Adjoint chromoelectric (-magnetic) correlators with gradient flow

Viljami Leino Helmholtz Institute Mainz, JGU Mainz

In various combinations of collaboration with: Nora Brambilla, Hee Sok Chung, Saumen Datta, Julian Mayer-Steudte, Peter Petreczky, Andrea Shindler, Xiangpeng Wang, Antonio Vairo

> Lattice 2023 Fermilab August 1st 2023

Outline

We are interested in the following correlation function between chromoelectric E (-magnetic B) fields connected with an adjoint Wilson line Φ :

$$\mathcal{E}(t)=\langle 0|gE^{i,a}(t,0)\Phi_{ab}(t,0)gE^{i,b}(0,0)|0
angle$$

- Theoretical background
- Lattice implementation
- Gradient flow
- Current results

- The two lowest lying gluelump states 1⁺⁻ and 1⁻⁻ given by *BB* and *EE* correlators respctively
- Extraction as the ground state mass of the correlator
- There are more gluelumps given by more complicated operators (out of scope of this talk)
- Simples test case and allows setting everything in units of the lowest gluelump
- Recent full spectrum extraction available by Herr et.al.2306.09902

Zero T moments in pNRQCD

• Moments of EE-correlator appear in pNRQCD Brambilla et.al.PRL88 2002, Brambilla et.al.PRD67 2003,

Brambilla et.al.JHEP04 2020

$$\mathcal{E}_n = \frac{T_{\rm F}}{N_{\rm c}} \int_0^\infty {\rm d}t \, t^n \mathcal{E}(t)$$

- \mathcal{E}_3 simplest case to start with
 - Needs to be nonperturbatively calculated
 - Describes the inclusive annihilation rate of a P-wave spin-triplet into light hadrons

$$\Gamma_{\chi_{QJ}} = \frac{3N_c}{2\pi} |R'(0)|^2 \frac{32}{M^4} \left[\mathrm{Im} f_1(^3P_J)(\Lambda) + \mathrm{Im} f_8(^3S_1) \frac{2T_F}{9N_c} \mathcal{E}_3(\Lambda) \right]$$

• Where Q is charm or bottom, M the mass of χ_{QJ} and f_1 and f_2 matching coefficients known Petrelli *et.al*.Nucl.Phys.B514 1998

Finite T: heavy quarkonium diffusion

- The relaxation time of a heavy quarkonium in a quark gluon plasma is defined trough a diffusion process
- Compare to heavy quark diffusion coefficient κ defined with fundamental Wilson lines W:

 $\langle W(\beta, t)gE(t, 0)W(t, 0)gE(0, 0)\rangle/\langle W(\beta, 0)\rangle$

- Quarkonium differs from single quarks by adjoint representation and the diffusion coefficient κ is given by \mathcal{E}
- Perturbatively κ same up to NLO to be same between quarks and quarkonium
- For quarkonium the mass shift is also related to the diffusion process via $\gamma\sim \mathcal{E}_0$
- In theory one can also definite a symmetric correlator

Discretization

• Use Clover discretizaton

$$E_{i} = \frac{1}{2iga^{2}} \left(\Pi_{i0} - \Pi_{i0}^{\dagger} \right)$$
$$\Pi_{\mu\nu} = \frac{1}{4} \left(P_{\mu,\nu} + P_{\nu,-\mu} + P_{-\mu,-\nu} + P_{-\nu,\mu} \right)$$

• Adjoint operators are related to their fundamental counterparts

$$E^{a} = \operatorname{Tr}(E\lambda^{a}), \quad \Phi_{ab} = \operatorname{Tr}(U^{\dagger}\lambda^{a}U\lambda^{b})$$
$$E^{i,a}(t,0)\Phi_{ab}(t,0)gE^{i,b}(0,0) =$$
$$2\operatorname{Tr}(E(0)U^{\dagger}E(t)U) - \frac{2}{3}\operatorname{Tr}(E(0))\operatorname{Tr}(E(t))$$

• Similarly for BB-correlator, the symmetric operator and adjoint Polyakov loops

Divergences

- Any Wilson line comes with $\sim 1/a$ linear divergence
 - Related to renormalon ambiguity in dimreg
 - Needs to be fixed to correct scheme for proper physical results
- Discretization of E-fields comes with lattice only multiplicative renormalization Z_E . Similarly for Z_B .
- EE and BB correlators have an anomalous dimensions. Starting at
 (*O*)(*α*) for B and *O*(*α*²) for E.
 - Has been relevant in earlier projects

Brambilla et.al.PRD 107 (2023); Banerjee et.al.JHEP 08 (2022)

- Ignored at current analysis, will be included later
- \mathcal{E}_n for n < 4 need to be regularized for $t \rightarrow 0$
 - match to perturbation theory
- The renormalization constants that don't depend on t will divide out for gluelump masses, the linear divergence gives a mass shift to the gluelumps

Gradient flow

$$\begin{split} \partial_t B_{t,\mu} &= -\frac{\delta S_{\mathsf{YM}}}{\delta B} = D_{t,\mu} G_{t,\mu\nu} \,, \\ G_{t,\mu\nu} &= \partial_\mu B_{t,\nu} - \partial_\nu B_{t,\mu} + [B_{t,\mu}, B_{t,\nu}] \,. \\ B_{0,\mu} &= A_\mu \ \leftarrow \text{ the original gauge field} \end{split}$$

- Evolve gauge along fictitious time t towards minima of $S_{
 m YM}$
- Diffuses the initial gauge field with radius $\sqrt{8t}$
- Automatically renormalizes gauge invariant observables
- Zero flow time limit needed to connect to real physics
- Need to flow enough but not too much to avoid overlap, restrict to:

$$1 < \sqrt{8\tau_f}/a < \frac{t-2}{2}$$

Gradient flow and divergences/renormalization

- The discretization effect $Z_{E,B}$ becomes one at $\sqrt{8\tau_f}\gtrsim 1$ see Julian Mayer-Steudte's talk 15:10
- Linear divergence changes: $\frac{1}{a} \rightarrow \frac{1}{\sqrt{8\tau_f}}$
- Less divergence at large flow time, but care needed for zero flow time limit
- Anomalous dimensions become log-divergences at zero flow time limit
 - Currently ignored, future should take into account

V_S	NT	β	a [fm]	T/T_c	$N_{\rm conf}$
20 ³	6	6.284	0.060	1.848	764
20 ³	8	6.284	0.060	1.386	620
40 ³	6	6.816	0.030	3.765	226

(a) finite T ensembles

V_S	NT	β	a [fm]	T/T_c	Nconf
20 ³	40	6.284	0.060	0.277	6000
26 ³	56	6.481	0.046	0.261	6000
30 ³	60	6.594	0.040	0.283	6000
40 ³	80	6.816	0.030	0.282	3300

(b) Zero T ensembles

- Wilson gauge action, Pure gauge simulations at zero and finite T
- Flow GF use Lüscher-Weisz action and adaptive solver
- MILC code for simulations
- Scale setting either with S. Necco *et.al*.Nucl. Phys. B622 (2002) or with t₀

Test case: gluelump masses

- Lowest gluelump masses a good candidate to test different divergence subtractions due to existing lattice results
- Fit effective masses within allowed τ_f range
- Vary over multiple fits with Akaike information criterion

Method 1: Polyakov loop renormalization

- Linear divergence of fundamental Polyakov loops have been renormalized before Gupta *et.al*.PRD77 2008
- Observe Casimir scaling in finite T and get adjoint divergence trough that

Method 1: results

- Seems to work reasonably well at large flow times
- Residual curvature at small flow times still need to be understood

Method 2: Direct fit

- We know the divergence is $\sim 1/\sqrt{8\tau_f},$ we can fit it
- Currently at finite lattice spacing, continuum limit under progress
- Seems to work good up to a scheme contributions starting at $\mathcal{O}(\alpha^2)$

Frankfurt points from: Herr et.al.2306.09902

- The correlation function between two chromoelectric fields can be used in many applications
- Gradient flow can solve or ease many of the associated divergences
- Tested a two different ways to remove the linear divergence
- Future:
 - Continuum limits to properly attain flow time scaling
 - Zero flow time limits
 - Measure the actual observables mentioned in motivation

- The correlation function between two chromoelectric fields can be used in many applications
- Gradient flow can solve or ease many of the associated divergences
- Tested a two different ways to remove the linear divergence
- Future:
 - Continuum limits to properly attain flow time scaling
 - Zero flow time limits
 - Measure the actual observables mentioned in motivation

Thank you!