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Outline

We are interested in the following correlation function between
chromoelectric E (-magnetic B) fields connected with an adjoint
Wilson line Φ:

E(t) = ⟨0|gE i ,a(t, 0)Φab(t, 0)gE i ,b(0, 0)|0⟩

• Theoretical background

• Lattice implementation

• Gradient flow

• Current results
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Zero T: Gluelumps

• The two lowest lying gluelump states 1+− and 1−− given by BB

and EE correlators respctively

• Extraction as the ground state mass of the correlator

• There are more gluelumps given by more complicated operators
(out of scope of this talk)

• Simples test case and allows setting everything in units of the
lowest gluelump

• Recent full spectrum extraction available by Herr et.al.2306.09902
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Zero T moments in pNRQCD

• Moments of EE-correlator appear in pNRQCD
Brambilla et.al.PRL88 2002, Brambilla et.al.PRD67 2003,

Brambilla et.al.JHEP04 2020

En =
TF

Nc

∫ ∞

0
dt tnE(t)

• E3 simplest case to start with
• Needs to be nonperturbatively calculated
• Describes the inclusive annihilation rate of a P-wave

spin-triplet into light hadrons

ΓχQJ
=

3Nc

2π
|R ′(0)|2 32

M4

[
Imf1(

3PJ)(Λ) + Imf8(
3S1)

2TF

9Nc
E3(Λ)

]
• Where Q is charm or bottom, M the mass of χQJ and f1 and
f2 matching coefficients known Petrelli et.al.Nucl.Phys.B514 1998
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Finite T: heavy quarkonium diffusion

• The relaxation time of a heavy quarkonium in a quark gluon plasma
is defined trough a diffusion process

• Compare to heavy quark diffusion coefficient κ defined with
fundamental Wilson lines W :

⟨W (β, t)gE (t, 0)W (t, 0)gE (0, 0)⟩/⟨W (β, 0)⟩

• Quarkonium differs from single quarks by adjoint representation and
the diffusion coefficient κ is given by E

• Perturbatively κ same up to NLO to be same between quarks and
quarkonium

• For quarkonium the mass shift is also related to the diffusion
process via γ ∼ E0

• In theory one can also definite a symmetric correlator

4 / 14See e.g. Brambilla et.al.PRDD 97 (2018), Brambilla et.al.PRDD 97 (2018)



Discretization

• Use Clover discretizaton

Ei =
1

2iga2

(
Πi0 − Π†

i0

)
Πµν = 1

4

(
Pµ,ν + Pν,−µ + P−µ,−ν + P−ν,µ

)
• Adjoint operators are related to their fundamen-

tal counterparts

E a = Tr(Eλa) , Φab = Tr(U†λaUλb)

E i ,a(t, 0)Φab(t, 0)gE i ,b(0, 0) =

2Tr(E (0)U†E (t)U)− 2
3
Tr(E (0))Tr(E (t))

• Similarly for BB-correlator, the symmetric op-
erator and adjoint Polyakov loops
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Divergences

• Any Wilson line comes with ∼ 1/a linear divergence
• Related to renormalon ambiguity in dimreg
• Needs to be fixed to correct scheme for proper physical results

• Discretization of E-fields comes with lattice only multiplicative
renormalization ZE . Similarly for ZB .

• EE and BB correlators have an anomalous dimensions. Starting at
(O)(α) for B and O(α2)for E.

• Has been relevant in earlier projects
Brambilla et.al.PRD 107 (2023); Banerjee et.al.JHEP 08 (2022)

• Ignored at current analysis, will be included later

• En for n < 4 need to be regularized for t → 0
• match to perturbation theory

• The renormalization constants that don’t depend on t will divide out
for gluelump masses, the linear divergence gives a mass shift to the
gluelumps 6 / 14



Gradient flow

∂tBt,µ = −δSYM
δB

= Dt,µGt,µν ,

Gt,µν = ∂µBt,ν − ∂νBt,µ + [Bt,µ,Bt,ν ] .

B0,µ = Aµ ← the original gauge field

√
8t

• Evolve gauge along fictitious time t towards minima of SYM

• Diffuses the initial gauge field with radius
√

8t
• Automatically renormalizes gauge invariant observables
• Zero flow time limit needed to connect to real physics
• Need to flow enough but not too much to avoid overlap, restrict to:

1 <
√

8τf /a <
t − 2

2
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Gradient flow and divergences/renormalization

• The discretization effect ZE ,B

becomes one at
√

8τf >∼ 1
see Julian Mayer-Steudte’s talk 15:10

• Linear divergence changes:
1
a →

1√
8τf

• Less divergence at large flow time,
but care needed for zero flow time
limit
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• Anomalous dimensions become log-divergences at zero flow time limit
• Currently ignored, future should take into account
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Simulation Details

VS NT β a [fm] T/Tc Nconf
203 6 6.284 0.060 1.848 764
203 8 6.284 0.060 1.386 620
403 6 6.816 0.030 3.765 226

(a) finite T ensembles

VS NT β a [fm] T/Tc Nconf
203 40 6.284 0.060 0.277 6000
263 56 6.481 0.046 0.261 6000
303 60 6.594 0.040 0.283 6000
403 80 6.816 0.030 0.282 3300

(b) Zero T ensembles

• Wilson gauge action, Pure gauge simulations at zero and finite T
• Flow GF use Lüscher-Weisz action and adaptive solver
• MILC code for simulations
• Scale setting either with S. Necco et.al.Nucl. Phys. B622 (2002)

or with t0
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Test case: gluelump masses
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• Lowest gluelump masses a good candidate to test different
divergence subtractions due to existing lattice results

• Fit effective masses within allowed τf range
• Vary over multiple fits with Akaike information criterion
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Method 1: Polyakov loop renormalization
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• Linear divergence of fundamental Polyakov loops have been
renormalized before Gupta et.al.PRD77 2008

• Observe Casimir scaling in finite T and get adjoint divergence
trough that
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Method 1: results
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• Seems to work reasonably well at large flow times

• Residual curvature at small flow times still need to be understood

12 / 14Frankfurt points from: Herr et.al.2306.09902



Method 2: Direct fit
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• We know the divergence is ∼ 1/
√

8τf , we can fit it
• Currently at finite lattice spacing, continuum limit under progress
• Seems to work good up to a scheme contributions starting at O(α2)

13 / 14Frankfurt points from: Herr et.al.2306.09902



Conclusions

• The correlation function between two chromoelectric fields can be
used in many applications

• Gradient flow can solve or ease many of the associated divergences

• Tested a two different ways to remove the linear divergence

• Future:
• Continuum limits to properly attain flow time scaling
• Zero flow time limits
• Measure the actual observables mentioned in motivation
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Conclusions

• The correlation function between two chromoelectric fields can be
used in many applications

• Gradient flow can solve or ease many of the associated divergences

• Tested a two different ways to remove the linear divergence

• Future:
• Continuum limits to properly attain flow time scaling
• Zero flow time limits
• Measure the actual observables mentioned in motivation

Thank you!
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