Proton Helicity GPDs from lattice QCD

Joshua Miller

Temple University

In collaboration with:
S. Bhattacharya, K. Cichy, M. Constantinou, J. Dodson, X. Gao, A. Metz, S. Mukherjee, P. Petreczky, A. Scapellato, F. Steffens, Y. Zhao

Lattice 2023
Fermilab
08/03/2023

Outline

* Work relies on approach proposed for the unpolarized momentum transfer: Unpolarized quarks

Shohini Bhattacharya $\oplus,{ }^{1,{ }^{*}}$ Krzysztof Cichy, ${ }^{2}$ Martha Constantinou $\oplus,{ }^{3, \dagger}$ Jack Dodson, ${ }^{3}$ Xiang Gao, ${ }^{4}$ Andreas Metz, ${ }^{3}$ Swagato Mukherjee $\oplus,{ }^{1}$ Aurora Scapellato, ${ }^{3}$ Fernanda Steffens, ${ }^{5}$ and Yong Zhao ${ }^{4}$

Outline

* Work relies on approach proposed for the unpolarized
* Theory component Shohini Bhattacharya's
talk

Outline

* Work relies on approach proposed for the unpolarized

* Lattice Component (this talk)

Outline

* Work relies on approach proposed for the unpolarized
* Theory component

* Lattice Component (this talk)
* Background
* Lattice Methodology
* Results
- Matrix Elements
- Lorentz invariant amplitudes
- Quasi-GPDs
- Light-Cone GPDs

Generalized Parton Distributions

* GPDs are rich in information:
- Reflect spatial distribution of partons in transverse plane
- Hadron mechanical properties are stored in GPDs
- Information on spin
* ... but not well studied:
- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs)
- Inferred from Compton form factors from experimental data (e.g., DVCS)
* Helicity proton GPDs:
- Two GPDs: $\widetilde{H}, \widetilde{E}$

$$
F^{\left[\gamma^{+} \gamma_{5}\right]}(z, \Delta, P)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{+} \gamma_{5} \widetilde{H}(z, \xi, t)+\frac{\Delta^{+} \gamma_{5}}{2 m} \widetilde{E}(z, \xi, t)\right] u\left(p_{i}, \lambda\right)
$$

Generalized Parton Distributions

* GPDs are rich in information:
- Reflect spatial distribution of partons in transverse plane
- Hadron mechanical properties are stored in GPDs
- Information on spin
* ... but not well studied:
- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs)
- Inferred from Compton form factors from experimental data (e.g., DVCS)
* Helicity proton GPDs:
- Two GPDs: $\widetilde{H}, \widetilde{E}$

$$
F^{\left[\gamma^{+} \gamma_{5}\right]}(z, \Delta, P)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{+} \gamma_{5}\left(H^{(z, \xi, t)}\right)+\frac{\Delta^{+} \gamma_{\zeta}}{2 m} E(z, \xi, t)\right] u\left(p_{i}, \lambda\right)
$$

Generalized Parton Distributions

* GPDs are rich in information:
- Reflect spatial distribution of partons in transverse plane
- Hadron mechanical properties are stored in GPDs
- Information on spin
\& ... but not well studied:
- extracted from off-forward kinematic (unlike PDFs)
- Multi-variable quantities; dependence upon x, t and ξ (unlike PDFs)
- Inferred from Compton form factors from experimental data (e.g., DVCS)

* Helicity proton GPDs:

- Two GPDs: $\widetilde{H}, \widetilde{E}$

$$
F^{\left[\gamma^{+} \gamma_{5}\right]}(z, \Delta, P)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{+} \gamma_{5} \widehat{H(z, \xi, t)}+\frac{\Delta^{+} \gamma_{5}}{2 m}(z(z, \xi, t)] u\left(p_{i}, \lambda\right)\right.
$$

How can we complement information if access is difficult?

Methodology on the Lattice

* Extraction of matrix elements (helicity): $\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \gamma_{5} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$
$N\left(\vec{x}, t_{s}\right)$

Methodology on the Lattice

* Extraction of matrix elements (helicity): $\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \gamma_{5} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$
* Choice of frame: • Symmetric: $\quad \overrightarrow{p_{i}}=P_{3} \hat{z}-\vec{\Delta} / 2, \quad \overrightarrow{p_{f}}=P_{3} \hat{z}+\vec{\Delta} / 2$
- Asymmetric: $\vec{p}_{i}=P_{3} \hat{z}-\vec{\Delta}, \vec{p}_{f}=P_{3} \hat{z}$
$N\left(\vec{x}, t_{s}\right)$

Methodology on the Lattice

* Extraction of matrix elements (helicity): $\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \gamma_{5} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$
* Choice of frame: • Symmetric: $\quad \overrightarrow{p_{i}}=P_{3} \hat{z}-\vec{\Delta} / 2, \quad \overrightarrow{p_{f}}=P_{3} \hat{z}+\vec{\Delta} / 2$
- Asymmetric: $\vec{p}_{i}=P_{3} \hat{z}-\vec{\Delta}, \vec{p}_{f}=P_{3} \hat{z}$
$N\left(\vec{x}, t_{s}\right)$

* Isolation of ground state: single-state fit (plateau fit)

$$
R_{\mu}\left(\Gamma_{\kappa}, z, p_{f}, p_{i} ; t_{s}, \tau\right)=\frac{C_{\mu}^{3 \mathrm{pt}}\left(\Gamma_{\kappa}, z, p_{f}, p_{i} ; t_{s}, \tau\right)}{C^{2 \mathrm{p} \mathrm{p}}\left(\Gamma_{0}, p_{f} ; t_{s}\right)} \sqrt{\frac{C^{2 \mathrm{pt}}\left(\Gamma_{0}, p_{i}, t_{s}-\tau\right) C^{2 \mathrm{pt}}\left(\Gamma_{0}, p_{f}, \tau\right) C^{2 \mathrm{pt}}\left(\Gamma_{0}, p_{f}, t_{s}\right)}{C^{2 \mathrm{pt}}\left(\Gamma_{0}, p_{f}, t_{s}-\tau\right) C^{2 \mathrm{p} \mathrm{t}}\left(\Gamma_{0}, p_{i}, \tau\right) C^{2 \mathrm{p} \mathrm{t}}\left(\Gamma_{0}, p_{i}, t_{s}\right)}} \underset{\tau \gg a}{t_{s}-\tau \gg a} \Pi_{\mu}\left(\Gamma_{\kappa}, z, p_{f}, p_{i} ; t_{s}\right)
$$

Methodology on the Lattice

* Extraction of matrix elements (helicity): $\left\langle N\left(P_{f}\right)\right| \bar{\Psi}(z) \gamma^{\mu} \gamma_{5} \mathscr{W}(z, 0) \Psi(0)\left|N\left(P_{i}\right)\right\rangle$
* Choice of frame: • Symmetric: $\quad \overrightarrow{p_{i}}=P_{3} \hat{z}-\vec{\Delta} / 2, \quad \overrightarrow{p_{f}}=P_{3} \hat{z}+\vec{\Delta} / 2$
$N\left(\vec{x}, t_{s}\right)$

- Asymmetric: $\vec{p}_{i}=P_{3} \hat{z}-\vec{\Delta}, \vec{p}_{f}=P_{3} \hat{z}$
* Isolation of ground state: single-state fit (plateau fit)
* Parameterization of matrix elements (Lorentz Invariant)

$$
\widetilde{F}^{\mu}(z, P, \Delta)=\bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\frac{i \epsilon^{\mu P z \Delta}}{m} \tilde{A}_{1}+\gamma^{\mu} \gamma_{5} \tilde{A}_{2}+\gamma_{5}\left(\frac{P^{\mu}}{m} \tilde{A}_{3}+m z^{\mu} \tilde{A}_{4}+\frac{\Delta^{\mu}}{m} \tilde{A}_{5}\right)+m \gamma_{\nu} z^{\nu} \gamma_{5}\left(\frac{P^{\mu}}{m} \tilde{A}_{6}+m z^{\mu} \tilde{A}_{7}+\frac{\Delta^{\mu}}{m} \tilde{A}_{8}\right)\right] u\left(p_{i}, \lambda\right)
$$

The matrix elements depend upon 8 linearly-independent Lorentz invariant amplitudes

$$
\longrightarrow \tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)
$$

Methodology on the Lattice

* Extraction of quasi-GPDs using the amplitudes

Standard $\gamma^{3} \gamma_{5}$ definition:

$$
\begin{aligned}
& \tilde{\mathscr{H}}_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)=\tilde{A}_{2}+z P_{3} \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7}-z \Delta_{3} \tilde{A}_{8} \\
& \tilde{\mathscr{G}}_{3}(z, P, \Delta)=2 \frac{P_{3}}{\Delta_{3}} \tilde{A}_{3}+2 m^{2} \frac{z}{\Delta_{3}} \tilde{A}_{4}+2 \tilde{A}_{5}
\end{aligned}
$$

Lorentz invariant definition

$$
F^{\left[\gamma^{3} \gamma_{\xi}\right]}=\frac{1}{2 P_{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \tilde{\mathscr{H}}\left(x, \xi, t ; P_{3}\right)+\frac{\Delta_{3} \gamma_{5}}{2 m} \tilde{\mathscr{E}}\left(x, \xi, t ; P_{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

$$
\begin{aligned}
& \tilde{\mathscr{H}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=\tilde{A}_{2}+(P \cdot z) \tilde{A}_{6}+(\Delta \cdot z) \tilde{A}_{8} \\
& \tilde{\mathscr{E}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=2 \frac{P \cdot z}{\Delta \cdot z} \tilde{A}_{3}+2 \tilde{A}_{5}
\end{aligned}
$$

Methodology on the Lattice

* Extraction of quasi-GPDs using the amplitudes

Standard $\gamma^{3} \gamma_{5}$ definition:

$$
\begin{aligned}
& \tilde{\mathscr{H}}_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)=\tilde{A}_{2}+z P_{3} \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7}-z \Delta_{3} \tilde{A}_{8} \\
& \tilde{\mathscr{E}}_{3}(z, P, \Delta)=2 \frac{P_{3}}{\Delta_{3}} \tilde{A}_{3}+2 m^{2} \frac{z}{\Delta_{3}} \tilde{A}_{4}+2 \tilde{A}_{5}
\end{aligned}
$$

Lorentz invariant definition

$$
F^{\left[\gamma^{3} \gamma_{\xi}\right]}=\frac{1}{2 P_{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \tilde{\mathscr{H}}\left(x, \xi, t ; P_{3}\right)+\frac{\Delta_{3} \gamma_{5}}{2 m} \tilde{\mathscr{E}}\left(x, \xi, t ; P_{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

$$
\begin{aligned}
& \tilde{\mathscr{H}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=\tilde{A}_{2}+(P \cdot z) \tilde{A}_{6}+(\Delta \cdot z) \tilde{A}_{8} \\
& \tilde{\mathscr{E}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=2 \frac{P \cdot z}{\Delta \cdot z} \tilde{A}_{3}+2 \tilde{A}_{5}
\end{aligned}
$$

* Renormalization functions: RI-MOM.

Methodology on the Lattice

* Extraction of quasi-GPDs using the amplitudes

Standard $\gamma^{3} \gamma_{5}$ definition:

$$
\begin{aligned}
& \tilde{\mathscr{H}}_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)=\tilde{A}_{2}+z P_{3} \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7}-z \Delta_{3} \tilde{A}_{8} \\
& \tilde{\mathscr{G}}_{3}(z, P, \Delta)=2 \frac{P_{3}}{\Delta_{3}} \tilde{A}_{3}+2 m^{2} \frac{z}{\Delta_{3}} \tilde{A}_{4}+2 \tilde{A}_{5}
\end{aligned}
$$

Lorentz invariant definition

$$
F^{\left[\gamma^{3} \gamma_{s]}\right]}=\frac{1}{2 P_{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \tilde{\mathscr{H}}\left(x, \xi, t ; P_{3}\right)+\frac{\Delta_{3} \gamma_{5}}{2 m} \tilde{\mathscr{E}}\left(x, \xi, t ; P_{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

$$
\begin{aligned}
& \tilde{\mathscr{H}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=\tilde{A}_{2}+(P \cdot z) \tilde{A}_{6}+(\Delta \cdot z) \tilde{A}_{8} \\
& \tilde{\mathscr{E}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=2 \frac{P \cdot z}{\Delta \cdot z} \tilde{A}_{3}+2 \tilde{A}_{5}
\end{aligned}
$$

* Renormalization functions: RI-MOM.
* Fourier-like transform to x-space (Backus-Gilbert)

Methodology on the Lattice

* Extraction of quasi-GPDs using the amplitudes

Standard $\gamma^{3} \gamma_{5}$ definition:

$$
\begin{aligned}
& \tilde{\mathscr{H}}_{3}\left(z \cdot P, z \cdot \Delta, \Delta^{2}\right)=\tilde{A}_{2}+z P_{3} \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7}-z \Delta_{3} \tilde{A}_{8} \\
& \tilde{\mathscr{E}}_{3}(z, P, \Delta)=2 \frac{P_{3}}{\Delta_{3}} \tilde{A}_{3}+2 m^{2} \frac{z}{\Delta_{3}} \tilde{A}_{4}+2 \tilde{A}_{5}
\end{aligned}
$$

Lorentz invariant definition

$$
F^{\left[\gamma^{3} \gamma_{\xi}\right]}=\frac{1}{2 P_{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \tilde{\mathscr{H}}\left(x, \xi, t ; P_{3}\right)+\frac{\Delta_{3} \gamma_{5}}{2 m} \tilde{\mathscr{E}}\left(x, \xi, t ; P_{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

$$
\begin{aligned}
& \tilde{\mathscr{H}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=\tilde{A}_{2}+(P \cdot z) \tilde{A}_{6}+(\Delta \cdot z) \tilde{A}_{8} \\
& \tilde{\mathscr{E}}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right)=2 \frac{P \cdot z}{\Delta \cdot z} \tilde{A}_{3}+2 \tilde{A}_{5}
\end{aligned}
$$

* Renormalization functions: RI-MOM.
* Fourier-like transform to x-space (Backus-Gilbert)
* Extract light cone-GPDs using matching formalism

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^{3} \gamma_{5}$ decomposition

$$
F^{\left[\gamma^{3} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{l}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^{3} \gamma_{5}$ decomposition

$$
F^{\left[\gamma^{3} \gamma_{s}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{l}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\left.\Delta^{3}\right)}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^{3} \gamma_{5}$ decomposition

$$
F^{\left[\gamma^{3} \gamma_{s}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\left.\Delta^{3}\right)}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Symmetric frame ($\xi=0$)

$$
\begin{aligned}
& \Pi_{0}^{s}\left(\Gamma_{1}\right)=K\left(\frac{E \Delta_{1}(E+m)}{4 m^{3}} \tilde{A}_{3}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{0}\right)=K\left(\frac{-2 E \Delta_{2} z\left(E(E+m)-P_{3}^{2}\right)}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Asymmetric frame $(\xi=0)$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=K \Delta_{1}\left(\frac{\left(E_{f}+m\right)}{4 m^{2}} \tilde{A}_{2}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)}{8 m^{3}} \tilde{A}_{3}+\frac{\left(E_{f}-E_{i}\right)\left(E_{f}+m\right)}{4 m^{3}} \tilde{A}_{5}+\frac{\left(E_{f}+E_{i}\right) P_{3} z}{8 m^{2}} \tilde{A}_{6}+\frac{\left(E_{f}-E_{i}\right) P_{3} z}{4 m^{2}} \tilde{A}_{8}\right) \\
& \Pi_{1}^{a}\left(\Gamma_{0}\right)=K\left(\frac{E_{f}\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right) \Delta_{2} z}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^{3} \gamma_{5}$ decomposition

$$
F^{\left[\gamma^{3} \gamma_{s}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{l}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\left.\Delta^{3}\right)}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Symmetric frame $(\xi=0)$

$$
\begin{aligned}
& \Pi_{0}^{s}\left(\Gamma_{1}\right)=K\left(\frac{E \Delta_{1}(E+m)}{4 m^{3}} \tilde{A}_{3}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{0}\right)=K\left(\frac{-2 E \Delta_{2} z\left(E(E+m)-P_{3}^{2}\right)}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Lorentz Invariance

Asymmetric frame $(\xi=0)$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=K \Delta_{1}\left(\frac{\left(E_{f}+m\right)}{4 m^{2}} \tilde{A}_{2}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)}{8 m^{3}} \tilde{A}_{3}+\frac{\left(E_{f}-E_{i}\right)\left(E_{f}+m\right)}{4 m^{3}} \tilde{A}_{5}+\frac{\left(E_{f}+E_{i}\right) P_{3} z}{8 m^{2}} \tilde{A}_{6}+\frac{\left(E_{f}-E_{i}\right) P_{3} z}{4 m^{2}} \tilde{A}_{8}\right) \\
& \Pi_{1}^{a}\left(\Gamma_{0}\right)=K\left(\frac{E_{f}\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right) \Delta_{2} z}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Decomposition (selected)

Working with zero-skewness, we cannot extract $\widetilde{\mathscr{E}}$ due to the $\gamma^{3} \gamma_{5}$ decomposition

$$
F^{\left[\gamma^{3} \gamma_{s}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\left.\Delta^{3}\right)}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

Symmetric frame $(\xi=0)$

$$
\begin{aligned}
& \Pi_{0}^{s}\left(\Gamma_{1}\right)=K\left(\frac{E \Delta_{1}(E+m)}{4 m^{3}} \tilde{A}_{3}\right) \\
& \Pi_{1}^{s}\left(\Gamma_{0}\right)=K\left(\frac{-2 E \Delta_{2} z\left(E(E+m)-P_{3}^{2}\right)}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Lorentz Invariance

Asymmetric frame $(\xi=0)$

$$
\begin{aligned}
& \Pi_{0}^{a}\left(\Gamma_{1}\right)=K \Delta_{1}\left(\frac{\left(E_{f}+m\right)}{4 m^{2}} \tilde{A}_{2}+\frac{\left(E_{f}+E_{i}\right)\left(E_{f}+m\right)}{8 m^{3}} \tilde{A}_{3}+\frac{\left(E_{f}-E_{i}\right)\left(E_{f}+m\right)}{4 m^{3}} \tilde{A}_{5}+\frac{\left(E_{f}+E_{i}\right) P_{3} z}{8 m^{2}} \tilde{A}_{6}+\frac{\left(E_{f}-E_{i}\right) P_{3} z}{4 m^{2}} \tilde{A}_{8}\right) \\
& \Pi_{1}^{a}\left(\Gamma_{0}\right)=K\left(\frac{E_{f}\left(E_{f}-E_{i}-2 m\right)\left(E_{f}+m\right) \Delta_{2} z}{m^{3}} \tilde{A}_{1}-\frac{P_{3} \Delta_{2}}{4 m^{2}} \tilde{A}_{2}\right)
\end{aligned}
$$

Frame dependence of matrix elements due to kinematic coefficients of \tilde{A}_{i}

Lattice Setup

* $N_{f}=2+1+1$ Twisted mass fermions with a clover term

Parameters							
Ensemble	β	$a[\mathrm{fm}]$	volume $L^{3} \times T$	N_{f}	$m_{\pi}[\mathrm{MeV}]$	$L m_{\pi}$	$L[\mathrm{fm}]$
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

Lattice Setup

* $N_{f}=2+1+1$ Twisted mass fermions with a clover term

Parameters							
Ensemble	β	$a[\mathrm{fm}]$	volume $L^{3} \times T$	N_{f}	$m_{\pi}[\mathrm{MeV}]$	$L m_{\pi}$	$L[\mathrm{fm}]$
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

* Calculation of symmetric and asymmetric frame
- Symmetric frame:

Each $\vec{\Delta}$ requires new calculation

- Asymmetric frame:

Several $\vec{\Delta}$ values grouped in the same production run (e.g. $\{\vec{\Delta}=(100),(200),(300), \ldots\})$

frame	$P_{3}[\mathrm{GeV}]$	$\boldsymbol{\Delta}\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.77	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.34	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.65	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.81	0	16	195	8	24960
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.24	0	16	195	8	24960
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.38	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.52	0	16	195	8	24960
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.29	0	8	269	8	17216

Lattice Setup

* $N_{f}=2+1+1$ Twisted mass fermions with a clover term

Parameters							
Ensemble	β	$a[\mathrm{fm}]$	volume $L^{3} \times T$	N_{f}	$m_{\pi}[\mathrm{MeV}]$	$L m_{\pi}$	$L[\mathrm{fm}]$
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

* Calculation of symmetric and asymmetric frame
- Symmetric frame:

Each $\vec{\Delta}$ requires new calculation

- Asymmetric frame:

Several $\vec{\Delta}$ values grouped in the same production run (e.g. $\{\vec{\Delta}=(100),(200),(300), \ldots\})$

Computationally efficient setup

Lattice Setup

* $N_{f}=2+1+1$ Twisted mass fermions with a clover term

Parameters							
Ensemble	β	$a[\mathrm{fm}]$	volume $L^{3} \times T$	N_{f}	$m_{\pi}[\mathrm{MeV}]$	$L m_{\pi}$	$L[\mathrm{fm}]$
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

* Calculation of symmetric and asymmetric frame
- Symmetric frame:

Each $\vec{\Delta}$ requires new calculation

- Asymmetric frame:

Several $\vec{\Delta}$ values grouped in the same production run (e.g. $\{\vec{\Delta}=(100),(200),(300), \ldots\})$

Computationally efficient setup

* Strategy: decomposition of amplitudes for each kinematic setup $\left(\pm P_{3}, \pm \vec{\Delta}, \pm z\right)$

frame	$P_{3}[\mathrm{GeV}]$	$\Delta\left[\frac{2 \pi}{L}\right]$	$-t\left[\mathrm{GeV}^{2}\right]$	ξ	N_{ME}	$N_{\text {confs }}$	$N_{\text {src }}$	$N_{\text {tot }}$
N/A	± 1.25	$(0,0,0)$	0	0	2	329	16	10528
symm	± 0.83	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	67	8	4288
symm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	249	8	15936
symm	± 1.67	$(\pm 2,0,0),(0, \pm 2,0)$	0.69	0	8	294	32	75264
symm	± 1.25	$(\pm 2, \pm 2,0)$	1.38	0	16	224	8	28672
symm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.77	0	8	329	32	84224
asymm	± 1.25	$(\pm 1,0,0),(0, \pm 1,0)$	0.17	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 1,0)$	0.34	0	16	195	8	24960
asymm	± 1.25	$(\pm 2,0,0),(0, \pm 2,0)$	0.65	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 2,0),(\pm 2, \pm 1,0)$	0.81	0	16	195	8	24960
asymm	± 1.25	$(\pm 2, \pm 2,0)$	1.24	0	16	195	8	24960
asymm	± 1.25	$(\pm 3,0,0),(0, \pm 3,0)$	1.38	0	8	269	8	17216
asymm	± 1.25	$(\pm 1, \pm 3,0),(\pm 3, \pm 1,0)$	1.52	0	16	195	8	24960
asymm	± 1.25	$(\pm 4,0,0),(0, \pm 4,0)$	2.29	0	8	269	8	17216

Lattice Setup

* $N_{f}=2+1+1$ Twisted mass fermions with a clover term

Parameters							
Ensemble	β	$a[\mathrm{fm}]$	volume $L^{3} \times T$	N_{f}	$m_{\pi}[\mathrm{MeV}]$	$L m_{\pi}$	$L[\mathrm{fm}]$
cA211.32	1.726	0.093	$32^{3} \times 64$	u, d, s, c	260	4	3.0

* Calculation of symmetric and asymmetric frame
- Symmetric frame:

Each $\vec{\Delta}$ requires new calculation

- Asymmetric frame:

Several $\vec{\Delta}$ values grouped in the same production run (e.g. $\{\vec{\Delta}=(100),(200),(300), \ldots\})$

Computationally efficient setup

* Strategy: decomposition of amplitudes for each kinematic setup ($\pm P_{3}, \pm \vec{\Delta}, \pm z$)
* Exploitation of \tilde{A}_{i} symmetry properties with respect to ($\left.\pm P_{3}, \pm \vec{\Delta}, \pm z\right)$

Matrix Elements: $\Pi_{3}^{s / a}\left(\Gamma_{3}\right)$

$$
\begin{aligned}
& \left|P_{3}\right|=1.25 \mathrm{GeV} \\
& -t=0.69 \mathrm{GeV}^{2}
\end{aligned}
$$

$\{+3,(+2,0,0)\}$
$\{+3,(0,+2,0)\}$
$\{+3,(-2,0,0)\}$
$\{+3,(0,-2,0)\}$
$\{-3,(+2,0,0)\}$
$\{-3,(0,+2,0)\}$
$\{-3,(-2,0,0)\}$
$\{-3,(0,-2,0)\}$

* Clear signal in both frames
* Symmetric frame and asymmetric frame has similar magnitude
*MEs in symmetric frame have definite symmetry properties in $\pm z, \pm P_{3}$
* Data for asymmetric frame matrix elements show small asymmetries

Amplitudes

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$

For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes

Amplitudes

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes

$$
\left|P_{3}\right|=1.25 \mathrm{GeV} \quad-t=0.65 \mathrm{GeV}^{2}
$$

Amplitudes

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes

Amplitudes

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes

* Data can be combined according to symmetry properties

$$
\begin{aligned}
-\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & & i=1,3,6 \\
\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & & i=2,4,5,7,8
\end{aligned}
$$

* Frame comparison for A_{2} and A_{5}

* Theoretical expectation: amplitudes are Lorentz invariant for same $-t$ value
* We keep $P_{3}, \vec{\Delta}$ fixed in both frames $\Rightarrow-t_{s}=0.69 \mathrm{GeV}^{2},-t_{a}=0.65 \mathrm{GeV}^{2}$
* Slight deviance due to $-t_{s} \approx-t_{a}$, ($\sim 5 \%$) but close enough for a comparison
* Remaining amplitudes are either:
- very small in magnitude ($\left.\tilde{A}_{1}, \tilde{A}_{6}, \tilde{A}_{7}\right)$
- theoretically zero at zero skewness $\left(\tilde{A}_{3}, \tilde{A}_{4}, \tilde{A}_{8}\right)$

Quasi-GPDs

* Recall that at zero skewness $\quad F^{\left[\gamma^{3} \gamma_{s}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\Delta^{3} / \sqrt{5}}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)$
* Our quasi-GPDs can be related to the LI amplitudes

$$
(\xi=0) \begin{array}{ll}
\mathscr{H}_{3}\left(\tilde{A}_{i} ; z\right)=\tilde{A}_{2}+P_{3} z \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7} & \text { Standard } \\
\tilde{\mathscr{H}}_{(}\left(\tilde{A}_{i} ; z\right)=\tilde{A}_{2}+P_{3} z \tilde{A}_{6} & \text { Lorentz Invariant }
\end{array}
$$

Quasi-GPDs

* Recall that at zero skewness

$$
F^{\left[\gamma^{3} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\Delta^{3} \gamma_{5}}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

* Our quasi-GPDs can be related to the LI amplitudes

$$
(\xi=0) \quad \begin{array}{rlr}
\tilde{\mathscr{H}}_{3}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7} & \text { Standard } \\
\tilde{\mathscr{H}}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6} & \text { Lorentz Invariant }
\end{array}
$$

* Definition comparison
* P_{3} dependence

Quasi-GPDs

* Recall that at zero skewness

$$
F^{\left[\gamma^{3} \gamma_{5}\right]}\left(x, \Delta ; P^{3}\right)=\frac{1}{2 P^{0}} \bar{u}\left(p_{f}, \lambda^{\prime}\right)\left[\gamma^{3} \gamma_{5} \widetilde{\mathscr{H}}\left(x, \xi, t ; P^{3}\right)+\frac{\Delta^{3} / \sqrt{5}}{2 m} \widetilde{\mathscr{E}}\left(x, \xi, t ; P^{3}\right)\right] u\left(p_{i}, \lambda\right)
$$

* Our quasi-GPDs can be related to the LI amplitudes

$$
(\xi=0) \quad \begin{array}{rlrl}
& \tilde{\mathscr{H}}_{3}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7} & \text { Standard } \\
\tilde{\mathscr{H}}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6} & \text { Lorentz Invariant }
\end{array}
$$

* Definition comparison
* P_{3} dependence

* Two definitions for quasi- H lead to compatible results (small difference in Im part at $P_{3}=1.25 \mathrm{GeV}$)
* Imaginary part enhances with P_{3} increase
* Real part decays faster to zero for the highest P_{3} value

Quasi-GPDs

* Momentum transfer dependence at fixed $\left|P_{3}\right|=1.25 \mathrm{GeV}$

Quasi-GPDs

* Momentum transfer dependence at fixed $\left|P_{3}\right|=1.25 \mathrm{GeV}$

* Decreased magnitude as $-t$ increases
* Difference in magnitude between $-t$ points due to $\tilde{\mathscr{H}}_{3}$ depending on \tilde{A}_{7}

From Position to Momentum

From Position to Momentum

* Use Backus-Gilbert approach:
[Backus \& Gilbert, Geophysical Journal International 16, 169 (1968)]
- Model-independent
- Criterion: variance of solution with respect to statistical variation of input data is minimal

From Position to Momentum

* Use Backus-Gilbert approach:

[Backus \& Gilbert, Geophysical Journal International 16, 169 (1968)]

- Model-independent
- Criterion: variance of solution with respect to statistical variation of input data is minimal * Test of $z_{\text {max }}$ dependence in BG reconstruction for $\left|P_{3}\right|=1.25 \mathrm{GeV},-t=0.65 \mathrm{GeV}^{2}$:

* Negligible $z_{\text {max }}$ dependence found for the above test (anti-quark region is not well determined)
* Statistical errors increase for larger $z_{\text {max }}$
* Chosen value: $z_{\text {max }}=11 a$

Light-Cone GPDs

* Similar statistical accuracy for both definitions
* As $-t$ increases, the magnitude of H-GPD becomes smaller
* Smooth dependence in $-t$
*At $-t>1.5 \mathrm{GeV}^{2}$, the $H-\mathrm{GPD}$ are compatible within errors

Light-Cone GPDs

* H-GPD: $-t$ and x dependence
* Good signal for all values of $-t$
* Large values of $-t$ not reliably extracted due to higher-twist effects; obtained at no extra computational cost.

Summary and Future Work

* Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
* Matrix elements accessible for large $-t$ (beyond $1.5 \mathrm{GeV}^{2}$)
* A dense range of $-t$ values obtained

Summary and Future Work

* Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
* Matrix elements accessible for large $-t$ (beyond $1.5 \mathrm{GeV}^{2}$)
* A dense range of $-t$ values obtained
* Parametrization of $-t$ dependence
* Introduce non-zero skewness ($\Delta_{3} \neq 0$)
* Include more ensembles for the investigation of systematic uncertainties (e.g., discretization effects, momentum boost effects)

Summary and Future Work

* Implementation of asymmetric frame allows us to obtain results in a computationally less expensive way
* Matrix elements accessible for large $-t$ (beyond $1.5 \mathrm{GeV}^{2}$)
* A dense range of $-t$ values obtained
* Parametrization of $-t$ dependence
* Introduce non-zero skewness ($\Delta_{3} \neq 0$)
* Include more ensembles for the investigation of systematic uncertainties (e.g., discretization effects, momentum boost effects)

Thank You!!!

Acknowledgements

* U.S. Department of Energy, Office of Nuclear Physics,
Early Career Award under Grant No. DE-SC0020405
* PLGrid Infrastructure by Prometheus in Cracow
* Poznan Supercomputing and Networking Center by Eagle
* Interdisciplinary Centre for Mathematical and Computational
Modeling of the Warsaw University by Okeanos
* Academic Computer Center in Gdańsk by Tryton

Backup slides

Matrix Elements: $\Pi_{j}^{5 / a}\left(\Gamma_{j}\right)$

$$
\left|P_{3}\right|=1.25 \mathrm{GeV}
$$

$$
-t=0.69 \mathrm{GeV}^{2}
$$

$\begin{array}{ll}\Phi & \{1,+3,(0,+2,0)\} \\ \Phi & \{1,+3,(0,-2,0)\} \\ \Phi & \{2,+3,(+2,0,0)\} \\ \Phi & \{2,+3,(-2,0,0)\} \\ \Phi & \{1,-3,(0,+2,0)\} \\ \Phi & \{1,-3,(0,-2,0)\} \\ \Phi & \{2,-3,(+2,0,0)\} \\ \Phi & \{2,-3,(-2,0,0)\}\end{array}$

$$
\Pi_{1}^{s}\left(\Gamma_{1}\right)=i K\left(-\frac{E P_{3} \Delta_{2}^{2} z}{m^{3}} \widetilde{A}_{1}+\frac{\left(4 m(E+m)+\Delta_{2}^{2}\right)}{8 m^{2}} \widetilde{A}_{2}-\frac{\Delta_{1}^{2}(E+m)}{4 m^{3}} \widetilde{A}_{5}\right)
$$

$$
\begin{aligned}
\Pi_{1}^{a}\left(\Gamma_{1}\right)=i K & \left(-\frac{E_{f} P_{3} \Delta_{2}^{2} z}{m^{3}} \widetilde{A}_{1}+\frac{\left(\left(E_{f}+m\right)\left(E_{i}+m\right)-P_{3}^{2}\right)}{4 m^{2}} \widetilde{A}_{2}+\frac{\left(E_{f}+m\right) \Delta_{1}^{2}}{8 m^{3}} \widetilde{A}_{3}-\frac{\left(E_{f}+m\right) \Delta_{1}^{2}}{4 m^{3}} \widetilde{A}_{5}\right. \\
& \left.+\frac{P_{3} z \Delta_{1}^{2}}{8 m^{2}} \widetilde{A}_{6}-\frac{P_{3} z \Delta_{1}^{2}}{4 m^{2}} \widetilde{A}_{8}\right)
\end{aligned}
$$

Matrix Elements: $\Pi_{j}^{5 / a}\left(\Gamma_{j}\right)$

$$
\begin{aligned}
& \left|P_{3}\right|=1.25 \mathrm{GeV} \\
& -t=0.69 \mathrm{GeV}^{2}
\end{aligned}
$$

$\left|P_{3}\right|=1.25 \mathrm{GeV}$
$-t=0.65 \mathrm{GeV}^{2}$
$\{1,+3,(0,+2,0)\}$
$\{1,+3,(0,-2,0)\}$
$\{2,+3,(+2,0,0)\}$
$\{2,+3,(-2,0,0)\}$
$\{1,-3,(0,+2,0)\}$
$\{1,-3,(0,-2,0)\}$
$\{2,-3,(+2,0,0)\}$
$\{2,-3,(-2,0,0)\}$

$$
\Pi_{1}^{s}\left(\Gamma_{1}\right)=i K\left(-\frac{E P_{3} \Delta_{2}^{2} z}{m^{3}} \widetilde{A}_{1}+\frac{\left(4 m(E+m)+\Delta_{2}^{2}\right)}{8 m^{2}} \widetilde{A}_{2}-\frac{\Delta_{1}^{2}(E+m)}{4 m^{3}} \widetilde{A}_{5}\right)
$$

$$
\Pi_{1}^{a}\left(\Gamma_{1}\right)=i K\left(-\frac{E_{f} P_{3} \Delta_{2}^{2} z}{m^{3}} \widetilde{A}_{1}+\frac{\left(\left(E_{f}+m\right)\left(E_{i}+m\right)-P_{3}^{2}\right)}{4 m^{2}} \widetilde{A}_{2}+\frac{\left(E_{f}+m\right) \Delta_{1}^{2}}{8 m^{3}} \widetilde{A}_{3}-\frac{\left(E_{f}+m\right) \Delta_{1}^{2}}{4 m^{3}} \widetilde{A}_{5}\right.
$$

* Matrix elements are frame dependent
- Prominent in imaginary part
* Asymmetric frame: larger deviation of data between $\pm z, \pm P_{3}, \pm \vec{\Delta}$ cases
$* \Pi_{j}\left(\Gamma_{j}\right)$ more noisy than $\Pi_{3}\left(\Gamma_{3}\right)$

Amplitude Decomposition

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes
- For example, at $\vec{\Delta}=(\Delta, 0,0)$

Amplitude Decomposition

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes
- For example, at $\vec{\Delta}=(\Delta, 0,0)$

Symmetric Frame Decomposition

$$
\begin{aligned}
& \widetilde{A}_{2}=\frac{E P_{3} \Delta}{2(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{i E\left(P_{3}^{2}-E(E+m)\right)}{(E+m)\left(E-P_{3}\right)\left(E+P_{3}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right) \\
& \widetilde{A}_{5}=-\frac{2 i E m^{2}\left(E^{2}+E m-P_{3}^{2}\right)}{\Delta^{2}(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right)+\frac{E m^{2} P_{3}}{\Delta(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{2 i E m}{\Delta^{2}} \Pi_{1}^{s}\left(\Gamma_{1}\right)
\end{aligned}
$$

Amplitude Decomposition

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes
- For example, at $\vec{\Delta}=(\Delta, 0,0)$

Symmetric Frame Decomposition

$$
\begin{aligned}
& \widetilde{A}_{2}=\frac{E P_{3} \Delta}{2(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{i E\left(P_{3}^{2}-E(E+m)\right)}{(E+m)\left(E-P_{3}\right)\left(E+P_{3}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right) \\
& \widetilde{A}_{5}=-\frac{2 i E m^{2}\left(E^{2}+E m-P_{3}^{2}\right)}{\Delta^{2}(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right)+\frac{E m^{2} P_{3}}{\Delta(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{2 i E m}{\Delta^{2}} \Pi_{1}^{s}\left(\Gamma_{1}\right)
\end{aligned}
$$

Asymmetric Frame Decomposition

$$
\widetilde{A}_{2}=\frac{2 P_{3} \Delta m^{2}}{\left(E_{f}+m\right)\left(E_{i}+m\right)\left(2 m^{2}+E_{f}\left(E_{i}-E_{f}\right)\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{0}\right)}{K}+\frac{2 i\left(E_{f}-E_{i}-2 m\right) m^{2}}{\left(E_{i}+m\right)\left(2 m^{2}+E_{f}\left(E_{i}-E_{f}\right)\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{2}\right)}{K}
$$

$$
\begin{aligned}
\widetilde{A}_{5}= & -\frac{2\left(E_{f}+E_{i}\right) P_{3} m^{4}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)\left(E_{f}^{2}-E_{i} E_{f}-2 m^{2}\right) \Delta} \frac{\Pi_{2}^{a}\left(\Gamma_{0}\right)}{K}+\frac{\left(E_{f}+E_{i}\right) m^{3}}{E_{f}^{2}\left(E_{i}+m\right) \Delta} \frac{\Pi_{0}^{a}\left(\Gamma_{1}\right)}{K} \\
& +\frac{2 i\left(E_{f}-E_{i}-2 m\right) m^{4}}{E_{f}\left(E_{f}-E_{i}\right)\left(E_{i}+m\right)\left(E_{f}^{2}-E_{i} E_{f}-2 m^{2}\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{2}\right)}{K}+\frac{P_{3} m^{3}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{3}\right)}{K} \\
& -\frac{i\left(E_{f}+E_{i}\right) m^{3}}{E_{f}^{2}\left(E_{f}-E_{i}\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{1}\right)}{K}+\frac{i\left(E_{f}+E_{i}\right) P_{3} m^{3}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) \Delta} \frac{\Pi_{1}^{a}\left(\Gamma_{3}\right)}{K},
\end{aligned}
$$

Amplitude Decomposition

* Matrix elements disentangle in 8 LI amplitudes $\widetilde{A_{i}}$
* For each setup of $\pm z, \pm P_{3}, \pm \vec{\Delta}$, we disentangle the amplitudes
- For example, at $\vec{\Delta}=(\Delta, 0,0)$

Symmetric Frame Decomposition

$$
\begin{array}{ll}
\widetilde{A}_{2}=\frac{E P_{3} \Delta}{2(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{i E\left(P_{3}^{2}-E(E+m)\right)}{(E+m)\left(E-P_{3}\right)\left(E+P_{3}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right), & \widetilde{A}_{2}=\frac{2 P_{3} \Delta m^{2}}{\left(E_{f}+m\right)\left(E_{i}+m\right)\left(2 m^{2}+E_{f}\left(E_{i}-E_{f}\right)\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{0}\right)}{K}+\frac{2 i\left(E_{f}-E_{i}-2 m\right) m^{2}}{\left(E_{i}+m\right)\left(2 m^{2}+E_{f}\left(E_{i}-E_{f}\right)\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{2}\right)}{K} \\
\widetilde{A}_{5}=-\frac{2 i E m^{2}\left(E^{2}+E m-P_{3}^{2}\right)}{\Delta^{2}(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{2}\right)+\frac{E m^{2} P_{3}}{\Delta(E+m)\left(E^{2}-P_{3}^{2}\right)} \Pi_{2}^{s}\left(\Gamma_{0}\right)+\frac{2 i E m}{\Delta^{2}} \Pi_{1}^{s}\left(\Gamma_{1}\right) & \widetilde{A}_{5}=-\frac{2\left(E_{f}+E_{i}\right) P_{3} m^{4}}{E_{f}\left(E_{f}+m\right)\left(E_{i}+m\right)\left(E_{f}^{2}-E_{i} E_{f}-2 m^{2}\right) \Delta} \frac{\Pi_{2}^{a}\left(\Gamma_{0}\right)}{K}+\frac{\left(E_{f}+E_{i}\right) m^{3}}{E_{f}^{2}\left(E_{i}+m\right) \Delta} \frac{\Pi_{0}^{a}\left(\Gamma_{1}\right)}{K} \\
& +\frac{2 i\left(E_{f}-E_{i}-2 m\right) m^{4}}{E_{f}\left(E_{f}-E_{i}\right)\left(E_{i}+m\right)\left(E_{f}^{2}-E_{i} E_{f}-2 m^{2}\right)} \frac{\Pi_{2}^{a}\left(\Gamma_{2}\right)}{K}+\frac{P_{3} m^{3}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right)} \frac{\Pi_{0}^{a}\left(\Gamma_{3}\right)}{K} \\
& -\frac{i\left(E_{f}+E_{i}\right) m^{3}}{E_{f}^{2}\left(E_{f}-E_{i}\right)\left(E_{i}+m\right)} \frac{\Pi_{1}^{a}\left(\Gamma_{1}\right)}{K}+\frac{i\left(E_{f}+E_{i}\right) P_{3} m^{3}}{E_{f}^{2}\left(E_{f}+m\right)\left(E_{i}+m\right) \Delta} \frac{\Pi_{1}^{a}\left(\Gamma_{3}\right)}{K},
\end{array}
$$

Asymmetric Frame Decomposition

* Asymmetric frame: more matrix elements in each $\widetilde{A_{i}}$

Amplitudes

* Symmetry Properties

$$
\begin{aligned}
-\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & & i=1,3,6 \\
\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & i & =2,4,5,7,8
\end{aligned}
$$

Amplitudes

* Symmetry Properties

$$
\begin{aligned}
-\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & & i=1,3,6 \\
\tilde{A}_{i}^{*}\left(-z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & =\tilde{A}_{i}\left(z \cdot P, z \cdot \Delta, \Delta^{2}, z^{2}\right) & i & =2,4,5,7,8
\end{aligned}
$$

* We find that statistical errors reduce by $\sim 1 / \sqrt{8}$ when the 8 kinematic cases are combined

Quasi-GPDs

* Momentum transfer dependence at fixed $\left|P_{3}\right|=1.25 \mathrm{GeV}$

$\leftarrow-t$ dependence for $\tilde{\mathscr{H}}_{3}$

Quasi-GPDs

* Momentum transfer dependence at fixed $\left|P_{3}\right|=1.25 \mathrm{GeV}$

Quasi-GPDs

* Momentum transfer dependence at fixed $\left|P_{3}\right|=1.25 \mathrm{GeV}$

$-t$ dependence for $\tilde{\mathscr{H}}$
$(\xi=0)$

$$
\begin{aligned}
\tilde{\mathscr{H}}_{3}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6}-m^{2} z^{2} \tilde{A}_{7} \\
\tilde{\mathscr{H}}\left(\tilde{A}_{i} ; z\right) & =\tilde{A}_{2}+P_{3} z \tilde{A}_{6}
\end{aligned}
$$

* Decreased magnitude as $-t$ increases
* Difference in magnitude between $-t$ points due to $\tilde{\mathscr{H}}_{3}$ depending on \tilde{A}_{7}

Light-Cone GPDs

$* H$-GPD: $-t$ and x dependence

* Good signal for all values of $-t$
* Large values of $-t$ not reliably extracted due to higher-twist effects; obtained at no extra computational cost.

