Lattice QCD input for neutrino-Z scattering

Rajan Gupta
Theoretical Division
Los Alamos National Laboratory, USA

Acknowledgements

Thanks to those who sent data and results

Constantia Alexandrou (ETM)
A. Meyer, A. Walker-Loud (CalLAT)

Shigeme Ohta (LHP/RBC/UKQCD)
Raza Sufian (χ QCD)
Ryutoro Tsuji (PACS)
Thanks to my collaborators (PNDME and NME collaborations)
Tanmoy Bhattacharya, Vincenzo Cirigliano, Yong-Chull Jang, Balint Joo, Huey-Wen Lin, Emanuele Mereghetti, Santanu Mondal, Sungwoo Park, Oleksandr (Sasha) Tomalak, Frank Winter, Junsik Yoo, Boram Yoon
Thanks for computer resources
OLCF (INCITE HEP133), ERCAP@NERSC (HEP, NP), USQCD@JLAB, LANL IC

- USQCD Community white paper:

Lattice QCD and Neutrino-Nucleus Scattering, Eur.Phys.J.A 55 (2019) 11, 196

- Snowmass 2021 White Paper

Theoretical tools for neutrino scattering: interplay between lattice QCD, EFTs, nuclear physics, phenomenology, and neutrino event generators. e-Print: 2203.09030 [hep-ph]

Outline:

- What LQCD can provide for v-nucleus oscillation experiments
- Axial and vector form factors of nucleons [nuclei are much more challenging]
- Nuclear corrections $(p, n) \rightarrow\left(C^{12}, O^{16}, A r^{40}\right)$
- Challenges to the calculations of nucleon matrix elements
- Signal-to-noise falls as $e^{-\left(M_{N}-1.5 M_{\pi}\right) \tau}$
- Excited states in nucleon correlation functions
- Extrapolation in $\left\{a, M_{\pi}, M_{\pi} L\right\}$
- FF must satisfy PCAC
- What we learned from $\left\langle N\left(p_{f}\right)\right| A_{4}(q)\left|N\left(p_{i}\right)\right\rangle$
- Towers of $N \pi, N \pi \pi$, states contribute to axial and PS correlators
- Comparison of published results for g_{A}, G_{A}
- Comparison with MINERvA and $v-D$ analyses
- Summary of unpublished results for g_{A}, G_{A}
- Transition matrix elements; Results for G_{E}, G_{M}
- Future

v energy-range covers complex physics

- Neutrino energy and flux not known precisely
- Dynamics of struck Argon nucleus is too complex to simulate directly and connect to final states seen in the detectors

Ultimate Goal: Inputs for DUNE

Two matrix elements for $v-{ }^{40} \operatorname{Ar}$ scattering.

$$
\begin{aligned}
& \left.\left.\langle X| A_{\mu}(q)\right|^{40} A r\right\rangle \\
& \left.\left.\langle X| V_{\mu}(q)\right|^{40} A r\right\rangle
\end{aligned}
$$

Building blocks for different energy regions: starting with nucleons
$\langle p| J_{\mu}^{w}(q)|n\rangle$
Quasi-elastic
$\langle n \pi| J_{\mu}^{w}(q)|n\rangle,\langle\Delta| J_{\mu}^{w}(q)|n\rangle$
$\langle\mathrm{X}| J_{\mu}^{w}(q)|n\rangle$

Including nuclear effects in complex nuclear targets

Nuclear many body Hamiltonian takes as input matrix elements involving successively more multi-particles

- One nucleon $\langle p| J_{\mu}^{+}(q)|n\rangle$
- Transition $\langle n \pi| J_{\mu}^{w}(q)|n\rangle,\langle\Delta| J_{\mu}^{w}(q)|n\rangle$
- Two nucleon $\langle n p| J_{\mu}^{w+}(q)|n n\rangle$

Discussed by Noemi Rocco

The v-n differential cross-section:

$$
\begin{aligned}
& \frac{d \sigma}{d Q^{2}}\binom{\nu_{l}+n \rightarrow l^{-}+p}{\overline{\nu_{l}}+p \rightarrow l^{+}+n} \\
& =\frac{M^{2} G_{F}{ }^{2} \cos ^{2} \theta_{c}}{8 \pi E_{\nu}{ }^{2}}\left\{A\left(Q^{2}\right) \pm B\left(Q^{2}\right) \frac{(s-u)}{M^{2}}+C\left(Q^{2}\right) \frac{(s-u)^{2}}{M^{4}}\right\} \text {, } \\
& A\left(Q^{2}\right)=\frac{\left(m^{2}+Q^{2}\right)}{M^{2}}\left[(1+\tau) F_{A}^{2}-(1-\tau) F_{1}^{2}+\tau(1-\tau) F_{2}^{2}+4 \tau F_{1} F_{2}\right. \\
& \left.-\frac{m^{2}}{4 M^{2}}\left(\left(F_{1}+F_{2}\right)^{2}+\left(F_{A}+2 F_{P}\right)^{2}-4\left(1+\frac{Q^{2}}{4 M^{2}}\right) F_{P}^{2}\right)\right], \\
& B\left(Q^{2}\right)=\frac{Q^{2}}{M^{2}} F_{A}\left(F_{1}+F_{2}\right), \\
& C\left(Q^{2}\right)=\frac{1}{4}\left(F_{A}^{2}+F_{1}^{2}+\tau F_{2}^{2}\right) . \\
& \left\langle N A_{\mu} N\right\rangle \rightarrow \text { linear combination of } F_{A}, \widetilde{F}_{P} \\
& \left\langle N V_{\mu} N\right\rangle \rightarrow G_{E}, G_{M} \\
& F_{A}=\text { axial form factor } \\
& G_{E}=F_{1}-\tau F_{2} \text { Electric } \\
& G_{M}=F_{1}+F_{2} \text { Magnetic } \\
& \tau=Q^{2} / 4 M^{2} \\
& M=M_{p}=939 \mathrm{MeV} \\
& m=\text { mass of the lepton }
\end{aligned}
$$

Analysis of $(e, \mu, v)-n$ scattering involves 5 Form Factors \& 3 charges g_{A}, μ, g_{p}^{*}

- $G_{E}\left(Q^{2}\right) \quad$ Electric
- $G_{M}\left(Q^{2}\right) \quad$ Magnetic
- $G_{A}\left(Q^{2}\right)$ Axial
- $\tilde{G}_{P}\left(Q^{2}\right) \quad$ Induced pseudoscalar
- $G_{P}\left(Q^{2}\right) \quad$ Pseudoscalar (extracted from $\langle N P N\rangle \rightarrow G_{P}$)
- Lattice methodology is common: all calculated at the same time
- Precise experimental data exist for $G_{E}\left(Q^{2}\right)$ and $G_{M}\left(Q^{2}\right)$
- Axial ward identity (PCAC) relates $G_{A}\left(Q^{2}\right), \tilde{G}_{P}\left(Q^{2}\right), G_{P}\left(Q^{2}\right)$
- $G_{E}\left(Q^{2}=0\right) \quad=1$
- $G_{M}\left(Q^{2}=0\right) \quad=\boldsymbol{\mu}=4.7058 \quad$ Magnetic moment
- $G_{A}\left(Q^{2}=0\right) \quad=g_{A}=1.276(2) \quad$ Axial charge
- $\tilde{G}_{P}\left(Q^{2}=0.88 m_{\mu}^{2}\right)=g_{p}^{*}=8.06(55) \quad$ Induced pseudoscalar charge

Conserved vector charge

Lattice QCD gives us

2-point function

 $\longleftarrow \tau$

$$
\begin{aligned}
& \langle\Omega|{\widehat{N_{\tau}}}^{\dagger} \widehat{N}_{0}|\Omega\rangle \\
& \Gamma^{2 p t}(\tau)=\sum_{i}\left|A_{i}\right|^{2} e^{-E_{i} \tau}
\end{aligned}
$$

$\langle\Omega| \widehat{N}_{\tau}^{\dagger} O(t) \widehat{N}_{0}|\Omega\rangle$ $\Gamma_{O}^{3 p t}(t, \tau)=\sum_{i, j} A_{i}^{*} A_{j}\langle i| O|j\rangle e^{-E_{i} t-E_{j}(\tau-t)}$

Connected

Calculations of nucleon 2,3-point functions using LQCD are mature

Spectrum (energies E_{i}, amplitudes A_{i}) and ME are extracted from fits to the spectral decomposition of 2- and 3-point functions

$$
\begin{aligned}
\Gamma^{2 p t}(\tau) & =\sum_{i}\left|A_{i}\right|^{2} e^{-E_{i} \tau} \\
\Gamma_{O}^{3 p t}(t, \tau)= & \sum_{i, j} A_{i}^{*} A_{j}\langle i| O|j\rangle e^{-E_{i} t-E_{j}(\tau-t)} \\
& \text { Extract }\langle 0| O|0\rangle
\end{aligned}
$$

Radial excited States:
$\mathrm{N}(1440), \mathrm{N}(1710)$
Towers of multihadrons states

$$
N(\vec{k}) \pi(-\vec{k}) \quad>1200 \mathrm{MeV}
$$

$N(0) \pi(\vec{k}) \pi(-\vec{k})>1200 \mathrm{MeV}$
but removing ESC from multihadron states remains a challenge

Challenges

- Need large τ to "kill" states with small mass gap ($\Delta M \sim 300$)
- Cannot go to large enough τ because the signal/noise degrades as $e^{-\left(M_{N}-1.5 M_{\pi}\right) \tau}$
- Signal: 2-pt: $\tau \sim 2 \mathrm{fm}$; 3-pt: $\tau \sim 1.5 \mathrm{fm}$
- Typical interpolating operator \widehat{N} couples to the nucleon, its excitations and multi-hadron states with the same quantum numbers

- As $\vec{q} \rightarrow 0$, the towers of physical $N \pi, N \pi \pi$, states become arbitrarily dense above $\sim 1230 \mathrm{MeV}$ (the Δ region)
- Quantities impacted by $N \pi$, $N \pi \pi$, states should be analyzed on $M_{\pi} \precsim 200 \mathrm{MeV}$ ensembles
- Excited states that give significant contribution to a particular ME are not known a priori. χ PT is a very useful guide
- The potential of variational methods for isolating the ground state is just starting to be realized!

$\chi \mathrm{PT}$ and excited states

- Corrections from pion loops are in all matrix elements
- Loops that originate or end at sources are ESC. These can be removed by a perfect source.
- Loops that originate on the nucleon line give rise to both: corrections to the physical result and excited state contributions (from pion going on-shell in Minkowski)
- The latter are suppressed exponentially by the mass gap
- Unless there are large cancellations, both should be considered in (i) removing excited state contamination in getting the data, and in (ii) the final chiral fits to the data

Extract Axial-vector Form Factors, $G_{A}, \widetilde{G}_{P}, G_{P}$

3-point functions \rightarrow ground state matrix elements \rightarrow Form factors

$$
\begin{gathered}
\left\langle N\left(p_{f}\right)\right| A^{\mu}(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right)\left[\gamma^{\mu} G_{A}\left(q^{2}\right)+q_{\mu} \frac{\tilde{G}_{P}\left(q^{2}\right)}{2 M}\right] \gamma_{5} u\left(p_{i}\right) \\
\left\langle N\left(p_{f}\right)\right| P(q)\left|N\left(p_{i}\right)\right\rangle=\bar{u}\left(p_{f}\right) G_{P}\left(q^{2}\right) \gamma_{5} u\left(p_{i}\right) \\
\text { PCAC }\left[\partial_{\mu} A_{\mu}=2 m P\right] \text { relates } G_{A}, \tilde{G}_{P}, G_{P}
\end{gathered}
$$

Constraints once FF are extracted from ground state matrix elements

1) $\operatorname{PCAC}\left(\partial_{u} A_{u}=2 \widehat{m} \mathrm{P}\right)$ requires

$$
2 \widehat{m} G_{P}\left(Q^{2}\right)=2 M_{N} G_{A}\left(Q^{2}\right)-\frac{Q^{2}}{2 M_{N}} \tilde{G}_{P}\left(Q^{2}\right)
$$

2) In any [nucleon] ground state

$$
\partial_{4} A_{4}=\left(E_{q}-M_{0}\right) A_{4}
$$

3) G_{A}, \tilde{G}_{P} extracted from $\quad\left\langle N\left(p_{f}\right)\right| A_{i}(q)\left|N\left(p_{i}\right)\right\rangle$ must be consistent with $\left\langle N\left(p_{f}\right)\right| A_{4}(q)\left|N\left(p_{i}\right)\right\rangle$

Decomposition of ground state matrix elements: $\left\langle N_{\tau} A_{\mu}(t) N_{0}\right\rangle$ provides an over-determined set

Choosing " 3 " the direction of spin projection

$$
\begin{aligned}
& \left\langle N\left(p_{f}\right)\right| A_{1,2}(q)\left|N\left(p_{i}\right)\right\rangle \rightarrow-\frac{q_{1,2} q_{3}}{2 M} \tilde{G}_{P} \\
& \left.\left\langle N\left(p_{f}\right)\right| A_{3}(q)\left|N\left(p_{i}\right)\right\rangle \rightarrow-\left[\frac{q_{3}^{2}}{2 M} \tilde{G}_{P}-(M+E) G_{A}\right]\right] \begin{array}{l}
\text { Gives both } \\
G_{A}, \tilde{G}_{P}
\end{array} \\
& \left\langle N\left(p_{f}\right)\right| A_{4}(q)\left|N\left(p_{i}\right)\right\rangle \rightarrow-q_{3}\left[\frac{E-M}{2 M} \tilde{G}_{P}-G_{A}\right] \quad \begin{array}{l}
\text { Redundant. } \\
\text { Dominated by } \\
\text { excited states }
\end{array}
\end{aligned}
$$

$\chi P T: N \pi$ state coupling large in the axial channel

Enhanced coupling to $N \pi$ state: Since the pion is light, the vertex can be anywhere in the lattice 3-volume

$\left\langle N_{\tau} A_{4}(t) N_{0}\right\rangle$ has large ESC Fits with $N \pi$ state preferred

Data driven evidence for $N \pi$ state. Including $\boldsymbol{N} \boldsymbol{\pi}$ state also addressed PCAC

$2017 \rightarrow 2019$: Resolution of PCAC and PPD

Gupta et al, PhysRevD.96.114503 \rightarrow Jang et al, PRL 124 (2020) 072002

On including low mass $N_{p=0} \pi_{p}$ and $N_{p} \pi_{-p}$ excited states neglected in previous works, FF satisfy PCAC and PPD at $\sim 5 \%$
$\begin{array}{cc}\widehat{m} G_{P} \\ M_{N} G_{A}\end{array}+\frac{Q^{2} \tilde{G}_{P}}{4 M_{N}^{2} G_{A}}=1$
-Also see RQCD Collaboration: JHEP 05 (2020) 126, 1911.13150

$N \pi$ state in the axial channel

Mass gaps extracted from fits match the above picture

$\Delta M_{1}^{A 4}$ and $\Delta E_{1}^{A 4}$ are outputs of 2state fits and not driven by priors

How large is the " $N \pi$ " effect?

Output of a simultaneous fit to $\left\langle A_{i}\right\rangle,\left\langle A_{4}\right\rangle,\langle P\rangle$ (called $\left\{4^{N \pi}, 2^{\text {sim }}\right\}$ fit) increases the form factors by:

$$
-\left[\begin{array}{rl}
G_{A} & \sim 5 \% \\
\tilde{G}_{P} & \sim 35 \% \\
G_{P} & \sim 35 \%
\end{array}\right.
$$

Standard 3-state fit to $\langle P\rangle$

Simultaneous 2-state to $\left\langle A_{i}\right\rangle,\left\langle A_{4}\right\rangle,\langle P\rangle$ correlators

Essential steps in the analysis

- Remove ESC from correlation functions
- Decompose into form factors to get $G\left(Q^{2}\right)$ on each ensemble
- Parameterize this $G\left(Q^{2}\right)$
- Perform CCFV extrapolation to get $G\left(Q^{2}\right)$ in the continuum
- Parameterize this $\left.G\left(Q^{2}\right)\right|_{\text {cont }}$

Model averaging should include model choices at each step that have significant effect on result

If ESC is the largest systematic and fits do not select between $\left\{A_{i}, E_{i}\right\}$

- 2-state fit: Model average different E_{1}
- 3-state fit: Model average over $\left\{E_{1}, E_{2}\right\}$

Consistency in the extraction of g_{A}

- g_{A} from forward ME versus $g_{A}=G_{A}\left(Q^{2} \rightarrow 0\right)$
- With / without including $N \pi$ state in the analysis
- PCAC

Spectrum from Γ^{2}

$G_{A}, \widetilde{G}_{P}, G_{P}$ do not satisfy PCAC
$N \pi$ included in fits
(via A_{4} or priors)

$G_{A}, \widetilde{G}_{P}, G_{P}$ with $N \pi$
satisfy PCAC

Calculations reviewed in 2305.11330

Collab.	Ens.	Excited State	$\boldsymbol{M}_{\boldsymbol{\pi}}$	$\boldsymbol{Q}^{\mathbf{2}}$	Continuum- chiral-finite- volume extrap	$\boldsymbol{g}_{\boldsymbol{A}}$
PNDME 23	13	With $N \pi$	2 physical	$z^{2}+z^{2}$	CCFV	$1.292(53)(24)$
Mainz 22	14	Simultaneous ESC, Q^{2}	2 physical	z^{2}	CCFV	$1.225(39)(25)$
NME 21*	7 (12)	With $N \pi$	2	170 MeV	z^{2}	Ignore $\left\{a, M_{\pi}^{2} M_{\pi}^{2} \mathrm{~L}\right\}$ dependence
ETMC 20	3	Without $N \pi$	3 physical	data	$\{a\}$	$1.32(6)(5)$
RQCD $19 / 23$	36 (47)	With $N \pi$ only for		data		$\left[1.284_{27}^{28}\right]$
\tilde{G}_{P}, G_{P}						

PNDME: arXiv:2305.11330, NME: PRD 105, 054505 (2022), RQCD: JHEP 05, 126 (2020), PRD 107, L051505 (2023)

Mainz: PRD 106, 074503 (2022) ETMC: PRD 103, 034509 (2021)

Comparing axial form factor from LQCD

A consensus is emerging

Comparing prediction of x -section using AFF from $v-D$ and PNDME with MINERvA data

$$
Q^{2}<0.2 \mathrm{GeV}^{2} \quad 0.2<Q^{2}<1 \quad Q^{2}>1 \mathrm{GeV}^{2}
$$

T. Cai, et al., (MINERvA) Nature volume 614, pages 48-53 (2023); Phys. Rev. Lett. 130, 161801 (2023)

Oleksandr Tomalak, Rajan Gupta, Tanmoy Bhattacharya, arXiv:2307.14920

Mapping the AFF

- $0<Q^{2}<0.2 \mathrm{GeV}^{2}$
- This region will get populated by simulations with $M_{\pi} \approx 135$ $\mathrm{MeV}, \mathrm{a} \rightarrow 0, M_{\pi} L>4$
- MINER v A data has large errors
- Characterized by g_{A} and $\left\langle r_{A}^{2}\right\rangle$ and $\mathrm{G}_{\mathrm{A}}\left(\mathrm{Q}^{2}\right)$ parameterized by a z-expansion with a few terms
- $0.2<Q^{2}<1 \mathrm{GeV}^{2}$
- Lattice data mostly from $M_{\pi}>200 \mathrm{MeV}$ simulations
- Competitive with MINERvA data. Cross check of each other
- $Q^{2}>1 \mathrm{GeV}^{2}$
- Lattice needs new ideas
- MINERvA and future experiments

Update from ETMC (3 $M_{\pi} \approx 135 \mathrm{MeV}$ ensembles)
$2+1+1$-flavor twisted mass ensembles

Ens. ID	latt. Vol.	$\mathrm{a}[\mathrm{fm}]$	Lm_{π}
cB211.072.64 (cB64)	$64^{3} \times 128$	0.080	3.62
cC211.060.80 (cC80)	$80^{3} \times 160$	0.069	3.78
cD211.054.96 (cD96)	$96^{3} \times 192$	0.057	3.90

Excited state fits

- 2-state checked against 3-state
- $N \pi$ state not included
- $\quad 1^{\text {st }}$ excited state mass $\approx x x \mathrm{MeV}$

PCAC test of form factors

$$
r_{\mathrm{PCAC}}=\frac{\frac{m_{q}}{m_{N}} G_{5}\left(Q^{2}\right)+\frac{Q^{2}}{4 m_{N}^{2}} G_{P}\left(Q^{2}\right)}{G_{A}\left(Q^{2}\right)}
$$

Large cut-off effects in twisted mass involving pions

Update from CalLAT Collaboration

(A. Meyer, A. Walker-Loud)
domain-wall on HISQ calculation using sequential prop through sink $48^{3} \times 64$ ensemble (a12m130): $a^{-1}=1.66 \mathrm{GeV} ; M_{\pi}=132 \mathrm{MeV}$
Gaussian sources for quark propagators
1000 X 32 (configurations X measurements)

Updates from PACS

Talk by Ryutaro Tsuji

Stout smeared O(a) improved Wilson quark and Iwasaki gauge actions. $2+1$ flavors

Lattice size	128^{4}	160^{4}
Spatial volume	$(10.9 \mathrm{fm})^{3}$	$(10.1 \mathrm{fm})^{3}$
Pion mass	135 MeV	135 MeV
Nucleon mass	$0.935(11) \mathrm{GeV}$	$0.946(3) \mathrm{GeV}$
Lattice spacing	0.086 fm	0.063 fm
$\mid t_{\text {sink }}-t_{\text {src }} / a$	$10,12,14,16$	$13,16,19$
Renormalization	SF, RI-MOM/SMOM	SF

Tuned exponential sources show very little excited-state effects in axial

Update from LHP/RBC/UKQCD Collaboration

(S. Ohta arXiv:2211.16018)

2+1-flavor domain-wall-fermions $48^{3} \times 96$ ensemble: $a^{-1}=1.730(4) \mathrm{GeV}$
Gaussian sources for quark propagators
120 configurations, \#\# measurements

Data at $\tau=8,9,10$ do not show significant change indicating small excited state effect

Slower fall-off than PNDME 23 data

Comparison with unpublished data

Roper transition helicity amplitude using $\left\langle N V_{\mu} V_{v} N\right\rangle$ hadronic tensor

Extracted using a simple spectral decomposition of $H_{\mu \nu}$ that gives reasonable estimates

Talk by Raza Sufian for $\chi Q C D$

Electric \& Magnetic FF

Electric

Magnetic

- The extraction of electric and magnetic form factors is insensitive to the details of the excited states
- Vector meson dominance $\rightarrow N \pi \pi$ state should contribute (some evidence)
- The form factors do not show significant dependence on the lattice spacing or the quark mass
- Good agreement with the Kelly curve. Validates the lattice methodology
- Improve precision and get data over larger range of parameter values

Much harder:
 Multi-hadron states

$\left\langle n \pi^{+}\right| J_{\mu}^{+}(q)|n\rangle$

See

- Barca et al, 2211.12278, 2110.11908
- NPLQCD Collaboration, Phys.Rev.Lett. 120 (2018) 15, 152002
- Nuclear matrix elements from lattice QCD for electroweak and beyond-StandardModel processes, 2008.11160 [hep-lat]

Looking ahead

- Challenges in lattice calculations of nucleon matrix elements:
- Signal to noise degrades as $e^{-\left(M_{N}-1.5 M_{\pi}\right) t}$
- removing multi-hadrons excited states to get ground state ME
- including multi-hadrons in initial and/or final state for transition ME
- Continue to develop a robust analysis strategy for removing dominant excited states in various nucleon matrix elements
- Improve chiral and continuum extrapolation. Simulate at more $\left\{a, M_{\pi}\right\}$
- Current $0.04<Q^{2}<1 \mathrm{GeV}^{2}$ Extend to larger Q^{2} for DUNE
- Transition matrix elements
- Goal: Perform a comprehensive analysis of scattering data with input of lattice results for $g_{A}, G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right), G_{A}\left(Q^{2}\right), \widetilde{G}_{P}\left(Q^{2}\right)$

Improvements in algorithms and computing power are needed to reach few percent precision

