \frac{1}{x^{2}(1-x)}\right)\right\} \quad \mathcal{P}(x, z)=q(x)\left\{1+\mathcal{O}\left(z^{2} \Lambda^{2}(1-x)\right)\right\}$

- Zero-momentum matrix element helps to suppress the power correction at $x \rightarrow 1$
- Confirmed in Liu, Chen, PRD 21,


## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

- Remove the leading renormalon ambiguity Liu, Chen, PRD 21'


## R-scheme

Hoang et al, PRD 10'

$$
\tilde{Q}_{R}\left(x, P_{z}, P_{z}^{\prime}, \Lambda^{\prime}\right)=\frac{P_{z}^{2} \tilde{Q}\left(x, P_{z}, \Lambda^{\prime}\right)-P_{z}^{\prime 2} \tilde{Q}\left(x, P_{z}^{\prime}, \Lambda^{\prime}\right)}{P_{z}^{2}-P_{z}^{\prime 2}}
$$



$$
=\int_{-1}^{1} \frac{d y}{|y|}\left[\frac{P_{z}^{2} Z\left(\frac{x}{y}, y P_{z}, \Lambda^{\prime}, \mu\right)-P_{z}^{\prime 2} Z\left(\frac{x}{y}, y P_{z}^{\prime}, \Lambda^{\prime}, \mu\right)}{P_{z}^{2}-P_{z}^{\prime 2}}\right] Q(y, \mu)+\mathcal{O}\left(\frac{\alpha_{s} \ln \left(P_{z} / P_{z}^{\prime}\right)}{P_{z}^{2}-P_{z}^{\prime 2}}, \frac{1}{P_{z}^{2} P_{z}^{\prime 2}}\right)
$$

## Renormalons in LaMET

- Estimate of twist-4 contribution Braun, Vladimirov, JHZ, PRD 19'

$$
\begin{aligned}
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \mu_{F}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)+\tilde{\mathcal{Q}}_{4}\left(x, p, \mu_{F}\right) \\
& \Downarrow \\
\mathcal{Q}_{4}\left(x, p, \mu_{F}\right)= & \kappa \Lambda_{\mathrm{QCD}}^{2} \int_{-1}^{1} \frac{d y}{|y|} D_{\mathcal{Q}}\left(\frac{x}{y}\right) q\left(y, \mu_{F}\right)
\end{aligned}
$$

- Remove the leading renormalon ambiguity Liu, Chen, PRD 21'


Good convergence in RI/MOM scheme matrix element observed

## Renormalons in LaMET

- There can be twist-3 contribution Zhang, Holligan, Ji, Su, PLB 23'

$$
\begin{aligned}
& \mathcal{Q}(x, p)=\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
& \text { ushan Su, 4:20 pm Tuesday }
\end{aligned}
$$

- Renormalization of linear divergence from Wilson line self-energy

$$
h^{R}\left(z, P_{z}\right)=h^{B}\left(z, P_{z}\right) e^{\left(\delta m-m_{0}\right) z}
$$

introduces an intrinsic ambiguity of $\mathcal{O}\left(z \Lambda_{Q C D}\right)$

- Modified OPE

$$
\begin{aligned}
& h^{R}\left(z, P_{z}, \mu, \tau\right) \\
& =\left(1-m_{0}(\tau) z\right) \sum_{k=0}^{\infty} c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right) \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z^{2}\right) \\
& =\sum_{k=0}^{\infty}\left[c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right)-z m_{0}(\tau)\right] \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z \alpha_{s}, z^{2}\right),
\end{aligned}
$$

## Renormalons in LaMET

- There can be twist-3 contribution Zhang, Holligan, Ji, Su, PLB 23'

$$
\begin{aligned}
& \mathcal{Q}(x, p)=\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
& \text { Ushan Su, 4:20 pm Tuesday }
\end{aligned}
$$

- Renormalization of linear divergence from Wilson line self-energy

$$
h^{R}\left(z, P_{z}\right)=h^{B}\left(z, P_{z}\right) e^{\left(\delta m-m_{0}\right) z}
$$

introduces an intrinsic ambiguity of $\mathcal{O}\left(z \Lambda_{Q C D}\right)$

- Modified OPE

$$
\begin{aligned}
& h^{R}\left(z, P_{z}, \mu, \tau\right) \\
& =\left(1-m_{0}(\tau) z\right) \sum_{k=0}^{\infty} c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right) \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z^{2}\right) \\
& =\sum_{k=0}^{\infty}\left[c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right)-z m_{0}(\tau)\right] \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z \alpha_{s}, z^{2}\right),
\end{aligned}
$$

$m_{0}(\tau)$ can be determined by fitting to zero-momentum matrix element

## Renormalons in LaMET

- There can be twist-3 contribution Zhang, Holligan, Ji, Su, PLB 23 '

$$
\begin{aligned}
& \mathcal{Q}(x, p)=\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
& \text { Ushan Su, 4:20 pm Tuesday }
\end{aligned}
$$

- Renormalization of linear divergence from Wilson line self-energy

$$
h^{R}\left(z, P_{z}\right)=h^{B}\left(z, P_{z}\right) e^{\left(\delta m-m_{0}\right) z}
$$

introduces an intrinsic ambiguity of $\mathcal{O}\left(z \Lambda_{Q C D}\right)$

- Modified OPE

$$
\begin{aligned}
& h^{R}\left(z, P_{z}, \mu, \tau\right) \\
& =\left(1-m_{0}(\tau) z\right) \sum_{k=0}^{\infty} c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right) \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z^{2}\right) \\
& \left.=\sum_{k=0}^{\infty} c_{k}\left(\alpha_{s}(\mu), \mu^{2} z^{2}\right)-z m_{0}(\tau)\right] \lambda^{k} a_{k+1}(\mu)+\mathcal{O}\left(z \alpha_{s}, z^{2}\right),
\end{aligned}
$$

$m_{0}(\tau)$ can be determined by fitting to zero-momentum matrix element

## Renormalons in LaMET

- There can be twist-3 contribution Zhang, Holligan, Ji, Su, PLB 23'

$$
\begin{aligned}
& \mathcal{Q}(x, p)=\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
& \text { Ushan Su, 4:20 pm Tuesday }
\end{aligned}
$$

- Renormalization of linear divergence from Wilson line self-energy

$$
h^{R}\left(z, P_{z}\right)=h^{B}\left(z, P_{z}\right) e^{\left(\delta m-m_{0}\right) z}
$$

introduces an intrinsic ambiguity of $\mathcal{O}\left(z \Lambda_{Q C D}\right)$

- Leading renormalon contribution

$$
C_{k}\left(\alpha_{s}\left(z^{-1}\right), 1\right)_{\mathrm{PV}}=N_{m} \frac{4 \pi}{\beta_{0}} \int_{0, \mathrm{PV}}^{\infty} d u \times e^{-\frac{4 \pi u}{\alpha_{s}\left(z^{-1}\right) \beta_{0}}} \frac{1}{(1-2 u)^{1+b}}\left(1+c_{1}(1-2 u)+\ldots\right),
$$

- Matching revised accordingly

$$
C^{\mathrm{LRR}}\left(\alpha_{s}\left(z^{-1}\right), 1\right)=C_{k}\left(\alpha_{s}\left(z^{-1}\right), 1\right)+\left[C_{k}\left(\alpha_{s}\left(z^{-1}\right), 1\right)_{\mathrm{PV}}-\sum_{i} r_{i} \alpha_{s}^{i+1}\left(z^{-1}\right)\right]
$$

## Renormalons in LaMET

- There can be twist-3 contribution Zhang, Holligan, Ji, Su, PLB 23'

$$
\begin{aligned}
& \mathcal{Q}(x, p)=\int_{-1}^{1} \frac{d y}{|y|} C_{\mathcal{Q}}\left(\frac{x}{y}, x p, \mu_{F}\right) q\left(y, \mu_{F}\right)+\frac{1}{p^{2}} \mathcal{Q}_{4}(x, p)+\ldots \\
& \text { Uushan Su, 4:20 pm Tuesday }
\end{aligned}
$$



## Summary and outlook

- A lot of progress has been achieved in calculating the partonic structure of hadrons from lattice
- Collinear PDFs, DAs, GPDs
- TMDPDFs/wave functions
- For single parton distributions, we have reached the stage of precision control
- Higher-order perturbative correction
- RG/threshold resummation
- Higher-twist contribution/renormalons
- Mainly to collinear PDFs, extended to GPDs, TMDs?
- Double/multiple parton distributions can be studied following similar spirit and remain to be explored

