Practical applications of machine-learned flows on gauge fields

Dan Hackett (MIT / IAIFI)
Lattice 2023
July 3, 2023
Flows

f: learned, invertible map between gauge fields

\[f: U_\mu(x) \xrightarrow{f} U'_\mu(x) \]

...with a tractable Jacobian determinant

\[J_f(U) = \left| \text{det} \frac{\partial f(U)}{\partial U} \right| \]

...maybe equivariant w/r/t symmetries g of interest

\[f(g(U)) = g(f(U)) \]

...with many tunable parameters
Flows

Flows are “bridges” between different distributions/theories/actions

\[
\begin{align*}
 r(U) &= \frac{e^{-S_r(U)}}{Z_r} \\
 q(U') &= \frac{r(U)}{J_f(U)}
\end{align*}
\]

 Exact bridge between \(r \) and \(q \)

Choose \(r \), but flow induces \(q \)

For sampling applications: variationally optimize \(f \) so \(q \approx p \propto e^{-S_p} \)

→ *Approximate* bridge between \(r \) and \(p \)
(Approximate) direct sampling with flows

Apply f to Haar uniform to get model q, tune f so $q \approx p \propto e^{-S_{\text{target}}}$

Reweight from $q \rightarrow p$

$$w(U) = \frac{p(U)}{q(U)}$$

$$\langle O \rangle_p = \langle wO \rangle_q$$

Measure of sampling quality:
$$\text{ESS} = \frac{1}{\langle w^2 \rangle_q} \in [0,1]$$

Intuition:
$$\text{Var}_q[wO] \approx \frac{\text{Var}_p[O]}{\text{ESS}}$$
$$\text{ESS} \sim \frac{1}{2 \tau_{AC}}$$
(Approximate) direct sampling with flows

Apply f to Haar uniform to get model q, tune f so $q \approx p \propto e^{-S_{\text{target}}}$

Reweight from $q \rightarrow p$

$w(U) = p(U) / q(U)$

$\langle O \rangle_p = \langle wO \rangle_q$

Base $r(U)$

Flow f

Not there yet!

What can we do with presently available flows?

Measure of sampling quality:

$\text{ESS} = 1/\langle w^2 \rangle_q \in [0,1]$

Intuition:

$\text{Var}_q[wO] \approx \text{Var}_p[O] / \text{ESS}$

$\text{ESS} \sim 1/2 \tau_{AC}$
Numerical details

Wilson pure gauge SU(3)
 Sample w/ heatbath (HB) + overrelaxation (OR)

Topological charges
 Wilson flow to $t/a^2 = 2$, compute w/ clover definition, round to integer

Residual flows [2305.02402]
 Each layer applies a step of gradient flow w/r/t a learned action to a subset of links
 → tractable/inexpensive exact Jacobian

Reverse KL self-training
 Sample base distribution r w/ HB+OR
 Train on smaller volumes, then transfer

Minimize:

$$D_{KL}(q||p) = \langle -\log w \rangle_q$$
App 1: Correlated ensembles

Flow an ensemble

→ \(\{U\} \) and \(\{f(U)\} \) are correlated

This is useful!

e.g. for noise cancellation in differences

\[
\langle O \rangle_p - \langle O \rangle_r = \langle wO \rangle_q - \langle O \rangle_r = \langle w(f(U))O(f(U)) - O(U) \rangle_{U \sim r}
\]

Application: Feynman-Hellmann

\(S \rightarrow S + \lambda O \)

\[
\frac{\partial E_h}{\partial \lambda} \bigg|_{\lambda=0} \sim \langle h | O | h \rangle
\]

(Complication: involves fits for \(E_h \), but same idea)

See also [Bacchio 2305.07932]
App 1: Correlated ensembles

Flow an ensemble
→ \{U\} and \{f(U)\} are correlated
This is useful!
e.g. for noise cancellation in differences
\[\langle O \rangle_p - \langle O \rangle_r = \langle wO \rangle_q - \langle O \rangle_r = \langle w(f(U)) O(f(U)) - O(U) \rangle_{U \sim r} \]

Application: Feynman-Hellmann
\[S \rightarrow S + \lambda O \]
\[\frac{\partial E_h}{\partial \lambda} \bigg|_{\lambda=0} \sim \langle h|O|h \rangle \]

(Complication: involves fits for \(E_h \), but same idea)
See also [Bacchio 2305.07932]
App 1: Correlated ensembles

Flow an ensemble
→ \{U\} and \{f(U)\} are correlated
This is useful!
e.g. for noise cancellation in differences
\[
\langle O \rangle_p - \langle O \rangle_r \\
= \langle wO \rangle_q - \langle O \rangle_r \\
= \langle w(f(U)) O(f(U)) - O(U) \rangle_{U \sim r}
\]

Application: Feynman-Hellmann
\[S \rightarrow S + \lambda O \]
\[
\frac{\partial E_h}{\partial \lambda} \bigg|_{\lambda=0} \sim \langle h|O|h \rangle
\]
(Complication: involves fits for \(E_h\), but same idea)

See also [Bacchio 2305.07932]
App 1: Pion $\langle x \rangle_g$ w/ flowed Feynman-Hellmann

[QCDSF-UKQCD 1205.6410]

$$\delta S = -\lambda \frac{\beta}{N_c} \left[\sum_i P_{ti} - \sum_{i<j} P_{ij} \right]$$

$$\langle x \rangle_{g}^{\text{lat}} = -\frac{2}{3m} \frac{\partial m}{\partial \lambda} \bigg|_{\lambda=0} \approx -\frac{2}{3m} \frac{1}{\lambda} \left[m(\lambda) - m(0) \right]$$

Parameters:

$8^3 \times 16$ $\beta = 6$ $\kappa = 0.132$ (quenched)

Flow:

Compute $m(\lambda)$ from $\langle w \ C^{2\text{pt}} \rangle_q$
App 1: Pion $\langle x \rangle_g$ w/ flowed Feynman-Hellmann

[QCDSF-UKQCD 1205.6410]

$$\delta S = -\lambda \frac{\beta}{N_c} \left[\sum_i P_{ti} - \sum_{i<j} P_{ij} \right]$$

$$\langle x \rangle_{g}^{\text{lat}} = -\frac{2}{3m} \frac{\partial m}{\partial \lambda} \bigg|_{\lambda=0} \approx -\frac{2}{3m} \frac{1}{\lambda} [m(\lambda) - m(0)]$$

Parameters:

$8^3 \times 16 \quad \beta = 6 \quad \kappa = 0.132$ (quenched)

Flow:

- ESS ≈ 0.84

Compute $m(\lambda)$ from $\langle w \, C^{2\text{pt}} \rangle_q$
App 2: Transformed Replica EXchange (T-REX)
(REX a.k.a. parallel tempering)
Simultaneously sample chains for different targets

\[p_{\text{acc}} = \min \left[1, \frac{p_0(U_1') p_1(U_0')}{p_0(U_0) p_1(U_1)} J_f(U_0) J_{f^{-1}}(U_1) \right] \]

[Invernizzi Krämer Clemente Noé 2210.14104]
App 2: T-REX Results

Three target βs on 12^4

Two different flows

$5.95 \leftrightarrow 6$

$6 \leftrightarrow 6.05$

1 step = 5 HB + 2 OR, propose swaps every 5 steps
App 2: T-REX Results

Speed-up for multi-ensemble calculation

T-REX streams correlated (useful!)

Neglecting flow costs!

\[\tau(t) = \frac{1}{2} + \sum_{1<t'\leq t} AC(t') \]

\[\tau(t) = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 \]

\[\tau(t) = 70, 55, 50 \]
App 2: T-REX Results

Speed-up for multi-ensemble calculation
T-REX streams correlated (useful!)

Break-even for sampling $\beta = 6.05$

Neglecting flow costs!
App 3: Parallel Tempering on Boundary Conditions (PTBC)

[Hasenbusch 1706.04443] [Bonnano Bonati D’Elia 2012.14000]

[Boyle T 9:00] [Nada M 14:30]

Introduce localized OBC defect
“Poke a hole in the boundary”
→ Faster topological mixing
Remove defect w/ REX

Note: ∃ other options than OBC defects
Other geometries
$\beta_{\text{defect}} > 0$
May work better(?)
App 3: Defect Repair Replica EXchange (DR-REX)

Train flow to repair defect
(Or, multiple flows for several steps of partial repair)

Defect has localized physical effects
Flow acts on subvolume
→ No ESS volume scaling
→ Volume-independent computational cost
App 3: DR-REX Results

Target: $\beta = 6.3$ on 16^4

2^3 OBC defect

Two flows to repair

$\beta_d = 0 \to 3 \to 6.3$

Flows act on 8^4 subvolume

Similar swap AR w/o flows requires 7-8 chains

Swap AR $\sim 23\%$

Swap AR $\sim 28\%$

1 step = 1 HB + 5 OR, propose swaps every 10 steps
App 3: DR-REX Results

Target: $\beta = 6.3$ on 16^4

Two flows to repair a 2^3 OBC defect $\beta_d = 0 \to 3 \to 6.3$

Flows act on 8^4 subvolume
App 3: DR-REX Results

Target: $\beta = 6.3$ on 16^4

Two flows to repair a 2^3 OBC defect $\beta_d = 0 \rightarrow 3 \rightarrow 6.3$

Flows act on 8^4 subvolume

- $\beta_C = 0 \rightarrow 3 \rightarrow 6.3$
- Flows act on 8^4 subvolume

(Overhead, neglecting flow costs)
App 3: DR-REX Results

Target: $\beta = 6.3$ on 16^4

Two flows to repair a 2^3 OBC defect $\beta_d = 0 \rightarrow 3 \rightarrow 6.3$

Flows act on 8^4 subvolume

Need wider/deeper defect for computational advantage!
Closing Thoughts

Flows can give useful correlations between ensembles
 Feynman-Hellmann, continuum/chiral limits, ...

REX makes natural use of flows
 Limiting case: direct sampling

See also: CRAFT [Matthews Arbel Rezende Doucet 2201.13117] → SNFs [Nada M 14:30]

Straightforward generalizations to (pseudo)fermions / QCD
 Flows for fermions [2106.05934] PFs for gauge fields [2207.08945] QCD [2207.08945]

PTBC → DR-REX: very promising
 Flows can make deeper/wider defects practical than w/ REX alone

Stay tuned!

Dan Hackett - Aug 3 - Lattice 2023