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2d Multiscale Models

Scale Separation and Normalizing Flows

Usual picture: fixed lattice geometry, β = β0 → β1
Transform gauge links IR → UV
But IR & UV are quite different in QCD

Idea: “fill in” lattice coarse → fine

Keep IR structure, add UV links
Similar work by Nobuyuki Matsumoto
See also: Denis Boyda, Julian Urban’s talks

Need to account for gauge redundancy
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2d Multiscale Models

Doubling Layers (2d)

Double lattice extent along µ̂ direction

Two steps:

Splitting Uµ = U
(A)
µ U

(B)
µ (sample U

(B)
µ ∼ Haar)

Sample new links U
(new)
ν (from heatbath, flow, etc.)

Repeat along different directions to form full fine lattice
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2d Multiscale Models

Results: 2d

Multiscale model = Haar 22 + doubling layers + fine-lattice flow

Compare against Haar 82 + fine-lattice flow

ESS ∼ (independent) acceptance rate
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Small flow for comparison purposes



Higher-dimensional Multiscale Models

Higher-dimensional doubling layers

Need to generate lower-dimensional slice

Slice contains both UV and IR links

=⇒ use (recursive) multiscale model
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Higher-dimensional Multiscale Models

Doubling Layers (General Dimension)

Double lattice extent along µ̂ direction

Two steps:

Splitting Uµ = U
(A)
µ U

(B)
µ (sample U

(B)
µ ∼ Haar)

Sample new links U
(new)
ν (from heatbath, flow, etc.)

Repeat along different directions to form full fine lattice

Also keep track of staples from higher dimensions
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Higher-dimensional Multiscale Models

Results: SU(3) and U(1) in 4d

Multiscale model = Haar 24 + doubling layers + fine-lattice flow
(+ additional layer of recursion)

Compare against Haar 44 + fine-lattice flow
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Small flow for comparison purposes



Future Work

Future work

Model improvements

More equivariant information/correlations
Better link-level conditional flows
Fermions (multigrid?)

Combine with approaches beyond direct sampling
e.g. CRAFT, Parallel Tempering, Feynman-Hellman, . . .

see Dan Hackett’s talk (Thursday 3:10pm)

HMC on trivialized distribution

see previous talk by Nobuyuki Matsumoto
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Future Work

Conclusions

Scale separation enables new types of normalizing-flow models

Implemented in arbitrary dimension U(1) and SU(3)

Promising early results, but more work needed

Thanks! Questions?
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Backup

Backup

Ryan Abbott (MIT) Multiscale Models for Gauge Theories July 31, 2023 1 / 9



Backup

Staple-Conditional Flows

Fundamental building block for multiscale models

Inputs: gauge link U ∈ G , “staples” S1, . . . ,Sn ∈ G

Gauge group G = U(1) or SU(N)
Staples ∼ inverse gauge links

Start from either Haar-uniform or other tractable distribution

e.g. heatbath U ∼ e−
∑

i βiRe tr(USi ) for G = U(1)

Build flow transforms from previous components

Spectral flows [Boyda et al., 2008.05456]
Residual flows [Abbott et al., 2305.02402]
Continuous flows [Bacchio et al. 2212.08469]
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Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Use of Flow

Direct Sampling (Independence Metropolis)

HMC on trivialized distribution [Lüscher 0907.5491]

Generalize proposal distribution [Foreman et al., 2112.01582]

Subdomain updates [Finkenrath, 2201.02216]

Stochastic Normalizing Flows [Wu et al. 2002.0670]

CRAFT [Matthews et al. 2201.13117]
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Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Architecture Choices

Choice of coupling layers (spectral, residual, continuous)

Choice of Neural networks (CNN, fully-connected, gauge-equivariant)

Gauge-equivariant networks [Favoni et al., 2012.12901]

Choice of invariant context passed to networks

Size of model (# layers, NN sizes)
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Backup

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Training Choices

Optimizer (Adam, SGD, higher-order optimizers)

Choice of Loss (reverse/forward KL, MSE, ...)

Computation of gradients (path gradients/control variates)

Hyperparameter choices (batch size, learning rate)

Hyperparameter scheduling

Volume chosen for training
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Backup

Comments on Scaling - Exponential Volume Scaling

For L/ξ ≫ 1, ξ = correlation length, direct volume transfer

ESS(V ) = ESS(V0)
V /V0

Prevents direct sampling in thermodynamic limit L/ξ → ∞
Does not apply to continuum limit L/ξ ∼ mπL fixed, ξ/a → ∞
Typically 4 ≲ mπL ≲ 10 =⇒ no in principle issue
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Backup

Spectral Flows

Transform untraced plaquette Pµν

Under gauge transformation Ω(x) ∈ SU(N)

(Ω · P)µν(x) = Ω(x)Pµν(x)Ω(x)
† Pµν(x)

Given h : SU(N) → SU(N), transform Uµ so Pµν 7→ h(Pµν)

f (Uµ) = h(Pµν)P
†
µνUµ

Gauge equivariance ⇐⇒ conjugation equivariance:

h(ΩPΩ†) = Ωh(P)Ω†

Achieve by transforming eigenvalues for fixed eigenvectors
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[Boyda et al., 2008.05456]

https://arxiv.org/abs/2008.05456


Backup

Residual Flows

Inspired by Lüscher’s trivializing map [Lüscher 0907.5491]

Transform active links via

Uµ(x) 7→ e iϵ∂x,µϕ(U)Uµ(x)

Gauge-invariant “potential” ϕ(U)

Example: ϕ(U) ∝ SWilson(U) =⇒ Wilson flow/stout smearing
More complex:

ϕ(U) =
∑
x

∑
µ̸=ν

cµν(x ;Ufrozen)ReTr(Pµν)

Small but finite ϵ for invertibility (ϵ ≲ 1/8)
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Lie-algebra-valued derivative

https://arxiv.org/abs/0907.5491


Backup

Spectral Flows

Goal: h(ΩXΩ†) = Ωh(X )Ω†

Conjugation invariant data ⇔ eigenvalues

Diagonalize X ∈ SU(N) via eigenbasis V :

X = V

e iθ1

. . .

e iθN

V † 7→ V

e iθ
′
1

. . .

e iθ
′
N

V †

Define h : SU(N) → SU(N) by action on {θ1, . . . , θN}
Need to be careful about order ⇒ choose canonical order
Note: θk not independent,

∏
k e

iθk = detX = 1 ⇒ remove θN
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Backup

Training

Model density q(ϕ), target p(ϕ) = 1
Z e

−S(ϕ)

Reverse Kullback Leibler (KL) loss L:

L = DKL(q||p)

=

∫
dϕ q(ϕ) log

q(ϕ)

p(ϕ)

= Eϕ∼q [log q(ϕ) + S(ϕ)] + logZ
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Model samples

Constant
(⇒ can ignore)

Key facts

DKL(q||p) ≥ 0
DKL(q||p) = 0 ⇔ q = p



Backup

Unbiased sampling

Independence Metropolis: accept ϕ → ϕ′ ∼ q(ϕ′) with probability

Paccept(ϕ → ϕ′) = min

(
1,

p(ϕ′)

p(ϕ)

q(ϕ)

q(ϕ′)

)
Hybrid methods

Alternate HMC/flow updates
HMC on trivialized distribution [Lüscher 0907.5491]
Subdomain updates [Finkenrath, 2201.02216]
CRAFT/Annealed Importance Sampling [Matthews et al. 2201.13117]
. . .
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