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❖ Background

❖ Lattice Methodology

❖ Results

•  Matrix Elements

•  Lorentz invariant amplitudes

•  Quasi-GPDs

•  Light-Cone GPDs



Generalized Parton Distributions

❖ … but not well studied: 
•  extracted from off-forward kinematic (unlike PDFs) 


•  Multi-variable quantities; dependence upon  and  (unlike PDFs) 

•  Inferred from Compton form factors from experimental data (e.g., DVCS)

x, t ξ

❖ GPDs are rich in information: 
• Reflect spatial distribution of partons in transverse plane

• Hadron mechanical properties are stored in GPDs

• Information on spin

❖ Helicity proton GPDs: 

•  Two GPDs: H̃ , Ẽ
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How can we complement information if access is difficult?
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Methodology on the Lattice

❖ Isolation of ground state: single-state fit (plateau fit)

Rμ(Γκ, z, pf , pi; ts, τ) =
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C2pt(Γ0, pi, ts − τ)C2pt(Γ0, pf , τ)C2pt(Γ0, pf , ts)
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τ≫a
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❖  Extraction of matrix elements (helicity):  ⟨N(Pf ) |Ψ̄(z)γμγ5𝒲(z,0)Ψ(0) |N(Pi)⟩
•  Symmetric:        ,     

•  Asymmetric:      , 

⃗pi = P3 ̂z − ⃗Δ /2 ⃗pf = P3 ̂z + ⃗Δ /2

⃗pi = P3 ̂z − ⃗Δ ⃗pf = P3 ̂z

❖ Choice of frame:

4



Methodology on the Lattice

❖ Isolation of ground state: single-state fit (plateau fit)

Rμ(Γκ, z, pf , pi; ts, τ) =
C3pt

μ (Γκ, z, pf , pi; ts, τ)
C2pt(Γ0, pf; ts)

C2pt(Γ0, pi, ts − τ)C2pt(Γ0, pf , τ)C2pt(Γ0, pf , ts)
C2pt(Γ0, pf , ts − τ)C2pt(Γ0, pi, τ)C2pt(Γ0, pi, ts)

ts−τ≫a

τ≫a
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F̃ μ(z, P, Δ) = ū(pf , λ′ )[ iϵμPzΔ

m
Ã1 + γμγ5Ã2 + γ5 ( Pμ

m
Ã3 + mzμÃ4 +

Δμ

m
Ã5) + mγνzνγ5 ( Pμ

m
Ã6 + mzμÃ7 +

Δμ

m
Ã8)] u(pi, λ)

Ãi (z ⋅ P, z ⋅ Δ, Δ2, z2)The matrix elements depend upon 8 linearly-independent Lorentz invariant amplitudes

❖ Parameterization of matrix elements (Lorentz Invariant)

❖  Extraction of matrix elements (helicity):  ⟨N(Pf ) |Ψ̄(z)γμγ5𝒲(z,0)Ψ(0) |N(Pi)⟩
•  Symmetric:        ,     

•  Asymmetric:      , 

⃗pi = P3 ̂z − ⃗Δ /2 ⃗pf = P3 ̂z + ⃗Δ /2

⃗pi = P3 ̂z − ⃗Δ ⃗pf = P3 ̂z

❖ Choice of frame:

4



Methodology on the Lattice
❖ Extraction of quasi-GPDs using the amplitudes

ℰ̃3(z, P, Δ) = 2
P3

Δ3
Ã3 + 2m2 z

Δ3
Ã4 + 2Ã5

ℋ̃3(z ⋅ P, z ⋅ Δ, Δ2) = Ã2 + zP3Ã6 − m2z2Ã7 − zΔ3Ã8

ℋ̃(z ⋅ P, z ⋅ Δ, Δ2, z2) = Ã2 + (P ⋅ z) Ã6 + (Δ ⋅ z) Ã8

ℰ̃(z ⋅ P, z ⋅ Δ, Δ2, z2) = 2
P ⋅ z
Δ ⋅ z

Ã3 + 2Ã5

Standard  definition:γ3γ5

Lorentz invariant definition
F[γ3γ5] =

1
2P0

ū(pf , λ′ )[γ3γ5ℋ̃(x, ξ, t; P3) +
Δ3γ5

2m
ℰ̃(x, ξ, t; P3)]u(pi, λ)
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ℋ̃(z ⋅ P, z ⋅ Δ, Δ2, z2) = Ã2 + (P ⋅ z) Ã6 + (Δ ⋅ z) Ã8
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Standard  definition:γ3γ5

Lorentz invariant definition
F[γ3γ5] =

1
2P0
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Ã4 + 2Ã5
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❖ Renormalization functions: RI-MOM.

❖ Fourier-like transform to x-space (Backus-Gilbert) [Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]

Methodology on the Lattice

❖ Extract light cone-GPDs using matching formalism [Liu, et al., Phys. Rev. D 100, 034006 (2019)]
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Decomposition (selected)
Working with zero-skewness, we cannot extract  due to the  decomposition ℰ̃ γ3γ5

F[γ3γ5] (x, Δ; P3) =
1

2P0
ū(pf, λ′ )[γ3γ5 ℋ̃ (x, ξ, t; P3) +

Δ3γ5

2m
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Decomposition (selected)

Symmetric frame ( )ξ = 0

Πs
0(Γ1) = K ( EΔ1(E + m)

4m3
Ã3)

Asymmetric frame ( )ξ = 0
Πa

0(Γ1) = KΔ1 (
(Ef + m)

4m2
Ã2 +

(Ef + Ei)(Ef + m)
8m3

Ã3 +
(Ef − Ei)(Ef + m)

4m3
Ã5 +

(Ef + Ei)P3z
8m2

Ã6 +
(Ef − Ei)P3z

4m2
Ã8)

Πs
1(Γ0) = K ( −2EΔ2z(E(E + m) − P2

3)
m3

Ã1 −
P3Δ2

4m2
Ã2)

Πa
1(Γ0) = K (

Ef(Ef − Ei − 2m)(Ef + m)Δ2z
m3

Ã1 −
P3Δ2

4m2
Ã2)
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Ã1 −
P3Δ2

4m2
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Frame dependence of matrix elements due to kinematic coefficients of Ãi

Working with zero-skewness, we cannot extract  due to the  decomposition ℰ̃ γ3γ5
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ū(pf, λ′ )[γ3γ5 ℋ̃ (x, ξ, t; P3) +

Δ3γ5

2m
ℰ̃ (x, ξ, t; P3)] u(pi, λ)

6



Lattice Setup
❖  Twisted mass fermions with a clover termNf = 2 + 1 + 1
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Lattice Setup

Computationally efficient setup 

❖  Twisted mass fermions with a clover termNf = 2 + 1 + 1

❖ Calculation of symmetric and asymmetric frame


• Symmetric frame:  
Each  requires new calculation


• Asymmetric frame:  
Several  values grouped in the same production run  
(e.g. { (100), (200), (300), …}) 

⃗Δ

⃗Δ
⃗Δ =

❖ Strategy: decomposition of amplitudes for each kinematic setup (±P3, ± ⃗Δ , ± z)

❖ Exploitation of  symmetry properties with respect to Ãi (±P3, ± ⃗Δ , ± z)
7



Matrix Elements: Πs/a
3 (Γ3)

|P3 | = 1.25 GeV |P3 | = 1.25 GeV
−t = 0.69 GeV2 −t = 0.65 GeV2

❖ Clear signal in both frames

❖ Symmetric frame and asymmetric 
frame has similar magnitude

❖ MEs in symmetric frame have definite 
symmetry properties in 

❖ Data for asymmetric frame matrix 
elements show small asymmetries 

±z, ± P3

8



Amplitudes

9

❖ Matrix elements disentangle in 8 LI amplitudes 

❖ For each setup of , we disentangle the amplitudes

Ã i
±z, ± P3, ± ⃗Δ



Amplitudes

−t = 0.65 GeV2|P3 | = 1.25 GeV
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❖ Matrix elements disentangle in 8 LI amplitudes 

❖ For each setup of , we disentangle the amplitudes

Ã i
±z, ± P3, ± ⃗Δ

❖ Data can be combined according 
  to symmetry properties 

−Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)
Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)

i = 1,3,6
i = 2,4,5,7,8



Amplitudes −ts = 0.69 GeV2

−ta = 0.65 GeV2

|P3 | = 1.25 GeV

❖ Frame comparison for  and A2 A5

❖ Theoretical expectation: amplitudes are Lorentz invariant for same  value


❖ We keep  fixed in both frames , 


❖ Slight deviance due to , ( ) but close enough for a comparison

❖ Remaining amplitudes are either:

•  very small in magnitude ( )


•  theoretically zero at zero skewness ( )

−t
P3, ⃗Δ ⇒ − ts = 0.69 GeV2 −ta = 0.65 GeV2

−ts ≈ − ta ∼ 5 %

Ã1, Ã6, Ã7

Ã3, Ã4, Ã8
10



Quasi-GPDs
❖ Recall that at zero skewness F[γ3γ5] (x, Δ; P3) =

1
2P0

ū(pf , λ′ )[γ3γ5 ℋ̃ (x, ξ, t; P3) +
Δ3γ5

2m
ℰ̃ (x, ξ, t; P3)] u(pi, λ)

❖ Our quasi-GPDs can be related  
   to the LI amplitudes ℋ̃3(Ãi; z) = Ã2 + P3zÃ6 − m2z2Ã7

ℋ̃(Ãi; z) = Ã2 + P3zÃ6

Standard

Lorentz Invariant
(ξ = 0)
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   to the LI amplitudes ℋ̃3(Ãi; z) = Ã2 + P3zÃ6 − m2z2Ã7

ℋ̃(Ãi; z) = Ã2 + P3zÃ6

Standard

Lorentz Invariant
(ξ = 0)

−t = 0.69 GeV2❖ Definition comparison 


❖  dependence P3

❖ Two definitions for quasi-  lead to compatible results (small difference in Im part at )

❖ Imaginary part enhances with  increase

❖ Real part decays faster to zero for the highest  value  

H P3 = 1.25 GeV
P3

P3
11



Quasi-GPDs
❖ Momentum transfer dependence at fixed  |P3 | = 1.25 GeV
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Quasi-GPDs
❖ Momentum transfer dependence at fixed  |P3 | = 1.25 GeV

❖ Decreased magnitude as  increases−t
❖ Difference in magnitude between  points due to  depending on −t ℋ̃3 Ã7

12



From Position to Momentum
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From Position to Momentum
❖ Use Backus-Gilbert approach:

•  Model-independent 

•  Criterion: variance of solution with respect to statistical variation of input data is minimal 

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]
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From Position to Momentum

❖ Test of  dependence in BG reconstruction for , :zmax |P3 | = 1.25 GeV −t = 0.65 GeV2

❖ Negligible  dependence found for the above test (anti-quark region is not well determined)


❖ Statistical errors increase for larger 


❖ Chosen value: 

zmax

zmax

zmax = 11a

❖ Use Backus-Gilbert approach:

•  Model-independent 

•  Criterion: variance of solution with respect to statistical variation of input data is minimal 

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]
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Light-Cone GPDs

❖ Similar statistical accuracy for both definitions 
❖ As  increases, the magnitude of  GPD becomes smaller


❖ Smooth dependence in 


❖At , the GPD are compatible within errors

−t H−
−t

−t > 1.5 GeV2 H−
14



❖ GPD:  and  dependenceH− −t x
❖ Good signal for all values of 

❖ Large values of  not reliably extracted due to higher-twist effects;  
  obtained at no extra computational cost.

−t
−t

15

Light-Cone GPDs



Summary and Future Work
❖ Implementation of asymmetric frame allows us to obtain results in a  
  computationally less expensive way


❖ Matrix elements accessible for large  (beyond )


❖ A dense range of  values obtained

−t 1.5 GeV2

−t
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−t 1.5 GeV2

−t

❖ Parametrization of  dependence


❖ Introduce non-zero skewness ( )


❖ Include more ensembles for the    
investigation of systematic uncertainties 
(e.g., discretization effects, momentum 
boost effects)

−t

Δ3 ≠ 0
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Matrix Elements: Πs/a
j (Γj)

|P3 | = 1.25 GeV
−t = 0.69 GeV2 −t = 0.65 GeV2

|P3 | = 1.25 GeV
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Matrix Elements: Πs/a
j (Γj)

|P3 | = 1.25 GeV
−t = 0.69 GeV2 −t = 0.65 GeV2

|P3 | = 1.25 GeV

❖ Matrix elements are frame dependent

•  Prominent in imaginary part

❖ Asymmetric frame: larger deviation of 
data between  cases


❖  more noisy than 

±z, ± P3, ± ⃗Δ
Πj(Γj) Π3(Γ3)

18



Amplitude Decomposition
❖ Matrix elements disentangle in 8 LI amplitudes 

❖ For each setup of , we disentangle the amplitudes

• For example, at 

Ã i
±z, ± P3, ± ⃗Δ

⃗Δ = (Δ,0,0)
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Amplitude Decomposition
❖ Matrix elements disentangle in 8 LI amplitudes 

❖ For each setup of , we disentangle the amplitudes

• For example, at 

Ã i
±z, ± P3, ± ⃗Δ

⃗Δ = (Δ,0,0)

❖ Asymmetric frame: more matrix elements in each  Ã i

Symmetric Frame Decomposition Asymmetric Frame Decomposition
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Amplitudes
❖ Symmetry Properties

−Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)
Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)

i = 1,3,6
i = 2,4,5,7,8
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Amplitudes
❖ Symmetry Properties

−Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)
Ã*i (−z ⋅ P, z ⋅ Δ, Δ2, z2) = Ãi(z ⋅ P, z ⋅ Δ, Δ2, z2)

i = 1,3,6
i = 2,4,5,7,8

❖ We find that statistical errors reduce by  when the 8 kinematic cases are combined∼ 1/ 8
20



Quasi-GPDs
 dependence for  −t ℋ̃3

❖ Momentum transfer dependence at fixed  |P3 | = 1.25 GeV
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Quasi-GPDs
 dependence for  −t ℋ̃3

❖ Momentum transfer dependence at fixed  |P3 | = 1.25 GeV

❖ Decreased magnitude as  increases−t
❖ Difference in magnitude between  points due to  depending on −t ℋ̃3 Ã7

 dependence for  −t ℋ̃

ℋ̃3(Ãi; z) = Ã2 + P3zÃ6 − m2z2Ã7

ℋ̃(Ãi; z) = Ã2 + P3zÃ6
(ξ = 0)
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Light-Cone GPDs
❖ GPD:  and  dependenceH− −t x

❖ Good signal for all values of 

❖ Large values of  not reliably extracted due to higher-twist effects;  
  obtained at no extra computational cost.

−t
−t
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