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Collaborators

Phiala Shanahan
Gurtej Kanwar

e Mon. 10:00am — “Flow based sampling for lattice field theories”
Julian Urban

e Thursday 2:10pm — “Constructing approximate semi-analytic and
machine-learned trivializing maps for lattice gauge theory”

Denis Boyda
e Thursday 2:50pm — “Enhanced expressivity in machine learning:
application of normalizing flows in lattice QCD simulations”
o Dan Hackett
e Thursday 3:10pm — “Practical applications of machine-learned flows on
gauge fields"”

Fernando Romero-Lépez

+ collaborators at Deep Mind
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2d Multiscale Models

Scale Separation and Normalizing Flows

@ Usual picture: fixed lattice geometry, 5 = By — (1

e Transform gauge links IR — UV
e But IR & UV are quite different in QCD

o Idea: “fill in” lattice coarse — fine
o Keep IR structure, add UV links |
e Similar work by Nobuyuki Matsumoto
Bt,al

e See also: Denis Boyda, Julian Urban’s talks

@ Need to account for gauge redundancy

>

fT,al
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Doubling Layers (2d)

@ Double lattice extent along /i direction

@ Two steps:
o Splitting U, = ULA) U,E,B) (sample U/(,,B) ~ Haar)
o Sample new links ylnew) (from heatbath, flow, etc.)

@ Repeat along different directions to form full fine lattice
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Results: 2d

e Multiscale model = Haar 22 + doubling layers + fine-lattice flow
o Compare against Haar 82 + fine-lattice flow<——small flow for comparison purposes

e ESS ~ (independent) acceptance rate
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Higher-dimensional Multiscale Models

Higher-dimensional doubling layers

@ Need to generate lower-dimensional slice
@ Slice contains both UV and IR links
o = use (recursive) multiscale model
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Higher-dimensional Multiscale Models

Doubling Layers (General Dimension)

Double lattice extent along i direction

Two steps:

e Splitting U, = ULA) UfLB) (sample UFSB) ~ Haar)

e Sample new links U,

(new)

(from heatbath, flow, etc.)

Repeat along different directions to form full fine lattice

Also keep track of staples from higher dimensions
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Higher-dimensional Multiscale Models

Doubling Layers (General Dimension)

Double lattice extent along i direction

Two steps:
e Splitting U, = ULA) UfLB) (sample UFSB) ~ Haar) _
o Sample new links ylnew) (from Pue/atb_a_‘l;h.,_ﬂew—,—etc?)Mu'tlsca'e model

Repeat along different directions to form full fine lattice

Also keep track of staples from higher dimensions
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Higher-dimensional Multiscale Models

Doubling Layers (General Dimension)

@ Double lattice extent along /i direction
@ Two steps:
flow, heatbath, etc.
o Splitting U, = U ULP) (sample U'®) ~ Haar) _
o Sample new links ylnew) (from @alh.,ilew—,—etc?)'vlu'tlsca'e model
@ Repeat along different directions to form full fine lattice
@ Also keep track of staples from higher dimensions
U U4 (new)
U, A . . U
UiMA UiMA
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Results: SU(3) and U(1) in 4d

@ Multiscale model = Haar 2* 4 doubling layers + fine-lattice flow

° (+ addltlonal Iayer Of recur5|on) mall flow for comparison purposes
o Compare against Haar 4* + fine-lattice flow
Ul)d=4 SUB)d=14
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@ Note: normalized with rough estimate of log Z at each (8
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Future work

@ Model improvements
e More equivariant information/correlations
o Better link-level conditional flows
o Fermions (multigrid?)
@ Combine with approaches beyond direct sampling
o e.g. CRAFT, Parallel Tempering, Feynman-Hellman, ...
o see Dan Hackett's talk (Thursday 3:10pm)
e HMC on trivialized distribution

@ see previous talk by Nobuyuki Matsumoto
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Conclusions

@ Scale separation enables new types of normalizing-flow models
o Implemented in arbitrary dimension U(1) and SU(3)

@ Promising early results, but more work needed
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Conclusions

Scale separation enables new types of normalizing-flow models
Implemented in arbitrary dimension U(1) and SU(3)

Promising early resul
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Staple-Conditional Flows

Fundamental building block for multiscale models
Inputs: gauge link U € G, “staples” S1,...,5,€ G
o Gauge group G = U(1) or SU(N)
e Staples ~ inverse gauge links

@ Start from either Haar-uniform or other tractable distribution
o e.g. heatbath U ~ e~ ZiAiRetr(US) for G = (1)

Build flow transforms from previous components
o Spectral flows [Boyda et al., 2008.05456]

o Residual flows [Abbott et al., 2305.02402]
o Continuous flows [Bacchio et al. 2212.08469]
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https://arxiv.org/abs/2008.05456
https://arxiv.org/abs/2305.02402
https://arxiv.org/abs/2212.08469

Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Use of Flow
@ Direct Sampling (Independence Metropolis)
@ HMC on trivialized distribution [Lischer 0907.5491]
o Generalize proposal distribution [Foreman et al., 2112.01582]
@ Subdomain updates [Finkenrath, 2201.02216]
@ Stochastic Normalizing Flows [Wu et al. 2002.0670]
o CRAFT [Matthews et al. 2201.13117]
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https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/2112.01582
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2002.06707
https://arxiv.org/abs/2201.13117

Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Architecture Choices
@ Choice of coupling layers (spectral, residual, continuous)

@ Choice of Neural networks (CNN, fully-connected, gauge-equivariant)
o Gauge-equivariant networks [Favoni et al., 2012.12901]

@ Choice of invariant context passed to networks

o Size of model (# layers, NN sizes)
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Comments on Scaling

o Reference: [Abbott et al., 2211.07541]
@ Scaling depends strongly every aspect of the model

o E.g. use of flow, architecture choices, training choices
o Makes extrapolating beyond any particular choice difficult

Training Choices

Optimizer (Adam, SGD, higher-order optimizers)
Choice of Loss (reverse/forward KL, MSE, ...)

Computation of gradients (path gradients/control variates)

Hyperparameter choices (batch size, learning rate)
o Hyperparameter scheduling

Volume chosen for training
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https://arxiv.org/abs/2211.07541

Comments on Scaling - Exponential Volume Scaling

@ For L/€ > 1, £ = correlation length, direct volume transfer
ESS(V) = ESS(\V,)Y/Ve

@ Prevents direct sampling in thermodynamic limit L/{ — oo
e Does not apply to continuum limit L/§ ~ m, L fixed, £/a — oo
e Typically 4 < m,L <10 = no in principle issue
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Spectral Flows
[Boyda et al., 2008.05456]

@ Transform untraced plaquette P,
e Under gauge transformation Q(x) € SU(N) k
(Q-P)u(x) = Q(X)PW(X)Q(X)T P (x)

e Given h: SU(N) — SU(N), transform U, so P,, + h(P..,)
f(Uu) = h(PW)P;TwU/L

o Gauge equivariance <= conjugation equivariance:
h(QPQT) = Qh(P)Q

@ Achieve by transforming eigenvalues for fixed eigenvectors
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https://arxiv.org/abs/2008.05456

Residual Flows

Inspired by Lischer's trivializing map [Liischer 0907.5491]

Transform active links via Lie-algebra-valued derivative

ieBL/qS(U)
Up(x) = "2, (x)

e Gauge-invariant “potential” ¢(U)
e Example: ¢(U) o Swiison(U) = Wilson flow/stout smearing
e More complex:

¢(U) = Z Z C,uu(X; Ul"rozen)lae Tr(P[LV)

X pFv

@ Small but finite e for invertibility (¢ < 1/8)
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https://arxiv.org/abs/0907.5491

Spectral Flows

Goal: h(QXQT) = Qh(X)Qf )

o Conjugation invariant data < eigenvalues
e Diagonalize X € SU(N) via eigenbasis V:

it it

X=V Vi v
eifn ol

S

e Define h: SU(N) — SU(N) by action on {61,...,0n}
o Need to be careful about order = choose canonical order
o Note: 6 not independent, Hk e’ = det X =1 = remove Oy
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Training

o Model density q(¢), target p(¢) = +e=5(¢)

o Reverse Kullback Leibler (KL) loss L: Key facts
Drki(qllp) = 0
£ = Lialdlle) Dre(gllp) =0 q = p
q(¢)
=/d lo
/ ¢ q(¢) log o(0)

= Egq[log q(¢) + S(¢)] + log Z

Constant
Model samples (= can ignore)
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Unbiased sampling

@ Independence Metropolis: accept ¢ — ¢’ ~ g(¢') with probability

p(¢') q(¢)>
" p(0) a(¢)

Paccept(Qb — QZ)/) = min <1

@ Hybrid methods

Alternate HMC/flow updates

HMC on trivialized distribution [Liischer 0907.5491]

Subdomain updates [Finkenrath, 2201.02216]

CRAFT /Annealed Importance Sampling [Matthews et al. 2201.13117]
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