Proton Helicity GPDs from lattice QCD

Temple University

In collaboration with: S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, X. Gao, A. Metz, S. Mukherjee, P. Petreczky, A. Scapellato, F. Steffens, Y. Zhao

Joshua Miller

Lattice 2023 **Fermilab** 08/03/2023

Work relies on approach proposed for the unpolarized

- Lattice Methodology
- ✤ Results
 - Matrix Elements
 - Lorentz invariant amplitudes
 - Quasi-GPDs
 - Light-Cone GPDs

Generalized Parton Distributions

GPDs are rich in information:

- Reflect spatial distribution of partons in transverse plane •
- Hadron mechanical properties are stored in GPDs •
- Information on spin lacksquare

***** ... but not well studied:

- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs) Inferred from Compton form factors from experimental data (e.g., DVCS)

Helicity proton GPDs:

• Two GPDs: $\widetilde{H}, \widetilde{E}$

 $F^{[\gamma^+\gamma_5]}(z,\Delta,P) = \bar{u}(p_f,\lambda)$

$$\lambda') \left[\gamma^+ \gamma_5 \widetilde{H}(z,\xi,t) + \frac{\Delta^+ \gamma_5}{2m} \widetilde{E}(z,\xi,t) \right] u(p_i,\lambda)$$

Generalized Parton Distributions

GPDs are rich in information:

- Reflect spatial distribution of partons in transverse plane •
- Hadron mechanical properties are stored in GPDs •
- Information on spin lacksquare

***** ... but not well studied:

- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs) Inferred from Compton form factors from experimental data (e.g., DVCS)

Helicity proton GPDs:

• Two GPDs: $\widetilde{H}, \widetilde{E}$

 $F^{[\gamma^+\gamma_5]}(z,\Delta,P) = \bar{u}(p_f,\lambda)$

$$\lambda') \left[\gamma^+ \gamma_5 \widetilde{H}(z,\xi,t) + \frac{\Delta^+ \gamma_5}{2m} \widetilde{E}(z,\xi,t) \right] u(p_i,\lambda)$$

Generalized Parton Distributions

GPDs are rich in information:

- Reflect spatial distribution of partons in transverse plane •
- Hadron mechanical properties are stored in GPDs •
- Information on spin lacksquare

***** ... but not well studied:

- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs) Inferred from Compton form factors from experimental data (e.g., DVCS)

Helicity proton GPDs:

• Two GPDs: $\widetilde{H}, \widetilde{E}$

 $F^{[\gamma^+\gamma_5]}(z,\Delta,P) = \bar{u}(p_f,\lambda)$

$$\lambda') \left[\gamma^+ \gamma_5 \widetilde{H}(z,\xi,t) + \frac{\Delta^+ \gamma_5}{2m} \widetilde{E}(z,\xi,t) \right] u(p_i,\lambda)$$

How can we complement information if access is difficult?

 $\bigstar \text{ Extraction of matrix elements (helicity): } \left\langle N(P_f) \, | \, \bar{\Psi}(z) \gamma^{\mu} \gamma_5 \mathscr{W}(z,0) \Psi(0) \, | \, N(P_i) \right\rangle$

- $\bigstar \text{ Extraction of matrix elements (helicity): } \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \gamma_5 \mathscr{W}(z,0) \Psi(0) | N(P_i) \right\rangle$
- Symmetric: $\overrightarrow{p_i} = P_3 \hat{z} - \overrightarrow{\Delta}$ Choice of frame:
 - Asymmetric: $\vec{p}_i = P_3 \hat{z} \vec{\Delta}, \ \vec{p}_f = P_3 \hat{z}$

$$\overrightarrow{P_f} = P_3 \hat{z} + \overrightarrow{\Delta}/2$$

- $\bigstar \text{ Extraction of matrix elements (helicity): } \left\langle N(P_f) \, | \, \bar{\Psi}(z) \gamma^{\mu} \gamma_5 \mathscr{W}(z,0) \Psi(0) \, | \, N(P_i) \right\rangle$
- $\overrightarrow{p_i} = P_3 \hat{z} \Delta$ • Symmetric: Choice of frame:
 - Asymmetric: $\vec{p}_i = P_3 \hat{z} \vec{\Delta}, \ \vec{p}_f = P_3 \hat{z}$

Isolation of ground state: single-state fit (plateau fit)

$$R_{\mu}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s}, \tau) = \frac{C_{\mu}^{3\text{pt}}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s}, \tau)}{C^{2\text{pt}}(\Gamma_{0}, p_{f}; t_{s})} \sqrt{\frac{C^{2\text{pt}}(\Gamma_{0}, p_{i}, t_{s} - \tau)C^{2\text{pt}}(\Gamma_{0}, p_{f}, \tau)C^{2\text{pt}}(\Gamma_{0}, p_{f}, t_{s})}{C^{2\text{pt}}(\Gamma_{0}, p_{f}, t_{s} - \tau)C^{2\text{pt}}(\Gamma_{0}, p_{i}, \tau)C^{2\text{pt}}(\Gamma_{0}, p_{i}, t_{s})}} \xrightarrow{t_{s} - \tau \gg a} \Pi_{\mu}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s})$$

7/2,
$$\overrightarrow{p_f} = P_3 \hat{z} + \overrightarrow{\Delta}/2$$

- $\bigstar \text{ Extraction of matrix elements (helicity): } \left\langle N(P_f) | \bar{\Psi}(z) \gamma^{\mu} \gamma_5 \mathscr{W}(z,0) \Psi(0) | N(P_i) \right\rangle$
- $\overrightarrow{p_i} = P_3 \hat{z} \Delta$ • Symmetric: Choice of frame:
 - Asymmetric: $\vec{p}_i = P_3 \hat{z} \vec{\Delta}, \ \vec{p}_f = P_3 \hat{z}$

Isolation of ground state: single-state fit (plateau fit)

$$R_{\mu}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s}, \tau) = \frac{C_{\mu}^{3\text{pt}}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s}, \tau)}{C^{2\text{pt}}(\Gamma_{0}, p_{f}; t_{s})} \sqrt{\frac{C^{2\text{pt}}(\Gamma_{0}, p_{i}, t_{s} - \tau)C^{2\text{pt}}(\Gamma_{0}, p_{f}, \tau)C^{2\text{pt}}(\Gamma_{0}, p_{f}, t_{s})}{C^{2\text{pt}}(\Gamma_{0}, p_{f}, t_{s} - \tau)C^{2\text{pt}}(\Gamma_{0}, p_{i}, \tau)C^{2\text{pt}}(\Gamma_{0}, p_{i}, t_{s})}} \xrightarrow{\frac{t_{s} - \tau \gg a}{\tau \gg a}} \Pi_{\mu}(\Gamma_{\kappa}, z, p_{f}, p_{i}; t_{s})$$

Parameterization of matrix elements (Lorentz Invariant)

$$\widetilde{F}^{\mu}(z,P,\Delta) = \overline{u}(p_f,\lambda') \left[\frac{i\epsilon^{\mu P z \Delta}}{m} \widetilde{A}_1 + \gamma^{\mu} \gamma_5 \widetilde{A}_2 + \gamma_5 \left(\frac{P^{\mu}}{m} \widetilde{A}_3 + m z^{\mu} \widetilde{A}_4 + \frac{\Delta^{\mu}}{m} \widetilde{A}_5 \right) + m \gamma_{\nu} z^{\nu} \gamma_5 \left(\frac{P^{\mu}}{m} \widetilde{A}_6 + m z^{\mu} \widetilde{A}_7 + \frac{\Delta^{\mu}}{m} \widetilde{A}_8 \right) \right] u(p_i,\lambda)$$

The matrix elements depend upon 8 linearly-independent Lorentz invariant amplitudes ~ $\longrightarrow \tilde{A}_i\left(z\cdot P, z\cdot \Delta, \Delta^2, z^2\right)$

/2,
$$\overrightarrow{p_f} = P_3 \hat{z} + \overrightarrow{\Delta}/2$$

Extraction of quasi-GPDs using the amplitudes **Standard** $\gamma^3 \gamma_5$ definition:

$$\tilde{\mathscr{H}}_{3}(z \cdot P, z \cdot \Delta, \Delta^{2}) = \tilde{A}_{2} + zP_{3}\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7} - z$$
$$\tilde{\mathscr{E}}_{3}(z, P, \Delta) = 2\frac{P_{3}}{\Delta_{3}}\tilde{A}_{3} + 2m^{2}\frac{z}{\Delta_{3}}\tilde{A}_{4} + 2\tilde{A}_{5}$$

Lorentz invariant definition

$$\begin{split} \tilde{\mathscr{H}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= \tilde{A}_2 + (P \cdot z)\tilde{A}_6 + (\Delta \cdot z)\tilde{A}_8 \\ \tilde{\mathscr{E}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= 2\frac{P \cdot z}{\Delta \cdot z}\tilde{A}_3 + 2\tilde{A}_5 \end{split}$$

 $\Delta_3 \tilde{A}_8$

 $F^{[\gamma^3\gamma_5]} = \frac{1}{2P_0} \bar{u}(p_f, \lambda') [\gamma^3\gamma_5 \tilde{\mathscr{H}}(x, \xi, t; P_3) + \frac{\Delta_3\gamma_5}{2m} \tilde{\mathscr{E}}(x, \xi, t; P_3)] u(p_i, \lambda)$

Extraction of quasi-GPDs using the amplitudes **Standard** $\gamma^3 \gamma_5$ **definition**:

$$\tilde{\mathscr{H}}_{3}(z \cdot P, z \cdot \Delta, \Delta^{2}) = \tilde{A}_{2} + zP_{3}\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7} - z$$
$$\tilde{\mathscr{E}}_{3}(z, P, \Delta) = 2\frac{P_{3}}{\Delta_{3}}\tilde{A}_{3} + 2m^{2}\frac{z}{\Delta_{3}}\tilde{A}_{4} + 2\tilde{A}_{5}$$

Lorentz invariant definition

$$\begin{split} \tilde{\mathscr{H}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= \tilde{A}_2 + (P \cdot z)\tilde{A}_6 + (\Delta \cdot z)\tilde{A}_8 \\ \tilde{\mathscr{E}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= 2\frac{P \cdot z}{\Delta \cdot z}\tilde{A}_3 + 2\tilde{A}_5 \end{split}$$

Renormalization functions: RI-MOM.

 $\Delta_3 \tilde{A}_8$

 $F^{[\gamma^3\gamma_5]} = \frac{1}{2P_0} \bar{u}(p_f, \lambda') [\gamma^3\gamma_5 \tilde{\mathscr{H}}(x, \xi, t; P_3) + \frac{\Delta_3\gamma_5}{2m} \tilde{\mathscr{E}}(x, \xi, t; P_3)] u(p_i, \lambda)$

Extraction of quasi-GPDs using the amplitudes **Standard** $\gamma^3 \gamma_5$ **definition**:

$$\tilde{\mathscr{H}}_{3}(z \cdot P, z \cdot \Delta, \Delta^{2}) = \tilde{A}_{2} + zP_{3}\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7} - z$$
$$\tilde{\mathscr{E}}_{3}(z, P, \Delta) = 2\frac{P_{3}}{\Delta_{3}}\tilde{A}_{3} + 2m^{2}\frac{z}{\Delta_{3}}\tilde{A}_{4} + 2\tilde{A}_{5}$$

Lorentz invariant definition

$$\begin{split} \tilde{\mathscr{H}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= \tilde{A}_2 + (P \cdot z)\tilde{A}_6 + (\Delta \cdot z)\tilde{A}_8\\ \tilde{\mathscr{E}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) &= 2\frac{P \cdot z}{\Delta \cdot z}\tilde{A}_3 + 2\tilde{A}_5 \end{split}$$

- Renormalization functions: RI-MOM.
- Fourier-like transform to x-space (Backus-Gilbert)

 $\Delta_3 \tilde{A}_8$

$$F^{[\gamma^3\gamma_5]} = \frac{1}{2P_0} \bar{u}(p_f, \lambda') [\gamma^3\gamma_5 \tilde{\mathcal{H}}(x, \xi, t; P_3) + \frac{\Delta_3\gamma_5}{2m} \tilde{\mathcal{E}}(x, \xi, t; P_3)] u(p_i, \xi, t; P_3)$$

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]

 $\lambda)$

Extraction of quasi-GPDs using the amplitudes **Standard** $\gamma^3 \gamma_5$ **definition**:

$$\tilde{\mathscr{H}}_{3}(z \cdot P, z \cdot \Delta, \Delta^{2}) = \tilde{A}_{2} + zP_{3}\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7} - z$$
$$\tilde{\mathscr{E}}_{3}(z, P, \Delta) = 2\frac{P_{3}}{\Delta_{3}}\tilde{A}_{3} + 2m^{2}\frac{z}{\Delta_{3}}\tilde{A}_{4} + 2\tilde{A}_{5}$$

Lorentz invariant definition

$$\tilde{\mathscr{H}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) = \tilde{A}_2 + (P \cdot z)\tilde{A}_6 + (\Delta \cdot z)\tilde{A}_8$$
$$\tilde{\mathscr{E}}(z \cdot P, z \cdot \Delta, \Delta^2, z^2) = 2\frac{P \cdot z}{\Delta \cdot z}\tilde{A}_3 + 2\tilde{A}_5$$

- Renormalization functions: RI-MOM.
- Fourier-like transform to x-space (Backus-Gilbert)
- Extract light cone-GPDs using matching formalism

 $\Delta_3 \tilde{A}_8$

$$F^{[\gamma^3\gamma_5]} = \frac{1}{2P_0} \bar{u}(p_f, \lambda') [\gamma^3\gamma_5 \tilde{\mathscr{H}}(x, \xi, t; P_3) + \frac{\Delta_3\gamma_5}{2m} \tilde{\mathscr{E}}(x, \xi, t; P_3)] u(p_i, \xi, t; P_3)] u(p_i, \xi, t; P_3)$$

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)] [Liu, et al., Phys. Rev. D 100, 034006 (2019)]

 $\lambda)$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^3 \gamma_5$ decomposition

 $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \frac{\Delta^{3}\gamma_{5}}{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^3 \gamma_5$ decomposition

 $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\lambda^{3}\gamma_{5}}_{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

Decomposition (selected)

Working with zero-skewness, we cannot extract \mathcal{E} due to the $\gamma^3 \gamma_5$ decomposition $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\gamma^{3}\gamma_{5}}_{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

Symmetric frame ($\xi = 0$)

$$\Pi_0^s(\Gamma_1) = K\left(\frac{E\Delta_1(E+m)}{4m^3}\tilde{A}_3\right)$$
$$\Pi_1^s(\Gamma_0) = K\left(\frac{-2E\Delta_2 z(E(E+m) - P_3^2)}{m^3}\tilde{A}_1 - \frac{P_3\Delta_2}{4m^2}\tilde{A}_2\right)$$

Asymmetric frame ($\xi = 0$) $\Pi_0^a(\Gamma_1) = K\Delta_1 \left(\frac{(E_f + m)}{4m^2} \tilde{A}_2 + \frac{(E_f + E_i)(E_f + m)}{8m^3} \tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^2} \tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^3} \tilde{A}_3 + \frac{(E_f - E_i)(E_i - m)}{4m^3} \tilde{A}_3 + \frac{(E_f$

$$\Pi_{1}^{a}(\Gamma_{0}) = K \left(\frac{E_{f}(E_{f} - E_{i} - 2m)(E_{f} + m)\Delta_{2}z}{m^{3}} \tilde{A}_{1} - \frac{P_{3}\Delta_{2}}{4m^{2}} \tilde{A}_{2} \right)$$

$$\frac{\partial (E_f + m)}{m^3} \tilde{A}_5 + \frac{(E_f + E_i)P_{3Z}}{8m^2} \tilde{A}_6 + \frac{(E_f - E_i)P_{3Z}}{4m^2} \tilde{A}_8 \right)$$

 $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\gamma^{3}\gamma_{5}}_{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

Symmetric frame ($\xi = 0$)

$$\Pi_0^s(\Gamma_1) = K\left(\frac{E\Delta_1(E+m)}{4m^3}\tilde{A}_3\right)$$
$$\Pi_1^s(\Gamma_0) = K\left(\frac{-2E\Delta_2 z(E(E+m) - P_3^2)}{m^3}\tilde{A}_1 - \frac{P_3\Delta_2}{4m^2}\tilde{A}_2\right)$$

Asymmetric frame ($\xi = 0$) $\Pi_0^a(\Gamma_1) = K\Delta_1 \left(\frac{(E_f + m)}{4m^2}\tilde{A}_2 + \frac{(E_f + E_i)(E_f + m)}{8m^3}\tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^2}\tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^2}\tilde{A}_3 + \frac{(E_f - m)}{4m^2}\tilde{$

$$\Pi_{1}^{a}(\Gamma_{0}) = K \left(\frac{E_{f}(E_{f} - E_{i} - 2m)(E_{f} + m)\Delta_{2}z}{m^{3}} \tilde{A}_{1} - \frac{P_{3}\Delta_{2}}{4m^{2}} \tilde{A}_{2} \right)$$

Decomposition (selected)

Working with zero-skewness, we cannot extract \mathcal{E} due to the $\gamma^3 \gamma_5$ decomposition

$$\frac{(E_{f}+m)}{m^{3}}\tilde{A}_{5} + \frac{(E_{f}+E_{i})P_{3}z}{8m^{2}}\tilde{A}_{6} + \frac{(E_{f}-E_{i})P_{3}z}{4m^{2}}\tilde{A}_{8}\right)$$

 $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\gamma^{3}\gamma_{5}}_{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

Symmetric frame ($\xi = 0$)

$$\Pi_0^s(\Gamma_1) = K\left(\frac{E\Delta_1(E+m)}{4m^3}\tilde{A}_3\right)$$
$$\Pi_1^s(\Gamma_0) = K\left(\frac{-2E\Delta_2 z(E(E+m) - P_3^2)}{m^3}\tilde{A}_1 - \frac{P_3\Delta_2}{4m^2}\tilde{A}_2\right)$$

Asymmetric frame ($\xi = 0$) $\Pi_0^a(\Gamma_1) = K\Delta_1 \left(\frac{(E_f + m)}{4m^2} \tilde{A}_2 + \frac{(E_f + E_i)(E_f + m)}{8m^3} \tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^2} \tilde{A}_3 + \frac{(E_f - E_i)(E_f - m)}{4m^3} \tilde{A}_3 + \frac{(E_f - E_i)(E_i - m)}{4m^3} \tilde{A}_3 + \frac{(E_f$

$$\Pi_{1}^{a}(\Gamma_{0}) = K \left(\frac{E_{f}(E_{f} - E_{i} - 2m)(E_{f} + m)\Delta_{2}z}{m^{3}} \tilde{A}_{1} - \frac{P_{3}\Delta_{2}}{4m^{2}} \tilde{A}_{2} \right)$$

Frame dependence of matrix elements due to kinematic coefficients of A_i

Decomposition (selected)

Working with zero-skewness, we cannot extract \mathcal{E} due to the $\gamma^3 \gamma_5$ decomposition

$$\frac{(E_{f}+m)}{m^{3}}\tilde{A}_{5} + \frac{(E_{f}+E_{i})P_{3}z}{8m^{2}}\tilde{A}_{6} + \frac{(E_{f}-E_{i})P_{3}z}{4m^{2}}\tilde{A}_{8}\right)$$

$N_f = 2 + 1 + 1$ Twisted mass fermions with a clover term

			Paramete	ers			
Ensemble	β	$a \; [{ m fm}]$	volume $L^3 \times T$	N_f	$m_{\pi} { m [MeV]}$	Lm_{π}	$\mid L \mid$
cA211.32	1.726	0.093	$32^3 \times 64$	u,d,s,c	260	4	3.

$N_f = 2 + 1 + 1$ Twisted mass fermions with a clover term

	Parameters									
Ensemble	β	$a \; [{ m fm}]$	volume $L^3 \times T$	N_f	$m_{\pi} [{ m MeV}]$	Lm_π	$L [\mathrm{fm}]$			
cA211.32	1.726	0.093	$32^3 \times 64$	u,d,s,c	260	4	3.0			

Calculation of symmetric and asymmetric frame

- Symmetric frame: Each Δ requires new calculation
- Asymmetric frame: \bullet Several $\Delta^{'}$ values grouped in the same production run (e.g. $\{\overrightarrow{\Delta} = (100), (200), (300), \ldots\}$)

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[\frac{2\pi}{L} \right]$	$-t \; [\text{GeV}^2]$	ξ	N_{ME}	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.77	0	8	329	32	84224
asymn	n ± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	269	8	17216
asymn	n ± 1.25	$(\pm 1,\pm 1,0)$	0.34	0	16	195	8	24960
asymn	n ± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.65	0	8	269	8	17216
asymn	n ± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$) 0.81	0	16	195	8	24960
asymn	n ± 1.25	$(\pm 2,\pm 2,0)$	1.24	0	16	195	8	24960
asymn	n ± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.38	0	8	269	8	17216
asymn	n ± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$) 1.52	0	16	195	8	24960
asymn	n ± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.29	0	8	269	8	17216

$N_f = 2 + 1 + 1$ Twisted mass fermions with a clover term

	Parameters										
Ensemble	β	$a \; [{ m fm}]$	volume $L^3 \times T$	N_f	$m_{\pi} [{ m MeV}]$	Lm_π	L [fm]				
cA211.32	1.726	0.093	$32^3 \times 64$	$2^3 \times 64$ u, d, s, c		4	3.0				

Calculation of symmetric and asymmetric frame

- Symmetric frame: $\overrightarrow{\Delta}$ requires new calculation
- Asymmetric frame: Several $\overrightarrow{\Delta}$ values grouped in the same prod (e.g. { $\overrightarrow{\Delta}$ = (100), (200), (300), ...})

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[rac{2\pi}{L} ight]$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.77	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.34	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.65	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.81	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.24	0	16	195	8	24960
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.38	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$	1.52	0	16	195	8	24960
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.29	0	8	269	8	17216

Computationally efficient setup

8

- 3
- 6
- 4
- $\frac{2}{4}$
- _____6
- 0
- 6 0
- 0
- 6)
- 6 —

$N_f = 2 + 1 + 1$ Twisted mass fermions with a clover term

	Parameters										
Ensemble	β	$a \; [{ m fm}]$	volume $L^3 \times T$	N_{f}	$m_{\pi} [{ m MeV}]$	Lm_π	L [fm]				
cA211.32	1.726	0.093	$32^3 \times 64$	$32^3 \times 64$ u, d, s, c		4	3.0				

Calculation of symmetric and asymmetric frame

- Symmetric frame: Each Δ requires new calculation
- Asymmetric frame: \bullet Several Δ values grouped in the same production run (e.g. $\{\overrightarrow{\Delta} = (100), (200), (300), \ldots\}$)

Strategy: decomposition of amplitudes for each kinematic setup $(\pm P_3, \pm \Delta, \pm z)$

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{ m ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.77	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.34	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,0,0),\ (0,\pm 2,0)$	0.65	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.81	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.24	0	16	195	8	24960
asymm	± 1.25	$(\pm 3,0,0),\ (0,\pm 3,0)$	1.38	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$	1.52	0	16	195	8	24960
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.29	0	8	269	8	17216

Computationally efficient setup

$N_f = 2 + 1 + 1$ Twisted mass fermions with a clover term

	Parameters										
Ensemble	β	$a \; [{ m fm}]$	volume $L^3 \times T$	N_f	$m_{\pi} [{ m MeV}]$	Lm_{π}	L [fm]				
cA211.32	1.726	0.093	$32^3 \times 64$	u,d,s,c	260	4	3.0				

Calculation of symmetric and asymmetric frame

- Symmetric frame: lacksquareEach $\vec{\Delta}$ requires new calculation
- Asymmetric frame: \bullet Several $\Delta^{'}$ values grouped in the same production run (e.g. $\{\overrightarrow{\Delta} = (100), (200), (300), \ldots\}$)

- Strategy: decomposition of amplitudes for each kinematic setup $(\pm P_3, \pm \Delta, \pm z)$
- * Exploitation of \tilde{A}_i symmetry properties with respect to $(\pm P_3, \pm \overline{\Delta}, \pm z)$

frame	$P_3 \; [{ m GeV}]$	$\mathbf{\Delta} \left[rac{2\pi}{L} ight]$	$-t \; [{\rm GeV}^2]$	ξ	$N_{\rm ME}$	$N_{ m confs}$	$N_{ m src}$	$N_{ m tot}$
N/A	± 1.25	$(0,\!0,\!0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0), (0,\pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2,\pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.77	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0), (0,\pm 1,0)$	0.17	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 1,0)$	0.34	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,0,0), (0,\pm 2,0)$	0.65	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 2,0), (\pm 2,\pm 1,0)$	0.81	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,\pm 2,0)$	1.24	0	16	195	8	24960
asymm	± 1.25	$(\pm 3,0,0), (0,\pm 3,0)$	1.38	0	8	269	8	17216
asymm	± 1.25	$(\pm 1,\pm 3,0), (\pm 3,\pm 1,0)$	1.52	0	16	195	8	24960
asymm	± 1.25	$(\pm 4,0,0), (0,\pm 4,0)$	2.29	0	8	269	8	17216

Computationally efficient setup

- Clear signal in both frames
- Symmetric frame and asymmetric frame has similar magnitude
- MEs in symmetric frame have definite symmetry properties in $\pm z, \pm P_3$
- Data for asymmetric frame matrix elements show small asymmetries

Matrix elements disentangle in 8 LI amplitudes \widetilde{A}_i

• For each setup of $\pm_{z,} \pm P_{3,} \pm \overrightarrow{\Delta}$, we disentangle the amplitudes

A Matrix elements disentangle in 8 LI amplitudes \widetilde{A}_i For each setup of $\pm_{z, \pm} P_{3, \pm} \overrightarrow{\Delta}$, we disentangle the amplitudes

- $-t = 0.65 \,\mathrm{GeV^2}$

\clubsuit Matrix elements disentangle in 8 LI amplitudes A_{i} For each setup of $\pm z, \pm P_3, \pm \overrightarrow{\Delta}$, we disentangle the amplitudes

 $|P_3| = 1.25 \, \text{GeV}$

 $-t = 0.65 \,\mathrm{GeV^2}$

\clubsuit Matrix elements disentangle in 8 LI amplitudes A , • For each setup of $\pm_{z, \pm} P_{3, \pm} \overrightarrow{\Delta}$, we disentangle the amplitudes

 $|P_3| = 1.25 \, \text{GeV}$

Data can be combined according to symmetry properties

 $-t = 0.65 \,\mathrm{GeV^2}$

 $-\tilde{A}_{i}^{*}(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}) = \tilde{A}_{i}(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2})$ i = 1,3,6 $\tilde{A}_i^*(-z \cdot P, z \cdot \Delta, \Delta^2, z^2) = \tilde{A}_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$ i = 2, 4, 5, 7, 8

• Frame comparison for A_2 and A_5

- ♦ We keep P_3 , $\overrightarrow{\Delta}$ fixed in both frames $\Rightarrow -t_s$
- Slight deviance due to $-t_s \approx -t_a$, ($\sim 5\%$) but close enough for a comparison
- Remaining amplitudes are either:

T

- very small in magnitude $(\tilde{A}_1, \tilde{A}_6, \tilde{A}_7)$
- theoretically zero at zero skewness $(\tilde{A}_3, \tilde{A}_4, \tilde{A}_8)$

 $|P_3| = 1.25 \, \text{GeV}$ $-t_s = 0.69 \,\mathrm{GeV^2}$ $-t_a = 0.65 \,\mathrm{GeV^2}$

$$_{s} = 0.69 \,\mathrm{GeV^{2}}, -t_{a} = 0.65 \,\mathrm{GeV^{2}}$$

10

Quasi-GPDs $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \frac{\lambda^{3}\gamma_{5}}{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right]u(p_{i},\lambda)$

Recall that at zero skewness

Our quasi-GPDs can be related to the LI amplitudes

$$\begin{split} (\xi=0) & \tilde{\mathscr{H}}_3(\tilde{A}_i;z) = \tilde{A}_2 + P_3 z \tilde{A}_6 - m^2 z^2 \tilde{A}_7 & \text{Standard} \\ \tilde{\mathscr{H}}(\tilde{A}_i;z) = \tilde{A}_2 + P_3 z \tilde{A}_6 & \text{Lorentz Invariant} \end{split}$$

 $(\xi = 0)$

- Recall that at zero skewness
- Our quasi-GPDs can be related to the LI amplitudes
- Definition comparison
- $\mathbf{*} P_3$ dependence

Quasi-GPDs $F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda')\left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\gamma^{3}\gamma_{5}}_{2m}\widetilde{\mathscr{E}}\left(x,\xi,t;P^{3}\right)\right] u(p_{i},\lambda)$

 $\tilde{\mathscr{H}}_{3}(\tilde{A}_{i};z) = \tilde{A}_{2} + P_{3}z\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7}$ $\tilde{\mathscr{H}}(\tilde{A}_{i};z) = \tilde{A}_{2} + P_{3}z\tilde{A}_{6}$ **Standard Lorentz Invariant**

lua

- Recall that at zero skewness
- Our quasi-GPDs can be related to the LI amplitudes
- Definition comparison $\mathbf{*} P_3$ dependence

- Imaginary part enhances with P_3 increase
- \clubsuit Real part decays faster to zero for the highest P_3 value

 $(\xi = 0)$

$$\begin{array}{l} \mathbf{Ouasi-GPDs} \\ F^{[\gamma^{3}\gamma_{5}]}\left(x,\Delta;P^{3}\right) = \frac{1}{2P^{0}}\bar{u}(p_{f},\lambda') \left[\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right) + \underbrace{\gamma^{3}\gamma_{5}\widetilde{\mathscr{H}}\left(x,\xi,t;P^{3}\right)}_{2m}\right] u \\ \\ \widetilde{\mathscr{H}}_{2}(\tilde{A}_{i};z) = \tilde{A}_{2} + P_{2}z\tilde{A}_{6} - m^{2}z^{2}\tilde{A}_{7} \end{array}$$

 $\tilde{\mathscr{H}}(\tilde{A}_i; z) = \tilde{A}_2 + P_3 z \tilde{A}_6$ **Lorentz Invariant**

Ouasi-GPDs \Rightarrow at fixed $|P_3| = 1.25 \, \text{GeV}$

♦ Momentum transfer dependence at fixed $|P_3| = 1.25 \text{ GeV}$

Ouasi-GPDs e at fixed $|P_3| = 1.25 \text{ GeV}$

♦ Momentum transfer dependence at fixed $|P_3| = 1.25 \text{ GeV}$

• Decreased magnitude as -t increases

✤ Difference in magnitude between -t points due to $\tilde{\mathscr{H}}_3$ depending on \tilde{A}_7

From Position to Momentum

From Position to Momentum

Use Backus-Gilbert approach:

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]

- Model-independent
- Criterion: variance of solution with respect to statistical variation of input data is minimal

From Position to Momentum

Use Backus-Gilbert approach:

[Backus & Gilbert, Geophysical Journal International 16, 169 (1968)]

- Model-independent
- Criterion: variance of solution with respect to statistical variation of input data is minimal
- ♦ Test of z_{max} dependence in BG reconstruction for $|P_3| = 1.25$ GeV, -t = 0.65 GeV²:

- ✤ Negligible z_{max} dependence found for the above test (anti-quark region is not well determined)
- Statistical errors increase for larger z_{max}
- Chosen value: $z_{max} = 11a$

Light-Cone GPDs

- Similar statistical accuracy for both definitions
- As t increases, the magnitude of H-GPD becomes smaller
- Smooth dependence in -t
- $At t > 1.5 \text{ GeV}^2$, the *H*-GPD are compatible within errors

Light-Cone GPDs

- H GPD: -t and x dependence
- Good signal for all values of -t
- \clubsuit Large values of -t not reliably extracted due to higher-twist effects; obtained at no extra computational cost.

Summary and Future Work

- Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
- Matrix elements accessible for large -t (beyond 1.5 GeV²)
- A dense range of -t values obtained

Summary and Future Work

- Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
- Matrix elements accessible for large -t (beyond 1.5 GeV²)
- A dense range of -t values obtained
- Parametrization of -t dependence
- ♦ Introduce non-zero skewness ($\Delta_3 \neq 0$)
- Include more ensembles for the investigation of systematic uncertainties (e.g., discretization effects, momentum) boost effects)

Summary and Future Work

- Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
- Matrix elements accessible for large -t (beyond 1.5 GeV²)
- A dense range of -t values obtained
- rightarrow Parametrization of -t dependence
- ♦ Introduce non-zero skewness ($\Delta_3 \neq 0$)
- Include more ensembles for the investigation of systematic uncertainties (e.g., discretization effects, momentum) boost effects)

Thank You!!!

Acknowledgements

U.S. Department of Energy, Office of Nuclear Physics,

Early Career Award under Grant No. DE-SC0020405

- PLGrid Infrastructure by Prometheus in Cracow
- Poznan Supercomputing and Networking Center by Eagle
- Interdisciplinary Centre for Mathematical and Computational Modeling of the Warsaw University by Okeanos
- Academic Computer Center in Gdańsk by Tryton

Backup slides

Matrix Elements: $\Pi_i^{s/a}(\Gamma_i)$

$$\{1, +3, (0, +2, 0)\}$$

$$\{1, +3, (0, -2, 0)\}$$

$$\{2, +3, (+2, 0, 0)\}$$

$$\{2, +3, (-2, 0, 0)\}$$

$$\{1, -3, (0, +2, 0)\}$$

$$\{1, -3, (0, -2, 0)\}$$

$$\{2, -3, (+2, 0, 0)\}$$

$$\{2, -3, (-2, 0, 0)\}$$

$$\Pi_1^s(\Gamma_1) = i \, K \, \left(-\frac{EP_3 \Delta_2^2 z}{m^3} \, \widetilde{A}_1 + \frac{\left(4m(E+m) + \Delta_2^2\right)}{8m^2} \, \widetilde{A}_2 - \frac{\Delta_1^2(E+m)}{4m^3} \, \widetilde{A}_5 \right)$$

$$\Pi_{1}^{a}(\Gamma_{1}) = i K \left(-\frac{E_{f} P_{3} \Delta_{2}^{2} z}{m^{3}} \widetilde{A}_{1} + \frac{\left((E_{f} + m)(E_{i} + m) - P_{3}^{2}\right)}{4m^{2}} \widetilde{A}_{2} + \frac{(E_{f} + m)\Delta_{1}^{2}}{8m^{3}} \widetilde{A}_{3} - \frac{(E_{f} + m)}{4m^{2}} \widetilde{A}_{3} - \frac{(E_{f} + m)}{8m^{3}} \widetilde{A}_{3}$$

Matrix Elem

ents:
$$\prod_{j=1}^{s/a} (\Gamma_j)$$

+3, (0,+2,0)

$$\Pi_{1}^{s}(\Gamma_{1}) = i K \left(-\frac{E_{1}P_{3}\Delta_{2}^{2}z}{m^{3}} \widetilde{A}_{1} + \frac{((E_{f}+m)(E_{i}+m) - P_{3}^{2})}{4m^{3}} \widetilde{A}_{2} + \frac{(E_{f}+m)\Delta_{1}^{2}}{8m^{3}} \widetilde{A}_{3} - \frac{(E_{f}+m)\Delta_{1}^{2}}{8m^{3}} \widetilde{A}_{3} - \frac{(E_{f}+m)}{8m^{3}} \widetilde{A}_{3} - \frac{(E_{f}+m)}{8$$

$$\begin{split} \mathbf{I}_{1}^{a}(\Gamma_{1}) &= i \, K \left(-\frac{E_{f} P_{3} \Delta_{2}^{2} z}{m^{3}} \, \widetilde{A}_{1} + \frac{\left((E_{f} + m)(E_{i} + m) - P_{3}^{2} \right)}{4m^{2}} \, \widetilde{A}_{2} + \frac{(E_{f} + m)\Delta_{1}^{2}}{8m^{3}} \, \widetilde{A}_{3} - \frac{(E_{f} + m)}{4m^{2}} \, \widetilde{A}_{3} - \frac{(E_{f} + m)}{8m^{3}} \, \widetilde{A}_{3} - \frac{(E_{f} + m)}{8$$

- Matrix elements are frame dependent Prominent in imaginary part
- Asymmetric frame: larger deviation of data between $\pm z, \pm P_3, \pm \Delta$ cases
- $\Pi_i(\Gamma_i)$ more noisy than $\Pi_3(\Gamma_3)$

- \clubsuit Matrix elements disentangle in 8 LI amplitudes \widetilde{A}_i
- For each setup of $\pm z$, $\pm P_3$, $\pm \vec{\Delta}$, we disentangle the amplitudes
 - For example, at $\overrightarrow{\Delta} = (\Delta, 0, 0)$

• For example, at $\overrightarrow{\Delta} = (\Delta, 0, 0)$

Symmetric Frame Decomposition

$$\widetilde{A}_{2} = \frac{EP_{3}\Delta}{2(E+m)(E^{2}-P_{3}^{2})}\Pi_{2}^{s}(\Gamma_{0}) + \frac{iE(P_{3}^{2}-E(E+m))}{(E+m)(E-P_{3})(E+P_{3})}\Pi_{2}^{s}(\Gamma_{2}),$$

$$\widetilde{A}_{5} = -\frac{2\,i\,Em^{2}\left(E^{2} + Em - P_{3}^{2}\right)}{\Delta^{2}(E+m)\left(E^{2} - P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{2}) + \frac{Em^{2}P_{3}}{\Delta(E+m)\left(E^{2} - P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{0}) + \frac{2\,i\,Em}{\Delta^{2}}\Pi_{1}^{s}(\Gamma_{1})$$

 (Γ_1)

• For example, at $\overrightarrow{\Delta} = (\Delta, 0, 0)$

Symmetric Frame Decomposition

$$\widetilde{A}_{2} = \frac{EP_{3}\Delta}{2(E+m)(E^{2}-P_{3}^{2})}\Pi_{2}^{s}(\Gamma_{0}) + \frac{iE(P_{3}^{2}-E(E+m))}{(E+m)(E-P_{3})(E+P_{3})}\Pi_{2}^{s}(\Gamma_{2}),$$

$$\begin{split} \widetilde{A}_{2} &= \frac{EP_{3}\Delta}{2(E+m)\left(E^{2}-P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{0}) + \frac{iE\left(P_{3}^{2}-E(E+m)\right)}{(E+m)(E-P_{3})(E+P_{3})}\Pi_{2}^{s}(\Gamma_{2}) , \\ \widetilde{A}_{5} &= -\frac{2iEm^{2}\left(E^{2}+Em-P_{3}^{2}\right)}{\Delta^{2}(E+m)\left(E^{2}-P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{2}) + \frac{Em^{2}P_{3}}{\Delta(E+m)\left(E^{2}-P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{0}) + \frac{2iEm}{\Delta^{2}}\Pi_{1}^{s}(\Gamma_{1}) \\ \widetilde{A}_{5} &= -\frac{2(E_{f}+E_{i})P_{3}m^{4}}{E_{f}(E_{f}-E_{i}-2m)M^{4}} \frac{\Pi_{2}^{a}(\Gamma_{0})}{K} + \frac{(E_{f}+E_{i})m^{3}}{E_{f}^{2}(E_{i}+m)\Delta}\frac{\Pi_{0}^{a}(\Gamma_{1})}{K} \\ &+ \frac{2i(E_{f}-E_{i}-2m)m^{4}}{E_{f}(E_{f}-E_{i})(E_{i}+m)\left(E_{f}^{2}-E_{i}E_{f}-2m^{2}\right)}\frac{\Pi_{2}^{a}(\Gamma_{2})}{K} + \frac{P_{3}m^{3}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)} \\ &- \frac{i(E_{f}+E_{i})m^{3}}{E_{f}^{2}(E_{f}-E_{i})(E_{i}+m)}\frac{\Pi_{1}^{a}(\Gamma_{1})}{K} + \frac{i(E_{f}+E_{i})P_{3}m^{3}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)\Delta}\frac{\Pi_{1}^{a}(\Gamma_{3})}{K} , \end{split}$$

Asymmetric Frame Decomposition

• For example, at $\overrightarrow{\Delta} = (\Delta, 0, 0)$

Symmetric Frame Decomposition

$$\widetilde{A}_{2} = \frac{EP_{3}\Delta}{2(E+m)\left(E^{2}-P_{3}^{2}\right)}\Pi_{2}^{s}(\Gamma_{0}) + \frac{iE\left(P_{3}^{2}-E(E+m)\right)}{(E+m)(E-P_{3})(E+P_{3})}\Pi_{2}^{s}(\Gamma_{2}),$$

$$\begin{split} \widetilde{A}_{2} &= \frac{EP_{3}\Delta}{2(E+m)(E^{2}-P_{3}^{2})}\Pi_{2}^{s}(\Gamma_{0}) + \frac{iE\left(P_{3}^{2}-E(E+m)\right)}{(E+m)(E-P_{3})(E+P_{3})}\Pi_{2}^{s}(\Gamma_{2}), \\ \widetilde{A}_{5} &= -\frac{2iEm^{2}\left(E^{2}+Em-P_{3}^{2}\right)}{\Delta^{2}(E+m)(E^{2}-P_{3}^{2})}\Pi_{2}^{s}(\Gamma_{2}) + \frac{Em^{2}P_{3}}{\Delta(E+m)(E^{2}-P_{3}^{2})}\Pi_{2}^{s}(\Gamma_{0}) + \frac{2iEm}{\Delta^{2}}\Pi_{1}^{s}(\Gamma_{1}) \\ \widetilde{A}_{5} &= -\frac{2(E_{f}+E_{i})P_{3}m^{4}}{E_{f}(E_{f}-E_{i}-2m)^{2}}\Delta \frac{\Pi_{2}^{a}(\Gamma_{0})}{K} + \frac{(E_{f}+E_{i})m^{3}}{E_{f}^{2}(E_{i}+m)\Delta} \frac{\Pi_{0}^{a}(\Gamma_{1})}{K} \\ &+ \frac{2i(E_{f}-E_{i}-2m)m^{4}}{E_{f}(E_{f}-E_{i})(E_{i}+m)\left(E_{f}^{2}-E_{i}E_{f}-2m^{2}\right)}\Delta \frac{\Pi_{2}^{a}(\Gamma_{2})}{K} + \frac{P_{3}m^{3}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)} \\ &- \frac{i(E_{f}+E_{i})m^{3}}{E_{f}^{2}(E_{f}-E_{i})(E_{i}+m)} \frac{\Pi_{1}^{a}(\Gamma_{1})}{K} + \frac{i(E_{f}+E_{i})P_{3}m^{3}}{E_{f}^{2}(E_{f}+m)(E_{i}+m)\Delta} \frac{\Pi_{1}^{a}(\Gamma_{3})}{K}, \end{split}$$

Asymmetric frame: more matrix elements in each A_i

Asymmetric Frame Decomposition

Amplitudes

Symmetry Properties $-\tilde{A}_i^*(-z \cdot P, z \cdot \Delta, \Delta^2, z^2) = \tilde{A}_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$ $\tilde{A}_i^*(-z \cdot P, z \cdot \Delta, \Delta^2, z^2) = \tilde{A}_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2) \qquad i = 2, 4, 5, 7, 8$ 1.5 1.0 $\operatorname{Re}[\widetilde{A}_2]$ 0.0 15 -15-1010 z/a

i = 1,3,6

Amplitudes

• We find that statistical errors reduce by $\sim 1/\sqrt{8}$ when the 8 kinematic cases are combined

Quasi-GPDs xed $|P_3| = 1.25 \text{ GeV}$

♦ Momentum transfer dependence at fixed $|P_3| = 1.25 \text{ GeV}$

Quasi-GPDs xed $|P_3| = 1.25 \text{ GeV}$

♦ Momentum transfer dependence at fixed $|P_3| = 1.25 \text{ GeV}$

Quasi-GPDs

• Momentum transfer dependence at fixed $|P_3| = 1.25 \, \text{GeV}$

• Decreased magnitude as -t increases ♦ Difference in magnitude between -t points due to \mathcal{H}_3 depending on \tilde{A}_7

Light-Cone GPDs

H - GPD: -t and x dependence

• Good signal for all values of -t

- T
- \clubsuit Large values of -t not reliably extracted due to higher-twist effects; obtained at no extra computational cost.

